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Abstract: Ralstonia solanacearum is the pathogen responsible for wilting, yield losses, and death in
tomato plants. The use of resistant cultivars has been proven as the most appropriate solution to
controlling this pathogen. Therefore, further study of host-plant resistance mechanisms in tomatoes
is urgently needed. 1H-NMR (nuclear magnetic resonance) spectroscopy combined with multivariate
data analysis has been used to identify the biochemical compounds that play a crucial role in the
defense mechanisms of tomato against bacterial wilt. Eleven metabolites consisting of amino acids,
sugars and organic acids were identified and presented at different concentrations in each cultivar.
Leucine and valine were determined as distinguishable metabolites of resistant and susceptible
cultivars. Permata and Hawaii 7996 as resistant cultivars had a significant decrease of valine after
inoculation about 1.5–2 times compared to the susceptible cultivar (GM2). Meanwhile, the resistant
cultivars had a higher level of leucine, about 1.3–1.5 times compared to the susceptible ones. Synthesis
of leucine and valine are linked as a member of the pyruvate family. Therefore, the decrease in valine
may be related to the higher need for leucine to form the leucine-rich receptor, which plays a role in
the plant’s immune system against the bacterial wilt.

Keywords: bacterial wilt; defense mechanism; leucine; metabolites; nuclear magnetic resonance;
tomato; valine

1. Introduction

Bacterial wilt caused by the soil-borne pathogen Ralstonia solanacearum is responsible
for the greatest economic losses in tomato production [1]. This bacterium has a wide host
plants and causes severe yield losses in many crops, including tomato, eggplants, tobacco,
potato, and other important crops [2]. R. solanacearum colonizes the root surface, attacks the
plant through the xylem vessel, degrades the cell wall by releasing the enzymes cellulase
and pectinase, and then inhibits nutrient and water translocation [3]. In severe attacks,
R. solanacearum causes wilting, chlorosis, and death of tomato plants [4].

Ralstonia solanacearum can survive for a long period in the soil, which infects a broad
plant species and wide geographical distribution, making pathogen prevention difficult.
Bactericides used to control bacterial wilt are harmful to humans, food, and the environ-
ment. The use of biological control and resistant plants are the recommended means of
reducing toxicity and residual effects [5]. The use of resistant varieties is considered less
expensive and more environmentally friendly [6]. The resistance mechanism of tomato
to bacterial wilt often involves biochemical defense mechanisms [7]. This mechanism
includes the production of various biochemical compounds that have a negative effect on
R. solanacearum.

Lowe-Power et al. [8] reported the involvement of R-genes in tomato plants resistant
to bacterial wilt. R-genes induce the cell to produce a set of biochemical compounds that ac-
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tivate the immune system. These compounds prevent infection by facilitating metabolomic
changes, including the production of primary and secondary metabolites related to de-
fense systems [7]. These biochemical changes can be studied by metabolomics analysis.
Metabolomics gives information about omics technology, revealing the total of primary
and secondary metabolites in biological systems [9]. Zeiss et al. [7] used a metabolomics
approach to identify the secondary metabolites in the tomato cultivars resulting from
breeding programs with tomato plants infected by R. solanacearum using LC-MS. Nuclear
magnetic resonance (NMR) based metabolