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Abstract: A pot experiment, under greenhouse conditions, was carried out aiming at investigating
the agronomic biofortification of alfalfa (Medicago sativa L.) with Se and monitoring the Se uptake
and accumulation dynamics within four consecutive harvests within the same growing season. Two
ionic Se forms, i.e., sodium selenate (Se (VI)) and sodium selenite (Se (IV)), were applied once at a
rate of 1, 10, and 50 mg kg−1 (added on Se basis), while 10 and 50 mg L−1 of a red elemental Se (red
Se0) were used; all Se treatments were added as soil application. Application of Se (VI) at the rate of
50 mg kg−1 was toxic to alfalfa plants. The effect of Se forms on Se accumulation in alfalfa tissues,
regardless of the applied Se concentration, follows: Se (VI) > Se (IV) > red Se0. The leaf, in general,
possessed higher total Se content than the stem in all the treatments. The accumulation of Se in stem
and leaf tissues showed a gradual decline between the harvests, especially for plants treated with
either Se (VI) or Se (IV); however, the chemically synthesized red Se0 showed different results. The
treatment of 10 mg kg−1 Se (VI) resulted in the highest total Se content in stem (202.5 and 98.0 µg
g−1) and leaf (643.4 and 284.5 µg g−1) in the 1st and 2nd harvests, respectively. Similar tendency is
reported for the Se (IV)-treated plants. Otherwise, the application of red Se0 resulted in a lower Se
uptake; however, less fluctuation in total Se content between the four harvests was noticed compared
to the ionic Se forms. The Se forms in stem and leaf of alfalfa extracted by water and subsequently by
protease XIV enzyme were measured by strong anion exchange (SAX) HPLC-ICP-MS. The major
Se forms in our samples were selenomethionine (SeMet) and Se (VI), while neither selenocysteine
(SeCys) nor Se (IV) was detected. In water extract, however, Se (VI) was the major Se form, while
SeMet was the predominant form in the enzyme extract. Yet, Se (VI) and SeMet contents declined
within the harvests, except in stem of plants treated with 50 mg L−1 red Se0. The highest stem or
leaf SeMet yield %, in all harvests, corresponded to the treatment of 50 mg L−1 red Se0. For instance,
63.6% (in stem) and 38.0% (in leaf) were calculated for SeMet yield % in the 4th harvest of plants
treated with 50 mg L−1 red Se0. Our results provide information about uptake and accumulation
dynamics of different ionic Se forms in case of multiple-harvested alfalfa, which, besides being a
good model plant, is an important target plant species in green biorefining.
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1. Introduction

Forage plants contribute to mitigating the negative environmental effects of intensified
agriculture resulting in enhanced soil health and fertility, increased carbon sequestration,
root disease management in cropping systems, increased biodiversity. In addition, forages
play pivotal role in crop-livestock farming systems [1]. Around 60 different plants of
Leguminosae family are known and cultivated as sources of forage for animals. Among
them alfalfa (Medicago sativa L.) is the most frequent [2]. The global yield of alfalfa is more
than 400 million metric tons per year [3]. Alfalfa originated from the Middle East; however,
alfalfa cultivation nowadays is widespread around the world. Alfalfa possesses a deep
root system capable to reach deep water supplies and tolerating drought [4]. Moreover, its
dense root system enriches the soil organic matter content, soil biological activity, provides
physical protection against wind and water erosion also reduces soil erosion [5]. Alfalfa, a
herbaceous perennial plant, can regrow from the buds located in the crown after dormant
state caused by unfavorable growth conditions [6]. Green biomass of alfalfa can be harvested
3–7 times per vegetation season depending on the variety, temperature, and irrigation. The
multiple-harvested green biomass can provide 2–3 metric ton ha−1 crude protein; in addition
to being a good source of chlorophylls, carotenoids, vitamins such as vitamin C, E, and
different forms of vitamin Bs. Among secondary metabolites several flavonoids, phenolic
compounds, phytoestrogens and saponins could be identified in alfalfa shoot. Moreover, it
contains valuable minerals such as Ca, Cu, Fe, Mg, Mn, P, Zn, Si [7].

One of the future challenges of agriculture is the depletion of several trace elements such
as iron (Fe), zinc (Zn), iodine (I2), and selenium (Se) [8]. In addition to soil depletion, these
minerals will also be valued in plant-based diets as they are typically found in less accessible
amounts in plant-based foods than in animals, due to inhibitory substances. Selenium (Se) is
one of the intensely studied microelements. Although Se is essential only for algae in the Plant
Kingdom, several benefits to plant growth, particularly for those grown under biotic and/or
abiotic stress, have been documented within many studies [5,9–11]. However, nowadays,
the presence of an adequate concentration of Se in food and feed has become a necessity
after stating its indispensability to humans and animals. For instance, for humans, the
advised daily dose of Se is 55 µg day−1 with a tolerance limit of up to 400 µg day−1 as
stated by the WHO and FAO [12], whereas higher doses of Se are required by animals.
Beef cattle, for example, require 100 µg kg−1 (on dry matter basis), while dairy cows
demand 300 µg kg−1 (on dry matter basis) [13]. In animals, more than 30 selenoproteins,
including the well-known antioxidant enzyme glutathione peroxidase (GSH), have been
identified for their crucial roles in production, disease protection, and fertility [14]. The
concentration in the soil, plant uptake, and accumulation of Se are decisive in the Se
level in food and feed. Because of its close connection Se in plant-based food and feed
varies widely by geographical location [15]. Plants accumulated Se below 100 µg g−1 DW
are known as non-accumulators, while hyperaccumulators plants are classified into two
groups as follows: (1) secondary accumulators (100–1000 µg Se g−1 DW) and (2) primary
accumulators (1000–15,000 µg Se g−1 DW) [16,17]. Mikkelsen et al. [18] reported that alfalfa
plants including their root system accumulated 948 mg Se kg−1 upon exposure to 1 mg L−1

Se (VI). However, lower Se contents were reported in alfalfa grown on 900 µM Se, added
as sodium selenate in the nutrient solution, for 60 days recording 4.37 mg kg−1 (in leaves),
3.75 mg kg−1 (in stem), and 6.30 mg kg−1 (in root) [19].

In Se-poor areas, the exogenous application of Se is necessary. Phytofortification/
biofortification can offer an opportunity to improve the bioavailable concentrations of
microelement in edible portions of crop plants and through them into the food chain.
Fortification can be achieved by agronomic intervention or using traditional breeding
practices and/or genetic engineering [9]. Regarding agronomic fortification, it is worth
noting the nanotechnology, which is a rapidly developing technique for targeted and
precise micronutrient fertilizing in agriculture [10,20]. Biofortification is a term that can
be approached from two perspectives, depending on whose interests are in focus. On the
one hand, crops and forages can be fortified with Se to avoid the suboptimal micronutrient
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level in consumers including livestock and/or humans. Hence, insufficient intake of Se
in humans is correlated with low protection against the oxidizing agents and increased
risk of different types of cancer and cardiovascular diseases [21]. Moreover, decreased
productive and reproductive performance is observed in livestock due to suboptimal levels
of dietary Se [22,23]. Seboussi et al. [24] showed that Se-enriched forages (timothy and
alfalfa silage) had more bioavailable Se form in the diet of cows than inorganic Se form and
it was more effective in increasing milk and blood Se concentrations. Se-fortified alfalfa hay
improved vaccination responses and subsequent growth and survival of beef calves in the
feedlot; furthermore, it promoted the accumulation of Se and antibodies in the colostrum
of calves [25].

On the other hand, from plant aspects, the importance of Se biofortification is a widely
researched area. Selenium, like several stressors, including certain toxins, biostimulants, or
non-essential elements elicits a biphasic dose-response. In other words selenium induces
dose-dependent stimulation/inhibition in plants. This phenomenon, called also hormesis,
facilitates the acclimatization of plants in new or changing environments, and it can be
a key factor in evolutionary processes [26]. For instance, Se in low concentration range
enhances the plant growth and mitigates the harmful effects of abiotic environmental
factors depending on the plant species [27]. Most studies related to Se fortification focus
on the plant biological effects of the canopy and/or fruit that are harvested once during
the experiment [28]. From this approach, alfalfa is a special non-selenium accumulator
forage crop. As a multi-harvested plant, it can be a good model to compare the Se uptake
and translocation dynamics of different chemical forms in newly regrown leafy shoots.
At the same time, alfalfa has a great importance in animal feeding. Hence, to investigate
the Se uptake, translocation, accumulation, and conversion dynamics in re-growing green
biomass provide useful information in developing a balanced forage-fortification method.

Our objectives are to compare the uptake of three different inorganic chemical forms of
Se (i.e., Se (VI), Se (IV), and red Se0) by alfalfa. Further aim is to examine the translocation,
accumulation dynamics of Se forms in green biomass during four consecutive harvests in
the same growing season and the effects of these forms on the plant metabolism. Therefore,
total Se content, Se speciation, stress response to Se application, and plant biometrics
were measured.

2. Results
2.1. Selenium Accumulation in Alfalfa
2.1.1. Total Se Content

The uptake and accumulation of total Se in alfalfa stem show a dose-response rela-
tionship regardless of the applied chemical form of Se and harvest time (Figure 1A). For
instance, as much as 202.5 µg Se g−1 at the rate of 10 mg kg−1 Se (VI) added as soil appli-
cation to as little as 20.5 µg g−1 at the rate of 1 mg kg−1 Se (VI) added as soil application
in the first harvest. Moreover, in the 1st and 2nd harvests, the highest total Se content in
stem (202.5 and 98.0 µg g−1, respectively) corresponded to the application of Se (VI) at
the rate of 10 mg kg−1; while in the 3rd and 4th harvests, the application of 50 mg kg−1

Se (IV) resulted in the highest total Se content in stem (39.5 and 25.4 µg g−1, respectively).
Moreover, total Se content in stem shows a linear reduction within the harvests where the
4th harvest displayed the lowest total Se content in most of the treatments. The accumu-
lation of Se in the stem was significantly affected by the applied chemical form of Se; the
Se (VI), regardless of its concentration, possessed the highest total Se content compared to
the same concentration of Se (IV) and red Se0 (Figure 1A). A regular decrease in total Se
content with the harvest time was noticed under the treatments of 1 and 10 mg kg−1 Se
(VI) and 10 and 50 mg kg−1 Se (IV). For instance, total Se content in the 1st, 2nd, 3rd, and
4th harvest was 202.5, 98.0, 25.8, and 14.6 µg g−1 when alfalfa plants were grown on 10 mg
kg−1 Se (VI). The total Se content in stem of plants treated with either 10 or 50 mg L−1 red
Se0 was significantly lower compared to 10 mg kg−1 Se (VI) treatment in all the harvests,
except in the 4th harvest where almost same contents were measured. The application of
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red Se0 showed a lower Se uptake compared to the Se (VI) and Se (IV); however, a slight
fluctuation in the total Se content between the four harvests was noticed (Figure 1A,B). In
the presence of 10 mg L−1 red Se0, the total Se content in the 1st harvest was 6.9 µg g−1,
while in the 4th harvest was 10.5 µg g−1. Upon the application of 50 mg L−1 red Se0, a 26.8,
11.7, 14.2, and 16.2 µg g−1 of total Se was measured in the 1st, 2nd, 3rd, and 4th harvests,
respectively (Figure 1A).
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Overall, evolution of the total Se content in alfalfa leaves differed slightly from stem
(Figure 1B). For instance, the application of Se (VI) at the rate of 10 mg kg−1 resulted in
the highest total Se content in leaves in the 1st and 2nd harvests, while the highest total
Se content in the 3rd and 4th harvests corresponded to the 50 mg Se kg−1 Se (IV). In the
treatment of 10 mg kg−1 Se (VI) and 50 mg kg−1 Se (IV) a linear reduction in total Se
content was detected within the four harvests. However, the other treatments hesitantly
affected the total Se content in leaves. Interestingly, upon the application of 10 mg L−1 red
Se0, the total Se content in leaves increased gradually from the 1st harvest (14.3 µg g−1) to
the 4th harvest (37.5 µg g−1). Despite the application of 50 mg L−1 red Se0 it did not show
the same trend as the 10 mg L−1 red Se0, it exhibited a reduction in the total Se content from
the 1st to the 3rd harvest then increased again in the 4th harvest. However, the reduction
in the total Se content was 47.8% for the treatment of 50 mg L−1 red Se0 while for the
10 mg kg−1 Se (VI) and 50 mg kg−1 Se (IV) treatments was 91.0 and 78.3%, respectively.

2.1.2. Selenium Forms

Selenium forms in alfalfa aboveground part were identified and quantified with
the external calibration method from the 1st, 2nd, and 4th harvests. Regarding quality
assurance, Se-enriched yeast (SELM-1) as a certified reference material was analyzed. The
recovery % of Se from SELM-1 was 80.4% for SeMet. The Se speciation was carried out for
the treatments with the highest Se concentration, i.e., 10 mg kg−1 Se (VI), 50 mg kg−1 Se
(IV); and 50 mg L−1 red Se0, in the 1st, 2nd, and 4th harvests. Based on SAX HPLC-ICP-MS
results, inorganic Se (VI) was the dominant peak in water-soluble stem and leaf fractions
regardless of the applied Se treatment (Table 1 and Figure S1). However, Se (VI) content
drastically declined from the 1st harvest to the 4th one in the treatments of 10 mg kg−1 Se
(VI) and 50 mg kg−1 Se (IV). For instance, the stem Se (VI) concentration in the treatment
of 50 mg kg−1 Se (IV) decreased from 89.0 µg g−1 (in the 1st harvest) to 5.16 µg g−1 (in the
4th harvest). Likewise, in leaves, Se (VI) content reduced from 336.0 (in the 1st harvest)
to 20.5 µg g−1 (in the 4th harvest) in the treatment of 50 mg kg−1 Se (IV) (Table 1). The
accumulation of Se in the form of Se (VI) in either stem or leaf of alfalfa was lower upon
the application of 50 mg kg−1 Se (IV) or 50 mg L−1 red Se0 compared to 10 mg kg−1 Se
(VI). As presented in Table 1, SeMet could also be detected from the water-soluble fraction;
although in much less amounts than Se (VI). In contrast to water-soluble fraction, the
major detected peak of SAX HPLC-ICP-MS chromatograms was SeMet in the enzyme
extract (Figure S1). The ratio of SeMet (major organic Se form) showed an increasing
tendency during the consecutive harvests as a result of the decrease in the total Se content.
Comparing the Se treatments, the relative ratio of SeMet form was the lowest in the
10 mg kg−1 Se (VI) treatment and the highest in 50 mg L−1 red Se0 treatment. However,
it is worth noting that the ratio of SeMet accumulation in plants treated with 10 mg kg−1

Se (VI) (calculated as SeMet content in 10 mg kg−1 Se (VI)/SeMet content in 50 mg L−1

red Se0) was 0.4–3.6-fold greater than the 50 mg L−1 red Se0-treated plants. In contrast, the
inorganic Se (VI) accumulation ratio (calculated by Se (VI) in 10 mg kg−1 Se (VI)/Se (VI) in
50 mg L−1 red Se0) was up to 55-fold higher in plants treated with 10 mg kg−1 Se (VI) than
50 mg L−1 red Se0 (Figure 2). In addition to the two major identified Se components, some
minor unidentified selenocompounds were also detected (Figure S1).
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Table 1. Selenomethionine (SeMet) and selenate (Se (VI)) content in stem and leaves of alfalfa grown on different selenium
(Se) forms and concentrations within three harvests.

Treatments

Water Extract

Stem Leaves

SeMet (mg kg−1) Se (VI) (mg kg−1) SeMet (mg kg−1) Se (VI) (mg kg−1)

1st 2nd 4th 1st 2nd 4th 1st 2nd 4th 1st 2nd 4th

10 Se (VI) 2.2 0.9 0.5 79.5 32.3 4.3 8.2 1.5 1.2 901.0 141.0 10.7
50 Se (IV) 1.7 1.4 1.1 89.0 22.4 5.2 2.3 1.9 4.2 336.0 65.8 20.5
50 red Se0 0.6 0.3 0.5 6.5 0.7 2.7 1.8 0.6 1.4 51.7 3.9 1.5

Enzyme Extract

Stem Leaves

SeMet (mg kg−1) Se (VI) (mg kg−1) SeMet (mg kg−1) Se (VI) (mg kg−1)

1st 2nd 4th 1st 2nd 4th 1st 2nd 4th 1st 2nd 4th

10 Se (VI) 18.1 14.3 4.8 8.1 6.0 0.8 71.4 41.0 24.8 86.8 18.1 2.6
50 Se (IV) 17.7 12.3 8.5 13.0 5.2 0.8 56.9 34.9 22.4 30.8 12.9 2.9
50 red Se0 7.1 4.1 11.9 1.1 Nd ¥ nd 20.2 13.1 7. 6 5.4 0.6 nd

¥ not detected.

2.2. Biochemical Changes in Alfalfa under the Exogenous Application of Different Se Forms
2.2.1. Buffer-Soluble Protein

The content of buffer-soluble protein in alfalfa stem significantly varied upon the
exogenous application of Se. Five treatments (i.e., control, 1, 10, and 50 mg kg−1 Se (IV)
and 10 mg L−1 red Se0) out of the eight treatments exhibited the same response to the
Se application regardless of its form and concentration within the four harvests; protein
content decreased from the 1st harvest to the 2nd harvest followed by an increase in the 3rd
harvest and then decreased in the 4th harvest. Although the Se (IV) treatments displayed
the same trend of the protein content, no treatment resulted in the highest content of
protein within the four harvests (Figure 3A). For instance, the highest protein content in
the 1st, 2nd, 3rd, and 4th harvest (10.9, 12.3, 10.1, and 11.8 mg g−1, respectively) was 10,
1, 50, and 10 mg kg−1 Se (IV), respectively (Figure 3). Except for the 4th harvest, protein
content in alfalfa stem grown in the presence of 50 mg L−1 red Se0 was higher than that
of 10 mg L−1 red Se0. Moreover, the treatment of 50 mg L−1 red Se0 showed high protein
content compared to the other Se treatments; even it was the highest in the 3rd harvest.
Moreover, many Se treatments resulted in higher protein content in stem compared to
control especially in the 1st and 3rd harvests. The 2nd harvest exhibited the highest protein
content in stem followed by 1st, 4th, and 3rd harvest. Furthermore, within all harvests, the
highest protein content belonged to the control followed by 10 mg kg−1 Se (IV), while the
lowest content was measured when plants grew on 1 mg kg−1 Se (VI). On the other hand,
protein content in leaves of alfalfa treated with Se displayed higher contents than control
within the four harvests (Figure 3B). In general, the highest protein contents in the 1st and
2nd harvests were measured in alfalfa leaves treated with 50 mg L−1 red Se0. In contrast,
the lowest protein contents in the 1st and 2nd harvests corresponded to the application
of Se (VI), while in the 3rd and 4th harvests, the treatment of 50 mg L−1 red Se0 resulted
in the lowest protein content. Moreover, application of red Se0 at the rate of 10 mg L−1

resulted in the highest protein contents 23.3 and 28.1 mg g−1 in the 3rd and 4th harvests,
respectively. The treatment of 50 mg kg−1 Se (IV) exhibited a high protein content in the 1st
and 3rd harvests. Among all harvests, the 2nd harvest was the best regarding the protein
content followed by the 4th, 3rd, and 1st harvest. Regarding the treatments, the treatment
of 10 mg L−1 red Se0 was the best followed by 10 mg kg−1 Se (IV).
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Figure 2. Selenomethionine (SeMet) yield % in alfalfa aboveground biomass (A: stem; B: leaves) fertilized with different Se
forms (i.e., Se (VI), Se (IV), and red Se0) at different concentrations (10 and 50 mg kg−1 for ionic form and 50 mg L−1 for red
Se0) within three harvests.



Plants 2021, 10, 1277 8 of 24

Plants 2021, 10, x FOR PEER REVIEW 8 of 25 
 

 

10 mg kg−1 Se (IV), respectively (Figure 3). Except for the 4th harvest, protein content in 
alfalfa stem grown in the presence of 50 mg L−1 red Se0 was higher than that of 10 mg L−1 
red Se0. Moreover, the treatment of 50 mg L−1 red Se0 showed high protein content com-
pared to the other Se treatments; even it was the highest in the 3rd harvest. Moreover, 
many Se treatments resulted in higher protein content in stem compared to control espe-
cially in the 1st and 3rd harvests. The 2nd harvest exhibited the highest protein content in 
stem followed by 1st, 4th, and 3rd harvest. Furthermore, within all harvests, the highest 
protein content belonged to the control followed by 10 mg kg−1 Se (IV), while the lowest 
content was measured when plants grew on 1 mg kg−1 Se (VI). On the other hand, protein 
content in leaves of alfalfa treated with Se displayed higher contents than control within 
the four harvests (Figure 3B). In general, the highest protein contents in the 1st and 2nd 
harvests were measured in alfalfa leaves treated with 50 mg L−1 red Se0. In contrast, the 
lowest protein contents in the 1st and 2nd harvests corresponded to the application of Se 
(VI), while in the 3rd and 4th harvests, the treatment of 50 mg L−1 red Se0 resulted in the 
lowest protein content. Moreover, application of red Se0 at the rate of 10 mg L−1 resulted 
in the highest protein contents 23.3 and 28.1 mg g−1 in the 3rd and 4th harvests, respec-
tively. The treatment of 50 mg kg−1 Se (IV) exhibited a high protein content in the 1st and 
3rd harvests. Among all harvests, the 2nd harvest was the best regarding the protein con-
tent followed by the 4th, 3rd, and 1st harvest. Regarding the treatments, the treatment of 
10 mg L−1 red Se0 was the best followed by 10 mg kg−1 Se (IV). 

 

0

5

10

15

20

25

30

1st 2nd 3rd 4th

Bu
ffe

r-
so

lu
bl

e 
pr

ot
ei

n 
(m

g 
g-1

)

Harvests

A Control 1 Se (VI) 10 Se (VI) 1 Se (IV)
10 Se (IV) 50 Se (IV) 10 red Se0 50 red Se0

Two-way ANOVA
Treatment (T)  (F= 45.126 ***)
Harvests (H) (F= 5597.149 ***)
Interaction (T×H) (F= 44.332 ***)

Plants 2021, 10, x FOR PEER REVIEW 9 of 25 
 

 

 

Figure 3. Buffer-soluble protein content in (A) stem and (B) leaves of alfalfa fertilized with different Se forms (i.e., Se (VI), 
Se (IV) and red Se0) at different concentrations (1, 10, and 50 mg kg−1 for ionic forms and 10 and 50 mg L−1 for red Se0) 
within four consecutive harvests with 30-day intervals. Alfalfa plants that received 50 mg kg−1 Se (VI) died two weeks after 
seed germination. Data are means ± SD (n = 6). *** significant according to Tukey’s test (p ≤ 0.001) 

2.2.2. Lipid Peroxidation 
The content of MDA in stem and leaves of alfalfa was measured as an indicator for 

the degree of oxidation of bilayer in the cell membrane. In the 1st harvest, the stem MDA 
content varied between 18.6 to 25.4 nmol g−1; however, the lowest value corresponded to 
the treatment of 10 mg L−1 red Se0, while the highest value was found in the treatment of 
50 mg kg−1 Se (IV). Noticeably, addition of Se at concentration above 10 mg kg−1 resulted 
in high MDA content compared to the lower concentrations in the 1st harvest. Neverthe-
less, lower stem MDA contents were measured in the next harvests, 2nd to the 4th harvest, 
and ranged between 9.9 nmol g−1 (for 10 mg kg−1 Se (VI) in the 3rd harvest) and 13.4 nmol 
g−1 (for control in the 2nd harvest) as shown in Table 2. However, all Se treatments showed 
almost the same stem MDA content in the 2nd harvest where differences were insignifi-
cant. In the 3rd and 4th harvest, all treatments had stem MDA content similar to the con-
trol. No tendentious differences could be revealed between selenium treatments. With re-
spect to the MDA content of the leaves, no big differences between harvests were meas-
ured as in the case of the stem. The MDA content of leaves changed between 14.7 and 21.2 
nmol g−1 during the four consecutive harvests (Table 2). However, no tendentious differ-
ences were revealed between Se treatments, except the treatment of 50 mg L−1 red Se0 
which exhibited the highest MDA content compared to all Se treatments.  

2.2.3. Water-Soluble Phenols 
In general, the content of water-soluble phenols was higher in alfalfa leaves than in 

stem regardless of the Se treatment and harvesting time. Most of the Se treatments caused 
an increase in the water-soluble phenol content of the stem which ranged from 36.8 to 77.3 
µg g−1 (Table 2). For instance in the 1st harvest, the highest phenol content of stem was 
67.5 µg g−1 in the presence of 10 mg kg−1 Se (VI), while control plants displayed the lowest 
phenol content 45.5 µg g−1. Furthermore in the 4th harvest, the highest phenol content 
changed between 72.8 and 77.3 µg g−1 using 50 mg kg−1 Se (VI) or 10–50 mg L−1 red Se0, 

0

5

10

15

20

25

30

1st 2nd 3rd 4th

Bu
ffe

r-
so

lu
bl

e 
pr

ot
ei

n 
(m

g 
g-1

)

Harvests

B Two-way ANOVA
Treatment (T)  (F= 246.453 ***)
Harvests (H) (F= 38392.488 ***)
Interaction (T×H) (F= 287.691 ***)

Figure 3. Buffer-soluble protein content in (A) stem and (B) leaves of alfalfa fertilized with different Se forms (i.e., Se (VI),
Se (IV) and red Se0) at different concentrations (1, 10, and 50 mg kg−1 for ionic forms and 10 and 50 mg L−1 for red Se0)
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2.2.2. Lipid Peroxidation

The content of MDA in stem and leaves of alfalfa was measured as an indicator for
the degree of oxidation of bilayer in the cell membrane. In the 1st harvest, the stem MDA



Plants 2021, 10, 1277 9 of 24

content varied between 18.6 to 25.4 nmol g−1; however, the lowest value corresponded to
the treatment of 10 mg L−1 red Se0, while the highest value was found in the treatment of
50 mg kg−1 Se (IV). Noticeably, addition of Se at concentration above 10 mg kg−1 resulted
in high MDA content compared to the lower concentrations in the 1st harvest. Nevertheless,
lower stem MDA contents were measured in the next harvests, 2nd to the 4th harvest, and
ranged between 9.9 nmol g−1 (for 10 mg kg−1 Se (VI) in the 3rd harvest) and 13.4 nmol g−1

(for control in the 2nd harvest) as shown in Table 2. However, all Se treatments showed
almost the same stem MDA content in the 2nd harvest where differences were insignificant.
In the 3rd and 4th harvest, all treatments had stem MDA content similar to the control. No
tendentious differences could be revealed between selenium treatments. With respect to
the MDA content of the leaves, no big differences between harvests were measured as in
the case of the stem. The MDA content of leaves changed between 14.7 and 21.2 nmol g−1

during the four consecutive harvests (Table 2). However, no tendentious differences were
revealed between Se treatments, except the treatment of 50 mg L−1 red Se0 which exhibited
the highest MDA content compared to all Se treatments.

2.2.3. Water-Soluble Phenols

In general, the content of water-soluble phenols was higher in alfalfa leaves than in
stem regardless of the Se treatment and harvesting time. Most of the Se treatments caused
an increase in the water-soluble phenol content of the stem which ranged from 36.8 to
77.3 µg g−1 (Table 2). For instance in the 1st harvest, the highest phenol content of stem
was 67.5 µg g−1 in the presence of 10 mg kg−1 Se (VI), while control plants displayed the
lowest phenol content 45.5 µg g−1. Furthermore in the 4th harvest, the highest phenol
content changed between 72.8 and 77.3 µg g−1 using 50 mg kg−1 Se (VI) or 10–50 mg L−1

red Se0, while control plants exhibited 48.3 µg g−1. Regarding the Se treatments, the phenol
content in leaves increased from the 1st to the 2nd harvest (the highest phenol content)
then started to decrease gradually from the 3rd to the 4th harvest (lowest phenol content).
Control plants had the lowest value (78 µg g−1) in leaves only in the 1st harvest. Phenol
content shows a dose-response relationship to Se (VI) as it increased upon increasing the
Se concentration from 1 to 10 mg kg−1. However, similar responses did not report for the
Se (VI) treatments, which showed hesitating phenol contents. The red Se0 displayed the
same response as Se (VI) where phenol content was higher when red Se0 was applied at
the rate of 50 mg L−1 compared to 10 mg L−1. Regardless of the harvests, the application
of Se (VI) at the rate of 10 mg kg−1 recorded the highest phenol content in leaves. All Se
treatments resulted in lower phenol contents in 2nd, 3rd, and 4th harvests compared to
control with slight exceptions.
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Table 2. Variations in some biochemical traits in alfalfa grown on different selenium (Se) forms (Se (VI), Se (IV), and red Se0) and concentrations (1, 10, and 50 mg kg−1 for ionic forms and
10 and 50 mg L−1 for elemental form) during four consecutive harvests.

Malondialdehyde (nmol g−1) Water-Soluble Phenols (µg g−1) Peroxidase Activity (U mL−1 min−1 g−1 DW)

Stem Stem Stem

1st Harvest 2nd Harvest 3rd Harvest 4th Harvest 1st Harvest 2nd Harvest 3rd Harvest 4th Harvest 1st Harvest 2nd Harvest 3rd Harvest 4th Harvest

Control 20.5 ± 0.36 cd 13.4 ± 0.29 a 10.5 ± 0.00 d 11.6 ± 0.40 ab 45.5 ± 0.58 e 51.5 ± 2.38 b 41.8 ± 0.50 d 48.3 ± 2.50 cd 21.7 ± 0.08 e 39.7 ± 0.29 e 35.9 ± 0.32 c 24.0 ± 0.17 e
1 Se (VI) 24.9 ± 0.47 a 11.6 ± 0.55 b 10.3 ± 0.10 e 11.3 ± 0.35 ab 54.3 ± 0.50 b 44.0 ± 2.16 c 40.5 ± 0.58 de 46.5 ± 2.89 d 40.4 ± 0.09 bc 45.3 ± 0.26 c 44.5 ± 0.26 a 44.6 ± 0.26 b

10 Se (VI) 24.8 ± 0.25 ab 12.1 ± 0.72 b 9.9 ± 0.06 f 11.2 ± 0.38 ab 67.5 ± 0.58 a 65.3 ± 1.50 a 36.8 ± 0.50 f 52.0 ± 1.41 c 30.5 ± 0.08 d 12.2 ± 0.26 h 8.2 ± 0.26 g 25.9 ± 0.18 d
1 Se (IV) 19.8 ± 0.32 de 11.9 ± 0.31 b 11.3 ± 0.06 b 10.6 ± 0.62 b 46.3 ± 0.50 de 52.5 ± 2.38 b 41.8 ± 0.50 d 61.0 ± 2.94 b 67.5 ± 0.05 a 50.4 ± 0.26 b 36.0 ± 0.25 c 53.8 ± 0.25 a

10 Se (IV) 23.6 ± 0.50 b 12.0 ± 0.21 b 11.6 ± 0.06 a 12.0 ± 0.40 a 47.3 ± 0.50 cd 48.0 ± 2.94 bc 39.8 ± 0.50 e 56.8 ± 0.50 b 40.4 ± 0.10 bc 42.0 ± 0.34 d 43.5 ± 0.31 b 35.0 ± 0.17 c
50 Se (IV) 25.4 ± 0.38 a 11.4 ± 0.35 b 10.6 ± 0.00 d 11.7 ± 0.66 ab 47.8 ± 0.50 c 51.0 ± 1.63 b 46.8 ± 0.50 b 77.3 ± 1.50 a 39.3 ± 0.14 c 14.6 ± 0.33 g 11.3 ± 0.36 f 20.0 ± 0.36 g
10 red Se0 18.6 ± 0.65 e 12.5 ± 0.15 ab 10.4 ± 0.06 de 11.3 ± 0.35 ab 47.3 ± 0.50 cd 49.5 ± 2.38 b 45.3 ± 0.96 c 76.8 ± 1.26 a 28.9 ± 0.14 de 54.2 ± 0.25 a 34.5 ± 0.31 d 53.3 ± 0.31 g
50 red Se0 21.7 ± 0.46 c 12.0 ± 0.42 b 10.9 ± 0.10 c 11.3 ± 0.46 ab 48.0 ± 0.82 c 49.0 ± 2.16 bc 48.5 ± 0.58 a 72.8 ± 1.71 a 48.5 ± 0.17 b 18.1 ± 0.24 f 24.3 ± 0.25 e 21.2 ± 0.25 f

F-test (Two-ways)

Treatment *** *** ***
Harvest *** *** ***

Treatment ×
Harvest *** *** ***

Leaf Leaf Leaf

1st harvest 2nd harvest 3rd harvest 4th harvest 1st harvest 2nd harvest 3rd harvest 4th harvest 1st harvest 2nd harvest 3rd harvest 4th harvest

Control 16.9 ± 0.25 c 18.4 ± 0.55 a 14.7 ± 0.40 d 18.4 ± 0.59 cd 78.0 ± 1.73 b 150.8 ± 0.50 c 144.8 ± 0.96 a 104.8 ± 0.50 c 49.8 ± 0.13 c 24.8 ± 0.31 d 18.6 ± 0.26 d 47.5 ± 0.33 c
1 Se (VI) 18.2 ± 0.23 ab 16.1 ± 1.16 b 15.5 ± 0.42 cd 17.1 ± 0.62 d 133.5 ± 1.00 a 143.5 ± 0.58 e 138.3 ± 0.96 b 74.0 ± 0.82 f 39.1 ± 0.13 e 29.0 ± 0.36 c 20.6 ± 0.31 c 32.4 ± 0.29 e

10 Se (VI) 17.9 ± 0.40 abc 15.7 ± 0.78 b 15.1 ± 0.68 d 18.3 ± 0.51 cd 139.3 ± 0.50 a 145.8 ± 0.96 d 142.8 ± 0.96 a 114.8 ± 0.96 b 63.2 ± 0.20 a 11.6 ± 0.17 a 5.0 ± 0.19 h 15.3 ± 0.32 h
1 Se (IV) 17.7 ± 0.47 bc 15.8 ± 0.53 b 17.8 ± 0.21 b 18.6 ± 0.36 bcd 147.8 ± 0.50 a 153.8 ± 0.50 b 116.0 ± 1.15 e 75.0 ± 1.15 f 55.7 ± 0.13 b 42.4 ± 0.28 a 53.1 ± 0.21 a 49.5 ± 0.26 b

10 Se (IV) 18.3 ± 0.35 ab 18.9 ± 0.56 a 16.9 ± 0.57 bc 21.2 ± 0.31 a 127.3 ± 0.50 a 150.5 ± 0.58 c 122.3 ± 0.50 c 80.8 ± 0.96 e 43.3 ± 0.28 d 29.0 ± 0.22 c 15.3 ± 0.22 f 45.6 ± 0.30 d
50 Se (IV) 17.9 ± 0.66 abc 18.2 ± 0.64 a 15.6 ± 0.38 cd 19.7 ± 0.83 abc 144.8 ± 0.96 a 225.3 ± 0.50 a 61.5 ± 0.58 g 80.0 ± 0.82 e 33.6 ± 0.13 g 12.7 ± 0.17 f 7.3 ± 0.22 g 23.4 ± 0.31 f
10 red Se0 18.6 ± 0.44 ab 17.5 ± 0.00 ab 17.1 ± 0.52 b 20.2 ± 0.65 ab 119.8 ± 0.96 a 69.5 ± 0.58 g 70.0 ± 0.82 f 95.5 ± 1.00 d 38.8 ± 0.15 e 36.1 ± 0.31 b 17.5 ± 0.22 e 61.5 ± 0.37 a
50 red Se0 19.0 ± 0.49 a 18.4 ± 0.46 a 19.4 ± 0.53 a 20.0 ± 0.78 abc 140.5 ± 0.58 a 89.8 ± 0.13 f 119.0 ± 0.82 d 143.5 ± 0.58 a 37.6 ± 0.18 f 14.3 ± 0.17 e 21.1 ± 0.22 b 17.8 ± 0.28 g

F-test (Two-ways)

Treatment *** *** ***
Harvest *** *** ***

Treatment ×
Harvest *** *** ***

Data presented are mean ± SD (n = 9). Means in the same column and within the same year followed by different letters are significant according to Tukey’s test (p ≤ 0.05). *** significant according to Tukey’s test
(p ≤ 0.001).
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2.2.4. Peroxidase Activity

The activity of peroxidase enzyme (POD) showed the same response in the stem and
leaves of alfalfa. In general, the high concentrations of the applied Se resulted in lower
levels of POD activity, while the low concentrations induced the POD activity compared
to the control in all the harvests with slight exceptions. For instance, stem POD activity
increased from 12.2 to 45.3 U mL−1 min−1 g−1 DW when Se (VI) was applied at the rate of
10 and 1 mg kg−1, respectively (Table 2). Similar findings were reported in the 3rd harvest
for the same treatments where 1 mg kg−1 Se (VI) recorded higher POD activity than
10 mg kg−1 Se (VI) recording an increase of 442.7%. Applying Se at the rate of 1 mg kg−1

in the form of Se (VI) and Se (IV) recorded the highest activity of POD within all harvests.
Likewise, in alfalfa leaves, the treatment of 10 mg kg−1 Se (VI) resulted in the lowest POD
activity compared to the other Se treatments including the control. Moreover, 1 mg kg−1

Se (VI) had higher POD activity than 10 mg kg−1 Se (VI) in all harvests except the 1st
harvest. The addition of red Se0 at the rate of 10 mg L−1 recorded an increase in POD
activity compared to 50 mg L−1 in stem and leaves.

2.3. Plant Biometrics
2.3.1. Shoot Length

Length of the aboveground part of alfalfa (shoot) significantly responded to the
exogenous application of Se. Moreover, shoot length shows a negative dose-response
relationship to the Se application as high Se concentrations, i.e., 10 mg kg−1 Se (VI) and
50 mg kg−1 Se (IV), significantly diminished the shoot length in all harvests compared
to low Se concentrations (Table 3). Application of Se at the rate of 1 mg kg−1 as Se (VI)
resulted in the tallest shoot compared to other Se concentrations and forms; however,
10 mg kg−1 Se (VI) resulted in the shortest shoot in the 1st and 2nd harvests. However, in
the 3rd and 4th harvest 10 mg kg−1 Se (VI) had less negative impact of shoot length as an
increase in shoot length was measured compared to the 1st and 2nd harvests. On the other
hand, Se (IV) showed a different effect as the 10 mg kg−1 treatment exhibited a taller shoot
than 1 and 50 mg kg−1 treatments. In general, plants grew on 1 mg kg−1 Se (VI), 10 mg
kg−1 Se (IV), and 50 mg L−1 red Se0 displayed the highest shoot length within the four
harvests. Among the four harvests, the 3rd harvest possessed the tallest shoot followed by
the 4th harvest while the shortest shoot was measured in the 1st harvest.

2.3.2. Shoot Dry Mass

Treatments with high Se concentrations, i.e., 10 and 50 mg kg−1 of Se (VI) and Se (IV),
respectively, had the lowest dry mass of shoot in all harvests; however, in the 3rd harvest,
they recorded higher dry masses. Control plants had the highest dry mass only in the 1st
harvest; while, Se treatments resulted in higher dry masses in the other harvests (Table
3). Treatments with low Se concentrations, i.e., 1 mg kg−1 Se (VI), 10 mg kg−1 Se (IV), and
50 mg L−1 red Se0, showed higher shoot dry masses. For example, in the 2nd harvest, the
shoot dry mass was 1.0 g plant−1 at 1 mg kg−1 Se (VI) and lowered to 0.4 g plant−1 when
Se (VI) concentration increased to 10 mg kg−1. Likewise, 10 mg kg−1 Se (IV) had a better
effect on shoot dry mass compared to 50 mg kg−1 as higher dry masses were measured.
Contrary to the two ionic forms of Se (Se (VI) and Se (IV)), red Se0 exhibited an opposite
effect on the shoot dry mass as 50 mg L−1 had higher dry masses than 10 mg L−1. Among
harvests, the 3rd harvest displayed the highest shoot dry mass followed by the 2nd harvest.
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Table 3. Morphological traits of alfalfa grown on different selenium (Se) forms (Se (VI), Se (IV), and red Se0) and concentrations
(1, 10, and 50 mg kg−1 for ionic forms and 10 and 50 mg L−1 for elemental form) during four consecutive harvests.

Shoot Length (cm) Shoot DM (g plant−1)

1st Harvest 2nd
Harvest

3rd
Harvest

4th
Harvest 1st Harvest 2nd

Harvest
3rd

Harvest
4th

Harvest

Control 38.9 ± 4.75
a

32.2 ± 3.21
cd

41.4 ± 5.20
b

45.9 ± 6.42
a

0.66 ± 0.26
a

0.35 ± 0.10
b

0.90 ± 0.46
ab

0.74 ± 0.22
a

1 Se (VI) 39.0 ± 6.93
a

47.6 ± 5.53
a

51.5 ± 9.44
ab

44.5 ± 5.30
ab

0.40 ± 0.17
ab

1.05 ± 0.46
a

0.88 ± 0.30
ab

0.65 ± 0.24
ab

10 Se (VI) 29.8 ± 3.46
b

29.8 ± 4.98
d

45.8 ± 5.22
b

39.5 ± 6.13
abc

0.27 ± 0.11
b

0.38 ± 0.13
b

0.65 ± 0.25
b

0.40 ± 0.09
bc

1 Se (IV) 34.9 ± 5.43
ab

40.3 ± 5.86
ab

48.6 ± 4.53
ab

39.5 ± 4.90
abc

0.55 ± 0.25
ab

0.68 ± 0.36
b

0.98 ± 0.31
ab

0.61 ± 0.19
ab

10 Se (IV) 38.7 ± 5.99
a

40.1 ± 4.42
b

58.4 ± 7.24
a

41.5 ± 4.93
abc

0.61 ± 0.31
a

0.59 ± 0.23
b

1.26 ± 0.50
a

0.49 ± 0.15
abc

50 Se (IV) 33.1 ± 4.13
ab

35.5 ± 7.05
bcd

48.1 ± 5.74
ab

35.4 ± 3.95
c

0.39 ± 0.16
ab

0.38 ± 0.21
b

0.69 ± 0.29
b

0.27 ± 0.10
c

10 red Se0 34.2 ± 2.86
ab

37.6 ± 5.15
bc

50.1 ± 8.92
ab

36.6 ± 4.43
bc

0.45 ± 0.14
ab

0.44 ± 0.18
b

0.73 ± 0.27
b

0.44 ± 0.17
bc

50 red Se0 35.2 ± 4.13
ab

40.9 ± 5.28
ab

41.3 ± 5.33
b

39.0 ± 9.61
abc

0.49 ± 0.25
ab

0.60 ± 0.21
b

0.77 ± 0.30
b

0.57 ± 0.24
ab

F-test (Two-ways)

Treatment *** ***
Harvest *** ***

Treatment
× Harvest *** ***

Data presented are mean ± SD (n = 9). Means in the same column and within the same year followed by different letters are significant
according to Tukey’s test (p ≤ 0.05). *** significant according to Tukey’s test (p ≤ 0.001).

2.4. Pearson Correlation and PCA Analysis

Running the principal component analysis (PCA) using SPSS 13.0 generated 14 components
(PC) in which the first 5 PCs explained 80.2% of the total variance (Figure 4 and Table S1). The
PC-1 to PC-5 explained 31.3, 17.5, 14.7, 8.9, and 7.7%, respectively. The PC-1 basically
described the total Se content in stem and leaf, MDA content in stem, protein content in
leaf, shoot length, and shoot dry mass (Table 4). On the other hand, leaf MDA content and
phenol content in stem and leaf of alfalfa were designated by the PC-2. While PC-3 largely
defined the activity of POD in both stem and leaf, protein content in stem was labeled to
the PC-4. Harvest time and Se treatments were explained by the PC-5.

Positive and negative correlations between the measured parameters of alfalfa were
reported by Pearson correlation (2-tailed). For instance, harvests displayed a moderate,
negative and significant correlation with total Se content in stem (p < 0.05) and phenol
content in leaf (p < 0.05) and high, negative, and significant correlation with MDA content
in stem (p < 0.01). Harvests, also, showed a moderate, positive and significant correlation
with protein content in leaf (p < 0.01) and shoot length (p < 0.05). The content of MDA
in leaf was the only character that showed a significant positive correlation with the Se
treatments (Table S2). On the other hand, total Se content in stem significantly correlated
with MDA content in stem (p < 0.01; moderate and positive), leaf protein content (p < 0.05;
moderate and negative), shoot length (p < 0.01; moderate and negative), and shoot dry
mass (p < 0.01; moderate and negative). The same correlations were reported for the total
Se content in leaf. All of leaf protein content (p < 0.01), shoot length (p < 0.01) and shoot
dry mass (p < 0.05) displayed significant and negative correlation with the MDA content
in stem. Contrarily, MDA content in stem showed a positive and significant correlation
with POD activity in leaf (p < 0.01). Leaf MDA content resulted in positive and significant
correlations with stem phenol content (p < 0.01) and POD activity in leaf (p < 0.05) and
negative correlation with shoot dry mass (p < 0.05). Both leaf protein content and shoot dry
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mass showed positive and significant correlations with shoot length. A high positive and
significant correlation (p < 0.01) between shoot length and shoot dry mass was reported.
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Table 4. Rotated loading values for the first five PCs from the measured properties of alfalfa grown on different selenium
(Se) forms (Se (VI), Se (IV), and red Se0) and concentrations (1, 10, and 50 mg kg−1 for ionic forms and 10 and 50 mg L−1 for
elemental form) during four consecutive harvests (in bold significant values p < 0.01).

Component Matrix (a)

Component
1 2 3 4 5

Harvests −0.605 0.551 −0.304 −0.199 0.326
Treatments 0.140 0.451 −0.148 −0.320 −0.694

Se_Stem 0.754 −0.242 −0.439 −0.144 0.219
Se_Leaf 0.730 −0.231 −0.469 −0.160 0.236

MDA_Stem 0.779 −0.312 0.389 −0.124
MDA_Leaf 0.327 0.769 0.204 −0.104 −0.250

Protein_Stem 0.233 0.277 0.185 0.774 −0.102
Protein_Leaf −0.610 0.341 −0.192 0.407 0.200
Phenol_Stem 0.459 0.719 −0.203 0.265
Phenol_Leaf 0.311 −0.439 −0.146 0.435 −0.182
POD_Stem 0.809 0.140
POD_Leaf 0.397 0.188 0.723 −0.122 0.373

Shoot_Length −0.848 −0.219 −0.197
Shoot_DW −0.755 −0.400 0.175 −0.130

Eigenvalue 4.38 2.46 2.06 1.24 1.08

Cumulative % 31.3 48.9 63.9 72.5 80.2

Extraction method: principal component analysis. a Five components extracted.



Plants 2021, 10, 1277 14 of 24

3. Discussion

Several plant crops and forages lack Se due to low soil Se and/or poor Se-accessibility
for plant uptake where many factors affect Se-phytoavailability such as soil pH, redox
potential (Eh), organic matter, soil texture, total soil Se content, and the chemical form of
Se [9,11,29,30]. Consequently, many techniques have been suggested to elevate Se content
in food and feed to fulfill the daily Se requirements for humans and animals [9]. Yet, the
agronomic biofortification of Se, added as either soil or foliar application, has recently
gained extraordinary attention due to its easy, safe, and effective application. Treating
growing plants/forages by different chemical Se forms not only increases the total Se
content in plant biomass but also alerts the content of several bioactive compounds [9,31].

In the present study, we did not only aim to investigate the efficacy of the Se-
enrichment process of alfalfa (“king of forages”) but also to study the effect of differ-
ent chemical Se forms (i.e., Se (VI), Se (IV), and red Se0), concentrations, and Se-uptake
dynamics within four consecutive harvests on the total Se content; Se forms in alfalfa
aboveground biomass were also examined alongside the changes in some chemical, bio-
chemical, morphological parameters. There were two reasons beyond selecting alfalfa as
a role model. First reason is that alfalfa is a multi-harvested plant, and thus it is a good
model to compare the uptake and translocation dynamics of different Se forms in newly
regrown leafy shoots. Second reason is that alfalfa has a great importance as an alternative
source of protein alongside soybean in the continental climate zone. Beyond traditional
uses such as hay production, these days alfalfa is considered as a promising crop in the
novel green biorefinery concept [32,33]. Green biorefinery processes convert the raw green
biomass into a range of marketable products including feed, food, chemicals, biofuels,
heat (multi-product-system) based on deployment of sustainable zero-waste technologies.
By developing a well-managed forage fortification method, organic Se-enriched products
can be produced from the yearly four–six times harvested and fractionated alfalfa green
biomass. Although several studies have been published in the topic of alfalfa selenium
fortification [34], according to our knowledge, the present work is the first in which the
Se uptake and transportation conversion dynamics of three different inorganic forms are
compared during several consecutive harvests, covering the entire growing season.

Selenium is one of the essential microelements known for its double-edged action
as it exhibits indispensable benefits when applying at low concentrations while the high
concentrations are lethal. This was confirmed by our results where plants exposed to
50 mg kg−1 Se (VI) were not able to survive after germination. The toxicity of high Se
doses is mainly attributed to the incorporation of Se-amino acids into proteins that disrupts
protein folding and thus causing loss of functions [35]. However, this depends heavily on
plant Se/S ratio rather than Se content alone. Furthermore, the high accumulation of Se
in plant tissues causes developmental malformations, and induces the overexpression of
reactive oxygen species (ROS) due to reaction of Se with the thiol group and GSH [36],
and stimulates protein nitration, especially tyrosine nitrate [37]. However, methylation of
Se-amino acids can alleviate their toxicity, where mainly SeCys and SeMet are converted
into methyl-SeCys and methyl-SeMet, respectively, and turned into volatile Se forms, i.e.,
dimethyl selenide and dimethyl diselenide [38]. Along with it, the selenium tolerance
and accumulation ability of hyperaccumulator or primary accumulator plant species are
due to diverse metabolic pathways. The accumulation of selenohomocysteine (SeHCy)
derivatives related to fatty acid metabolism and also polyselenides can be detected from
some plant species [39].

Our results also revealed that the uptake, translocation, and accumulation of Se in
alfalfa tissues heavily depend on chemical form and applied concentration of Se as well
as the harvesting time. The chemical form of Se in the active root zone largely affects
its uptake. For instance, Se (VI) is the most mobile, soluble, and absorbed ionic form,
especially in oxic soil (aerated) where Se is found in its highest oxidized state (6+); and
consequently, it poorly adheres to soil complexes and oxides [28]. Plant roots uptake Se
(VI) through sulfate transporters, i.e., SULTR 1 and 2, and Se (VI) is actively transported



Plants 2021, 10, 1277 15 of 24

through the cell membrane [40]. Our findings are in the same line as the highest total Se
content in stem and leaf of alfalfa, especially in the 1st and 2nd harvests, corresponded
to the application of Se (VI) at the rate of 10 mg kg−1. However, total Se content in stem
and leaf of plants fertilized with Se (VI) linearly and significantly decreased within the
harvests. For instance, in the treatment of 10 mg kg−1 Se (VI), the total stem Se content was
202.5 µg g−1 in the 1st harvest and dropped down to 14.6 µg g−1 in the 4th harvest
(Figure 1). Similar results were reported in leaf for the same treatment, with higher Se
content than the stem, as in the 1st harvest, the total Se content was 643.4 µg g−1 and
declined to 58.1 µg g−1 in the 4th harvest (Figure 1). Two reasons could be behind this
high rate of Se (VI) uptake in the first two harvests and the low rate in the next consecutive
harvests, i.e., 3rd and 4th harvests: (1) the short root system of alfalfa in the first harvests
compared to late harvests as the upper layer of soil is more aerated than the deeper one
that ensure the existence of Se in form of Se (VI) due to the oxic conditions [33], and (2)
the high dose of applied Se (VI), i.e., 10 mg kg−1. However, this cannot be referred to the
low sulfur soil content since Se (VI) is absorbed through the same transporters as sulfate
because the sulfur content in the experimental soil was 220 ± 5.6 mg kg−1 (Table S3) which
is much higher than the recommended sulfur soil content 10–20 mg kg−1 [34].

On the other hand, in soil that lacks aeration (anoxic), Se (IV), the less mobile and
available Se from, is the dominant form, while further reduction of Se (VI) can lead to
selenide (2-) and Se0 forms [33]. In our experiment, alfalfa root absorbed Se (IV) at a lower
rate than Se (VI); 1 mg kg−1 Se (VI) resulted in total stem Se content higher than that of
10 mg kg−1 Se (IV) in the 1st harvest. Nevertheless, in the successive harvests, 10 mg kg−1

Se (IV) exhibited slightly higher total Se content in the stem. Regarding total Se content in
leaf, 10 mg kg−1 Se (IV) displayed higher content than 1 mg kg−1 Se (VI) in all harvests
(Figure 1). Interestingly, the treatment of 50 mg kg−1 Se (IV) showed the second-highest
total Se content in stem and leaf of the 1st and 2nd harvests, while it resulted in the highest
total Se content in the 3rd and 4th harvests.

Currently, it is well-known that the Se (IV) is mainly transported through the cell mem-
brane by the phosphorus and silicon transporters, i.e., NIP2 and 1 and PHT2 [32]. Therefore,
in soils rich in phosphorus—such as our experimental soil (2015 ± 135 mg kg−1;Table S3)—
Se (IV) competes with phosphorus for NIP2;1 and PHT2 transporters. Consequently, the
low uptake rate of Se (IV) by alfalfa root in the present experiment could be attributed to
the suppression of Se (IV) uptake by high soil phosphorus content, particularly for the first
two harvests. Moreover, the high soil organic matter content (18.69 ± 0.14 g kg−1; Table S3)
could be a reason behind the low rate of Se (IV) uptake due to the retention of Se (IV) on
the organic matter [16].

Recently, there is an emerging attitude to use the Se0 for Se biofortification of plant
crops rather than the ionic forms, i.e., Se (VI) and Se (IV) [9]. Our results showed promising
findings related to the utilization of red Se0 in biofortification of crops/forages by Se. The
application of red Se0, particularly at the rate of 10 mg L−1, showed the same effect as
slow-release fertilizers, as the accumulation of total Se in the stem and leaf of alfalfa during
the successive harvests remained almost the same, contrary to what the Se (VI) and Se (IV)
displayed. The treatment of 50 mg L−1 red Se0 also showed promising traits. Total stem Se
content after treating alfalfa by 10 mg L−1 red Se0 was 6.9, 8.3, 6.0, and 10.5 µg g−1 in the
1st, 2nd, 3rd, and 4th harvest, respectively (Figure 1). Nevertheless, the same treatment
showed the same effect but with a gradual increase in the total leaf Se content within the
harvests recording 14.3 µg g−1 in the 1st harvest and increased to 37.5 µg g−1 in the 4th
harvest (Figure 1). Various factors affecting the uptake of nanoparticles like red Se0 such
as physical and chemical properties of nanoparticles, plant type, growth medium, and/or
plant-soil-microbe interactions [33]. Some nanoparticles can form complexes with organic
compounds secreted from plant roots and/or soil microorganisms. There are two proposed
pathways for the uptake of nanoparticles; however, this depends on the particle size of
nanoparticles. The apoplastic route is suggested to be the path of small nanoparticles below
20 nm as it can easily penetrate the cell membrane of root tissues [34]. On the other hand,



Plants 2021, 10, 1277 16 of 24

larger nanoparticles can infiltrate the plant root via the symplastic route through the inner
side of the plasma membrane [34]. However, red Se0 could find its way into root cells first
through its oxidation in soil by some bacteria, i.e., Bacillus megaterium, into Se (IV) and
consequently taken up via the phosphorus transporters or even could be further oxidized
into Se (VI) and pass through sulfate transporters [35].

Broadley et al. [41] cited that plants can uptake approximately 12% of Se added as
soil application as the main portion of Se becomes unavailable due to the fixation on
soil particles and organic matter. Consequently, they recommended the foliar application
of Se fertilizers for better agronomic biofortification. However, opposite findings were
reported by da Silva et al. [42]; they investigated the uptake of two Se forms, i.e., sodium
selenate and sodium selenite, applied at the rate of 1.2 mg kg−1 as a soil application and
50 µmol L−1 as a foliar application by radish (Raphanus sativus L). Soil application of
sodium selenate resulted in higher Se content in the root, leaf of radish compared to foliar
application of the same form. Moreover, soil application of sodium selenite showed the
same response but to a lower extent. Thus, they recommended soil application of selenate
as the best technique for Se biofortification. Our results showed that 10.2% of applied Se
at the rate of 10 mg kg−1 Se (VI) was taken up by alfalfa plants on average. On the other
hand, 6.1% and 4.9% of applied 10 mg L−1 red Se0 were taken up by plants in the 3rd and
4th harvests, respectively. Considering the uptake dynamics and variation in Se uptake
and accumulation in alfalfa tissues, it could be concluded that 10 mg L−1 red Se0 is the
best treatment from the Se-biofortification point of view as it displayed almost a constant
uptake rate of Se. As a total of the four harvests, the highest Se uptake % was 18.4% for
10 mg kg−1 Se (VI) followed by 17.2% for 10 mg L−1 red Se0.

Plants can absorb inorganic and organic Se forms from soil solution; however, there
is a higher affinity for organic Se compounds such as Se-amino acids [10]. Directly after
entering the root cells, ionic Se forms, Se (VI) and Se (IV) are transported to plastids to
subsequently synthesize Se-amino acids, i.e., SeCys and SeMet [43]. The absorbed Se (VI)
has to be reduced to Se (IV) before the synthesis of SeCys; however, the reduction of Se (VI)
is energy-consuming and thus is a limiting step that is regulated by the ATP sulfurylase
enzyme [44].

The results of the separation of different chemical Se forms in alfalfa tissues HPLC-
ICP-MS showed that the Se (VI) and SeMet were the dominant Se forms with few peaks for
unknown Se forms. The Se (VI) content in stem or leaf shows a high dependence on applied
Se form, concentration, and harvesting time. The highest Se (VI) content corresponded to the
treatment of 10 mg kg−1 Se (VI) followed by 50 mg kg−1 Se (IV), while the lowest measured
Se (VI) content was for the application of red Se0 at the rate of 10 mg L−1 (Table 1). In general,
the leaf possessed higher Se (VI) and SeMet content compared to the stem. The high total
Se content in the leaf may help explain this phenomenon, in addition to the fact that the
synthesis of organic Se compounds mainly occurs in plastids [44]. Consuming organic Se
forms by humans/animals is better than the ionic Se supplements especially for antioxidant
enzymes [35]. Most enzymes, especially the antioxidant ones, work on organic Se forms
better than the ionic ones; so, it has to be aimed not only at elevating the total Se content
in crops/forages but also increasing the content of the organic Se compounds such as
SeMet and SeCys. SeMet is known as the major organic Se form in Se-non-accumulators
such as alfalfa [36,37,43]. The SeMet/total Se ratio ranged between 10.0% and 63.3% in
the alfalfa stem and leaves depending on the applied Se treatment and harvesting time
(Figure 2A,B). The treatment of 10 mg kg−1 Se (VI) resulted in the highest SeMet (water
extract) only in the 1st harvest; though, the highest SeMet content in the 2nd and 4th
harvests was for the application of Se (IV) at the rate of 50 mg kg−1. Moreover, measuring
Se (VI) and SeMet in enzymatic extract displayed a much higher concentration than water
extract (Table 1). Considering the applied Se concentration, treatment of 50 mg L−1 red
Se0 exhibited higher SeMet yield %. Interestingly, the recovery percentage of SeMet in
all the treatments is largely affected by the harvesting time. The highest SeMet yield %
was measured in the 4th harvest followed by the 2nd one, whereas the lowest recovery
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percentage was detected in the biomass of the 2nd harvest. In stem, the SeMet yield %,
after the treatment of 50 mg L−1 red Se0, was 28.6% in the 1st harvest then increased to
63.6% in the 4th harvest. Likewise, in the leaf, 25.7% and 38.0% as SeMet yield % were
calculated in the 1st and 4th harvests, respectively, in plants treated with 50 mg L−1 red
Se0 (Figure 2). Dong et al. [38] investigated the different Se forms in potato tubers after
treating the plants with 200 µg mL−1 sodium selenite, added as a foliar application. They
cited that in the gastrointestinal digested raw potato tubers, no Se (VI) was detected while
other organic forms were measured; and they were in the following order: Se (IV) > SeMet
> SeCys > SeMeCys (Selenomethylcysteine). Yet, they measured very low concentrations of
these organic Se forms compared to our experiment. However, this could be attributed to
plant species, applied Se concentration, and the application method of Se. Finally, it cannot
be overlooked that the biofortification of Se using red Se0 form is the building of Se into
organic form (especially SeMet), which is more needed and important for consumption by
humans and animals.

Application of Se to plants with the purpose to elevate Se content in plant tissues might
have additional benefits for plant growth; Se can directly or indirectly serve as an antioxidant,
especially when applied at low concentration [42]. Malik et al. [43] reported a decline in
electrolytic leakage upon the repair of cell membrane fluidity by Se under different abiotic
stresses. Moreover, improvement in scavenging oxidants, generated in plant tissues under
various stress circumstances, has been documented upon the application of Se which enhances
the activity of several antioxidant enzymes including POD, GSH, catalase (CAT), superoxide
dismutase (SOD), and ascorbate peroxidase (APX) [44]. Consequently, low Se concentration
reduces the level of ROS, leading to a delay in plant senescence [44,45]. Moreover, low Se
dose has been cited to improve plant biometrics, e.g., photosynthetic pigments, relative water
content, and osmolytes (soluble protein, proline, sugars, and ions), particularly under salinity
stress [39] and waster deficit [40]. Leaves of alfalfa exhibited higher content of buffer-soluble
protein compared to the stem. The 1st harvest showed the lowest buffer-soluble protein
content in the leaf, while in the stem the lowest content belonged to the 3rd harvest. The
treatment of 10 mg kg−1 Se (VI) showed the lowest buffer-soluble protein content in the stem,
whereas red Se0 added at the rate of 50 mg L−1 resulted in the lowest leaf buffer-soluble
protein content (Figure 3). Similar findings were reported for MDA and water-soluble phenol
contents as the highest applied Se concentration, regardless of its chemical form, possessed
the highest content. Moreover, the treatment of 10 mg kg−1 Se (VI) showed the lowest POD
activity in stem and leaf in all the harvests, except 1st harvest leaf. This could be referred to
mishandling or measuring error.

Many studies have reported an increase or no variations in plant biomass upon
treating plants with different chemical forms of Se. In the present study, however, low
Se concentrations exhibited the same effect on plant biomass, while a reduction in length
and dry mass of alfalfa shoot has been noticed for treatments of 10 mg kg−1 Se (VI) and
50 mg kg−1 Se (IV) compared to other Se treatments and control, particularly in the first
two harvests (Table 3). Furthermore, lower MDA content and balanced Na+ homeostasis
have been also noticed for plants fertilized with low Se concentrations. On the other
hand, high Se concentrations are detrimental to plant growth. It causes developmental
malformations, and induces the overexpression of ROS due to reaction of Se with the thiol
group and GSH [36,46], and stimulates protein nitration, especially tyrosine nitrate [37].
Our results are consistent with these findings where the total stem Se content measured
after the treatments of 10 mg kg−1 Se (VI) and 50 mg kg−1 Se (IV), the highest two applied
Se doses, was 202.5 and 145.3 µg g−1, respectively, in the 1st harvest and decreased to
98.0 and 71.7 µg g−1, respectively, in the 2nd harvest. Moreover, in leaf, total Se in the 1st
harvest was 643.4 and 390.5 µg g−1 for treatments of 10 mg kg−1 Se (VI) and 50 mg kg−1

Se (IV), respectively, whereas in the 2nd harvest it was 284.5 and 215.1 µg g−1, respectively
(Figure 1). Furthermore, results of Se speciation of stem and leaf of alfalfa in the 1st, 2nd,
and 4th harvests, to a large extent, support our conclusion regarding the hazardous impact
of high Se doses on plant growth and development. The 10 mg kg−1 Se (VI) and 50 mg kg−1
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Se (IV) treatments, the highest Se forms accumulated in the stem is the Se (VI) recording
79.5 and 89.0 µg g−1, respectively, in the 1st harvest, while 50 mg kg−1 red Se0 treatment
resulted in Se (VI) content of 6.47 µg g−1 (Table 1). The content of Se (VI) in the stem of the
2nd harvest was lower than that of the 1st harvest but it was higher than those of the 4th
harvest. Higher Se (VI) content was measured in alfalfa leaf within the 1st, 2nd, and 4th
harvests compared to stem. For instance, 901 and 336 µg g−1 of Se (VI) was determined
in the leaf of plants treated with 10 mg kg−1 Se (VI) and 50 mg kg−1 Se (IV), respectively.
On the contrary, very low Se (VI) content was measured in stem and leaf of alfalfa plants
grown on 50 mg L−1 red Se0 in all the harvests compared to the addition of the ionic Se
forms, Se (VI) and Se (IV).

Finally, it could be concluded that the application of the Se fertilizers to growing plants
not only achieved an increase of total Se content in food/feed but also enhanced the nutri-
tional quality of food/feed by increasing the content of several phytochemicals with health
benefits to humans and animals [32]. Selenoproteins are considered as direct antioxidants
since they can be easily oxidized. The precursors of selenoproteins in mammalian cells are
selenocysteine (SeCy) and SeMet [9]. Moreover, several organic-Se compounds such as
SeMet were identified as anti-cancer agents [47]. The present study on red Se0 afforded
promising findings that should be intensively investigated in the near future. Alongside
its success to produce Se-enriched alfalfa, it also showed the highest recovery percentage
of SeMet, which is more biologically important than ionic Se forms, i.e., Se (VI) and Se
(IV). Our experiments demonstrated that red Se0 has the same behavior as a slow-release
fertilizer, from the agronomy point of view is important to ensure a continuous supply
of Se to produce biomass with almost a constant Se content. Another important finding
is that the leaves of alfalfa are richer in Se and buffer-soluble protein compared to stem;
consequently, losing alfalfa leaves during its drying to convert fresh biomass into hay or
even during the harvest is considered a big loss. Therefore, isolation of leaf protein from
fresh alfalfa biomass could be an effective alternative solution to introduce Se-fortified and
protein-rich biomass to animals.

4. Materials and Methods
4.1. Plant Source and Soil Materials

Seeds of alfalfa (Medicago sativa L. var. Tápiószelei 1) were kindly provided by Tedej
ltd, Hungary. Soil used in the present study was top-soil (0–25 cm) and collected from the
Experimental Farm of University of Debrecen, Debrecen, Hungary (47◦32′0” N; 21◦38′0”
E). Air-dried soil samples were partially crushed and sieved through 4 mm sieve and used
for growing alfalfa plants. Physicochemical properties of soil are presented in Table S3
(supplementary materials).

4.2. Chemical Synthesis of Red Elemental Se

Red elemental Se (red Se0) in its nano-size was prepared using ascorbic acid as a reduc-
ing agent for sodium selenite in the presence of sodium dodecyl sulfate (SDS) as a stabilizer.
Briefly, 250 mL of 50 mM L-ascorbic acid (C6H8O6-99%, Merck-Sigma, Darmstadt, Ger-
many) was added dropwise to 500 mL of 12.7 mM sodium selenite (Na2SeO3-99%, Merck-
Sigma, Darmstadt, Germany) with vigorous stirring. Afterward, 1 g SDS (C12H25NaO4S,
Merck-Sigma, Darmstadt, Germany) was added to the solution to prevent the aggregation
of the produced particles of red Se0. The solution was stirred continuously for 3 h until its
color turned to red as an indication of formation of the red Se0 particles. After that, Milli-Q
water (Millipore, Molsheim, France) was added to bring the total volume of solution to 1 L.
All solutions were prepared using Milli-Q water. Solution was centrifuged at 10,000 rpm at
room temperature to collect the red Se0 particles. The pellets were re-suspended in Milli-Q
water and dispersed by sonication (Sonics VCX 750, Sonics & Materials Inc., Newtown,
CT, USA) before measuring the final concentration of Se using inductively coupled plasma
optical emission spectroscopy (ICP-OES, model Vista-Pro from Varian) and preparing
the treatments.
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4.3. Characterization of Red Se0

Particle shape and size of chemically synthetized red elemental selenium were exam-
ined by Thermo Scientific Scios 2 DualBeam Scanning Electron Microscope (Waltham, MA
USA). It was operated at 30.0 keV accelerating voltage in STEM mode using the STEM
3+ transmission detector. During sample preparation, the red Se0 sol was applied on
the amorphous carbon-precoated copper grid (d = 3 mm). The size of regular spherical
elemental selenium particles varied in the range of 60 to 150 nm (Figure 5A). The elemental
composition of the Se-containing sol was also observed by the SEM technique. The other
elements next to Se came from the sample holder (Figure 5B).
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4.4. Experimental Setup

The experimental layout was the randomized complete block design (RCBD) with
seven repetitions. Alfalfa seeds were sown in plastic pots (8 kg air-dried soil, no holes) in a
greenhouse environment at a rate of 0.29 g seed per pot. Three different chemical forms
of Se were applied, such as sodium selenate (Se (VI)), sodium selenite (Se (IV)), and red
Se0, in addition to a control which received no Se. Both Se (VI) and Se (IV) were applied at
three different concentrations, i.e., 1, 10, and 50 mg kg−1 prepared from sodium selenate
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(Na2SeO4) and sodium selenite Na2SeO3), respectively, while red Se0 was applied at two
different rates, i.e., 10 and 50 mg L−1. Addition of Se forms was carried out before seed
sowing in 1 L water to stay safely below the water holding capacity (WHC) of used soil
(WHC was 360 mL H2O kg−1 soil at saturation). For red Se0 treatments, each pot received
1 L of each concentration. Pots were irrigated by tap water and kept at no higher than 75%
water saturation during the entire period of experiment (checked by weighing the pot each
time it was watered). The first harvest was carried out 39 days after seed sowing while the
following harvests were done in about 30-day intervals. Considering the alfalfa harvest
practice, it was done at the green flower stage.

4.5. Selenium Measurement

After harvest, shoot part was washed thoroughly with deionized water to remove
any adhered Se to plant surface. After air drying, shoots were separated into stem and
leaves, and then lyophilized using an Alpha 1–4 LSC Christ lyophilizer (Martin Christ
GmbH, Germany). After lyophilization, 200 mg sample was placed in a Kjeldahl digestion
tube and digested with 3 mL HNO3 at 120 ◦C for 60 min in block digestion unit. After
cooling off, 2 mL H2O2 was added to the digestion tube then heated again to 150 ◦C for
an additional 60 min. To complete the reduction of selenate into selenite, 20 mL 6 M HCl
was added to cooled sample and heated to 100 ◦C for 60 min. The total volume of digested
sample was brought up to 50 mL using Milli-Q water. The total Se content in the atomized
hydride was determined via atomic fluorescence spectrometry (AFS) technique with PS
Analytical Millenium machine (PS Analytical Ltd., Orpington, England). For measuring,
Se hydride was generated in a flow injection system. A flow rate of 1.5 mL min−1 (3 M
hydrochloric acid) and a similar flow rate of the reductant solution (1.4 m/v % sodium
tetrahydroborate) were used to generate the Se hydride.

4.6. Determination of Chemical Forms of Se in Alfalfa
Sample Preparation

For water extraction, ~200 mg lyophilized sample was mixed with 9 mL Milli-Q water
and then incubated in ultrasonic bath for 10 min at room temperature. The sample was
centrifuged at 9000× g for 10 min. The supernatant was collected in new Falcon tube and
dithiothreitol (DTT) (Merck-Sigma, Darmstadt, Germany) was added to reach 0.01% final
concentration DTT in the sample. The water-extracted sample was filtered through 0.22 µm
hydrophilic PTFE disposable syringe filters. The pellet was kept for enzymatic preparation.

For enzymatic extraction, 40 mg protease XIV enzyme (Merck-Sigma, Darmstadt,
Germany) was dissolved in 9 mL 100 mM TRIS buffer (pH 8) and added to the pellet
collected during the preparation of water extracts. It was shaken at 37 ◦C for overnight.
After the adjustment of pH, an additional 40 mg of protease XIV dissolved in 1 mL TRIS
was added to the sample. It was shaken again at 37 ◦C for 6 h. The sample was centrifuged
at 9000× g for 10 min at room temperature. The supernatant was collected in Falcon
tube and dithiothreitol was added to reach 0.01% final concentration DTT in sample. The
enzymatic-extracted sample was filtered through 0.22 µm hydrophilic PTFE disposable
syringe filters. Enzymatic extraction was also performed with SELM-1 as a reference
material (LGC Standards GmbH, Germany) in parallel with the samples.

4.7. Anion Exchange Chromatography (SAX)

The separation of chemical Se forms was conducted by a high-performance liquid
chromatography coupled with a plasma mass spectrometry system (HPLC-ICP-MS). The
chromatographic set-up consisted of a Thermo Spectra System P4000 HPLC pump (Thermo
Fisher Scientific, Waltham, MA, USA) connected to the Thermo Scientific X-Series II ICP-
MS for element-specific detection of 78Se and 80Se, using 7% H2-93% He as collision gas,
introduced at 6.0 mL min−1. A PRP-X100 SAX column (250 mm × 4.1 mm × 10 µm;
Hamilton, Reno, NV, USA) was used with 100 µL injection volume. Gradient elution was
performed with ammonium-acetate (buffer A: 10 mM; buffer B: 300 mM, pH 5.5) delivered
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at 1.9 mL min−1. The program was 0 min 0% B; 0–8.5 min 85% B; 8.5–8.6 min 0% B;
8.6–11.5 min 0% B.

The SeMet yield % was calculated to evaluate the efficiency of biotransformation of
inorganic Se forms into SeMet. The SeMet yield % was calculated using the following formula:

eMet yield % =
[SeMet in water extract] + [SeMet in enzyme extract]

[Soil− applied Se]
∗ 100

4.8. Plant Biometrics and Biochemical Analyses

At every harvest, shoot length, fresh and dry masses of stem and leaves were deter-
mined. Soluble protein in stem and leaf tissues was determined using Coomassie Brilliant
Blue G-250 according to Bradford [48] in triplicate with bovine serum albumin as standard
with slight modifications. Briefly, 20 mg lyophilized plant tissue was pulverized in the
mortar with quartz sand in the presence of 1 mL buffer (for 100 mL buffer: for 100 mL
buffer: 0.6 g NaCl, 21 g urea, 6.6 g thiourea and 0.4 g NaOH), then transferred into a
1.5 mL Eppendorf tube. The homogenate was centrifuged at 10.000 rpm for 3 min. The
supernatant was used for the assay of soluble protein using UV-160A spectrophotometer
(Shimadzu, Japan) at 595 nm.

Peroxidase (POD) activity in alfalfa stem and leaves was determined according to
Roxas et al. [49]. Briefly, 200 mg lyophilized sample was powdered in 1 mL phosphate
buffer 250 mM (pH 6.8). The homogenate was centrifuged at 13,000 rpm for 10 min to
collect the supernatant. The supernatant was used to measure GPX activity using UV-
160A spectrophotometer (Shimadzu, Japan) at 460 nm for 1 min. The activity of GPX was
expressed as unit 1 mL−1 1 min−1 1 g−1 dry mass. The unit of GPX activity was defined as
the increase of one unit of absorbance per mL in 1 min for 1 g of dry matter.

Malondialdehyde (MDA) content in stem and leaves of alfalfa as an indicator of
degree of lipid peroxidation was determined as described by Zhang et al. [50]. Briefly,
100 mg lyophilized sample was homogenized in 1 mL 0.1% (w/v) TCA solution. The
homogenate was centrifuged at 13,000 rpm for 10 min. Then, 1 mL supernatant was added
to 4 mL 20% TCA containing 0.5% thiobarbituric acid (TBA) and incubated for 30 min
at 96 ◦C. Immediately, tubes were transferred into ice bath to stop the reaction. Solution
was centrifuged again at 10,00 rpm for 5 min and the absorbance of the supernatant
was recorded at 532 nm. The standard curve was generated from MDA standard. The
concentration of MDA was calculated from the absorbance knowing the calibration curve.

Water-soluble phenols content in stem and leaves of alfalfa was measured using the
Folin–Ciocalteau reagent, following the method of Box [45]. Gallic acid was used as the
standard and the concentration of water-soluble phenols was expressed as gallic acid
equivalents per g dry weight.

4.9. Data Analysis

Dependent variables were checked for normality and homoscedasticity and trans-
formed as necessary. Data analysis was performed using Microsoft Excel 2010 and the
SPSS 13.0 software package (SPSS Inc., Chicago, IL, USA). The analysis of variance using
two-way ANOVA was conducted between Se treatments and harvests, while one-way
ANOVA was applied to evaluate the differences among Se treatments within the same
harvest. Separation of means was performed by post-hoc test (Tukey’s test), and significant
differences were accepted at the levels p < 0.05, 0.01, and 0.001. The data were presented
as mean ± standard deviation (n = 9). A principal component analysis (PCA) was run to
define the interaction between the measured morphological, chemical, and biochemical
properties of alfalfa plants. The KMO and Bartlett’s sphericity test was applied to check
the validity of PCA to the data derived from the present study. Spearman coefficient was
run to investigate the non-parametric correlation between alfalfa traits.
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5. Conclusions

The present study aimed to investigate the biofortification of alfalfa with Se using
ionic, i.e., Se (IV) and Se (VI), and elemental Se forms. However, the uptake dynamics of Se
within four consecutive harvests is of most interest since this paper, to our knowledge, is the
first to report Se-fortified multi-harvest forage crop. Our results showed that for long-term
biofortification red Se0 and Se (IV) are much better than Se (VI). Almost a constant total Se
content in stem and leaf of alfalfa was measured within the four harvests for those plants
treated with red Se0 or Se (IV). Moreover, the application of red Se0 at the rate of 10 mg L−1

exhibited promising results not only regarding the total Se content but also concerning the
Se forms in plant tissues. However, more investigations on synthesis of red Se0 are needed
to have it with a diameter below 25 nm since nanoparticles with a short diameter and large
surface area have different physicochemical behavior than the larger ones. Moreover, the
possible conversion of red Se0 to Se (IV) in soil or on root surface requires more explanation
alongside focusing on the plant’s response to the application, uptake, accumulation, and
transformation of red Se0 within plant tissues into organic Se forms.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10071277/s1. Figure S1: HPLC-ICP-MS chromatograms of selenium (Se) forms in three
different solutions, i.e., 10 and 50 mg kg−1 Se (VI) and Se (IV), respectively, and 50 mg L-1 red Se0

within three harvests, i.e., 1st, 2nd, and 4th harvests. U1 and U2 denote unknown selenocompounds.
Table S1: Pearson correlation between the measured parameters of alfalfa grown in presence of
different Se forms (Se (VI, Se (IV), and red Se0) and concentrations (1, 10, and 50 mg kg−1 for the
ionic forms and 10 and 50 mg L−1 for elemental form). Table S2: Total variance explained for alfalfa
traits grown on different selenium (Se) forms (Se (VI), Se (IV), and red Se0) and concentrations (1, 10,
and 50 mg kg−1 for ionic forms and 10 and 50 mg L−1 for elemental form) during four consecutive
harvests. Table S3: Physicochemical characteristics of the experimental soil.

Author Contributions: Conceptualization, É.D.-S. and T.A.; methodology, Z.K., L.K., N.E. and M.R.;
software, Á.S.; validation, B.K., Á.S. and M.R.; formal analysis, J.P. and Z.K.; investigation, É.D.-S.
and T.A.; resources, N.B., L.K. and N.E.; data curation N.B., É.D.-S. and T.A.; writing—original draft
preparation, Z.K., N.E., T.A. and É.D.-S.; writing—review and editing T.A. and É.D.-S.; visualization,
M.G.F.; supervision, M.G.F. and É.D.-S.; project administration, É.D.-S.; funding acquisition, É.D.-S.
and M.G.F. All authors have read and agreed to the published version of the manuscript.

Funding: No fund was received.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are available within the text and Supplementary Materials.

Acknowledgments: This research was supported by TKP2020-IKA-04 program provided by the
National Research, Development and Innovation Fund of Hungary under the 2020-4.1.1-TKP2020
funding scheme. The present work is also supported by the GINOP-2.2.1-15-2017-00051 project which
is co-financed by the European Union and the European Regional Development Fund. Zoltán Kovács
is supported by the ÚNKP-20-3 New National Excellence Program of the Ministry for Innovation
and Technology from the source of the National Research, Development and Innovation Found.
Éva Domokos-Szabolcsy was supported by the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences. Nevien Elhawat and Tarek Alshaal were co-financed by the Tempus Public
Foundation (TPF), Hungary. The authors would like to thank Mihály Dernovics for his help with the
HPLC-ICP-MS measurements.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ates, S.; Cicek, H.; Bell, L.W.; Norman, H.C.; Mayberry, D.E.; Kassam, S.; Hannaway, D.B.; Louhaichi, M. Sustainable Development

of Smallholder Crop-Livestock Farming in Developing Countries. IOP Conf. Ser. Earth Environ. Sci. 2018, 142, 012076. [CrossRef]
2. Kulkarni, K.P.; Tayade, R.; Asekova, S.; Song, J.T.; Shannon, J.G.; Lee, J.-D. Harnessing the Potential of Forage Legumes, Alfalfa,

Soybean, and Cowpea for Sustainable Agriculture and Global Food Security. Front. Plant Sci. 2018, 9. [CrossRef]

https://www.mdpi.com/article/10.3390/plants10071277/s1
https://www.mdpi.com/article/10.3390/plants10071277/s1
http://doi.org/10.1088/1755-1315/142/1/012076
http://doi.org/10.3389/fpls.2018.01314


Plants 2021, 10, 1277 23 of 24

3. Filippa, F.; Panara, F.; Leonardi, D.; Arcioni, L.; Calderini, O. Life Cycle Assessment Analysis of Alfalfa and Corn for Biogas
Production in a Farm Case Study. Processes 2020, 8, 1285. [CrossRef]

4. Huang, Z.; Liu, Y.; Cui, Z.; Fang, Y.; He, H.; Liu, B.-R.; Wu, G.-L. Soil Water Storage Deficit of Alfalfa (Medicago Sativa) Grasslands
along Ages in Arid Area (China). Field Crops Res. 2018, 221, 1–6. [CrossRef]

5. Owusu-Sekyere, A.; Kontturi, J.; Hajiboland, R.; Rahmat, S.; Aliasgharzad, N.; Hartikainen, H.; Seppänen, M.M. Influence of
Selenium (Se) on Carbohydrate Metabolism, Nodulation and Growth in Alfalfa (Medicago Sativa L.). Plant Soil 2013, 373, 541–552.
[CrossRef]

6. Fernandez, A.; Sheaffer, C.; Tautges, N.; Putnam, D.; Hunter, M. Alfalfa, Wildlife & the Environment; National Alfalfa and Forage
Alliance: St. Paul, MN, USA, 2019.

7. Bora, K.S.; Sharma, A. Phytochemical and Pharmacological Potential of Medicago Sativa: A Review. Pharm. Biol. 2011, 49,
211–220. [CrossRef]

8. Welch, R.M.; Graham, R.D.; Cakmak, I. Linking Agricultural Production Practices to Improving Human Nutrition and Health;
FAO/WHO: Rome, Italy, 2013.

9. Schiavon, M.; Nardi, S.; dalla Vecchia, F.; Ertani, A. Selenium Biofortification in the 21st Century: Status and Challenges for
Healthy Human Nutrition. Plant Soil 2020, 453, 245–270. [CrossRef]

10. Shalaby, T.A.; Bayoumi, Y.; Abdalla, N.; Taha, H.; Alshaal, T.; Shehata, S.; Amer, M.; Domokos-Szabolcsy, É.; El-Ramady, H.
Nanoparticles, Soils, Plants and Sustainable Agriculture. In Nanoscience in Food and Agriculture 1; Sustainable Agriculture Reviews;
Ranjan, S., Dasgupta, N., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 283–312. ISBN
978-3-319-39303-2.

11. Shalaby, T.; Bayoumi, Y.; Alshaal, T.; Elhawat, N.; Sztrik, A.; El-Ramady, H. Selenium Fortification Induces Growth, Antioxidant
Activity, Yield and Nutritional Quality of Lettuce in Salt-Affected Soil Using Foliar and Soil Applications. Plant Soil 2017, 421,
245–258. [CrossRef]

12. Tóth, R.; Csapó, J. The Role of Selenium in Nutrition—A Review. Acta Univ. Sapientiae Aliment. 2018, 11, 128–144. [CrossRef]
13. Mehdi, Y.; Dufrasne, I. Selenium in Cattle: A Review. Molecules 2016, 21, 545. [CrossRef]
14. Hefnawy, A.E.G.; Tórtora-Pérez, J.L. The Importance of Selenium and the Effects of Its Deficiency in Animal Health. Small Rumin.

Res. 2010, 89, 185–192. [CrossRef]
15. Sunde, R.A.; Zemaitis, E.T.; Blink, A.B.; Lawinger, J.A. Impact of Glutathione Peroxidase-1 (Gpx1) Genotype on Selenoenzyme and

Transcript Expression When Repleting Selenium-Deficient Mice. Biol. Trace Elem. Res. 2018, 186, 174–184. [CrossRef] [PubMed]
16. Terry, N.; Zayed, A.M.; de Souza, M.P.; Tarun, A.S. SELENIUM IN H IGHER P LANTS. Annu. Rev. Plant. Physiol. Plant. Mol.

Biol. 2000, 51, 401–432. [CrossRef] [PubMed]
17. Neuhierl, B.; Böck, A. On the Mechanism of Selenium Tolerance in Selenium-Accumulating Plants. Eur. J. Biochem. 1996, 239,

235–238. [CrossRef]
18. MIKKELSEN, R.L.; PAGE, A.L.; HAGHNIA, G.H. Effect of Salinity and Its Composition on the Accumulation of Selenium by

Alfalfa. Plant Soil 1988, 107, 63–67. [CrossRef]
19. Dai, H.; Jia, G. Effects of Se on the Growth, Tolerance, and Antioxidative Systems of Three Alfalfa Cultivars. Environ. Sci. Pollut.

Res. 2017, 24, 15196–15201. [CrossRef]
20. Zhang, G.; Zhou, L.; Cai, D.; Wu, Z. Anion-Responsive Carbon Nanosystem for Controlling Selenium Fertilizer Release and

Improving Selenium Utilization Efficiency in Vegetables. Carbon 2018, 129, 711–719. [CrossRef]
21. Navarro-Alarcon, M.; Cabrera-Vique, C. Selenium in Food and the Human Body: A Review. Sci. Total Environ. 2008, 400, 115–141.

[CrossRef] [PubMed]
22. Kim, Y.Y.; Mahan, D.C. Biological Aspects of Selenium in Farm Animals. Asian-Australas. J. Anim. Sci. 2003, 16, 435–444.

[CrossRef]
23. Surai, P.F.; Fisinin, V.I. Selenium in Livestock and Other Domestic Animals. In Selenium: Its Molecular Biology and Role in Human

Health; Hatfield, D.L., Schweizer, U., Tsuji, P.A., Gladyshev, V.N., Eds.; Springer International Publishing: Cham, Switzerland,
2016; pp. 595–606. ISBN 978-3-319-41283-2.

24. Séboussi, R.; Tremblay, G.F.; Ouellet, V.; Chouinard, P.Y.; Chorfi, Y.; Bélanger, G.; Charbonneau, É. Selenium-Fertilized Forage as a
Way to Supplement Lactating Dairy Cows. J. Dairy Sci. 2016, 99, 5358–5369. [CrossRef] [PubMed]

25. Hall, J.A.; Bobe, G.; Vorachek, W.R.; Hugejiletu; Gorman, M.E.; Mosher, W.D.; Pirelli, G.J. Effects of Feeding Selenium-Enriched
Alfalfa Hay on Immunity and Health of Weaned Beef Calves. Biol. Trace Elem. Res. 2013, 156, 96–110. [CrossRef]

26. Poschenrieder, C.; Cabot, C.; Martos, S.; Gallego, B.; Barceló, J. Do Toxic Ions Induce Hormesis in Plants? Plant Sci. 2013, 212,
15–25. [CrossRef]

27. Zhu, Z.; Chen, Y.; Shi, G.; Zhang, X. Selenium Delays Tomato Fruit Ripening by Inhibiting Ethylene Biosynthesis and Enhancing
the Antioxidant Defense System. Food Chem. 2017, 219, 179–184. [CrossRef]

28. Astaneh, R.K.; Bolandnazar, S.; Nahandi, F.Z.; Oustan, S. The Effects of Selenium on Some Physiological Traits and K, Na
Concentration of Garlic (Allium Sativum L.) under NaCl Stress. Inf. Process. Agric. 2018, 5, 156–161. [CrossRef]

29. Nawaz, F.; Naeem, M.; Ashraf, M.Y.; Tahir, M.N.; Zulfiqar, B.; Salahuddin, M.; Shabbir, R.N.; Aslam, M. Selenium Supplementation
Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea Mays L.) under Water Deficit
Conditions. Front. Plant Sci. 2016, 7. [CrossRef] [PubMed]

http://doi.org/10.3390/pr8101285
http://doi.org/10.1016/j.fcr.2018.02.013
http://doi.org/10.1007/s11104-013-1815-9
http://doi.org/10.3109/13880209.2010.504732
http://doi.org/10.1007/s11104-020-04635-9
http://doi.org/10.1007/s11104-017-3458-8
http://doi.org/10.2478/ausal-2018-0008
http://doi.org/10.3390/molecules21040545
http://doi.org/10.1016/j.smallrumres.2009.12.042
http://doi.org/10.1007/s12011-018-1281-6
http://www.ncbi.nlm.nih.gov/pubmed/29502249
http://doi.org/10.1146/annurev.arplant.51.1.401
http://www.ncbi.nlm.nih.gov/pubmed/15012198
http://doi.org/10.1111/j.1432-1033.1996.0235u.x
http://doi.org/10.1007/BF02371545
http://doi.org/10.1007/s11356-017-9137-8
http://doi.org/10.1016/j.carbon.2017.12.062
http://doi.org/10.1016/j.scitotenv.2008.06.024
http://www.ncbi.nlm.nih.gov/pubmed/18657851
http://doi.org/10.5713/ajas.2003.435
http://doi.org/10.3168/jds.2015-10758
http://www.ncbi.nlm.nih.gov/pubmed/27085399
http://doi.org/10.1007/s12011-013-9843-0
http://doi.org/10.1016/j.plantsci.2013.07.012
http://doi.org/10.1016/j.foodchem.2016.09.138
http://doi.org/10.1016/j.inpa.2017.09.003
http://doi.org/10.3389/fpls.2016.01438
http://www.ncbi.nlm.nih.gov/pubmed/27729917


Plants 2021, 10, 1277 24 of 24

30. Garousi, F.; Domokos-Szabolcsy, É.; Jánószky, M.; Kovács, A.B.; Veres, S.; Soós, Á.; Kovács, B. Selenoamino Acid-Enriched Green
Pea as a Value-Added Plant Protein Source for Humans and Livestock. Plant Foods Hum. Nutr. 2017, 72, 168–175. [CrossRef]

31. Wang, Y.; Wang, K.; Wang, Q.; Wan, Y.; Zhuang, Z.; Yu, Y.; Li, H. Selenite Uptake and Transformation in Rice Seedlings (Oryza
Sativa L.): Response to Phosphorus Nutrient Status. Front. Plant Sci. 2020, 11, 874. [CrossRef] [PubMed]

32. Kaszás, L.; Alshaal, T.; El-Ramady, H.; Kovács, Z.; Koroknai, J.; Elhawat, N.; Nagy, É.; Cziáky, Z.; Fári, M.; Domokos-Szabolcsy, É.
Identification of Bioactive Phytochemicals in Leaf Protein Concentrate of Jerusalem Artichoke (Helianthus Tuberosus L.). Plants
2020, 9, 889. [CrossRef]

33. Kaszás, L.; Alshaal, T.; Kovács, Z.; Koroknai, J.; Elhawat, N.; Nagy, É.; El-Ramady, H.; Fári, M.; Domokos-Szabolcsy, É. Refining
High-Quality Leaf Protein and Valuable Co-Products from Green Biomass of Jerusalem Artichoke (Helianthus Tuberosus L.) for
Sustainable Protein Supply. Biomass Conv. Bioref. 2020. [CrossRef]

34. Bai, B.; Wang, Z.; Gao, L.; Chen, W.; Shen, Y. Effects of Selenite on the Growth of Alfalfa (Medicago Sativa L. Cv. Sadie 7) and
Related Physiological Mechanisms. Acta Physiol. Plant 2019, 41, 78. [CrossRef]

35. Van Hoewyk, D. A Tale of Two Toxicities: Malformed Selenoproteins and Oxidative Stress Both Contribute to Selenium Stress in
Plants. Ann. Bot. 2013, 112, 965–972. [CrossRef]

36. Natasha; Shahid, M.; Niazi, N.K.; Khalid, S.; Murtaza, B.; Bibi, I.; Rashid, M.I. A Critical Review of Selenium Biogeochemical
Behavior in Soil-Plant System with an Inference to Human Health. Environ. Pollut. 2018, 234, 915–934. [CrossRef] [PubMed]
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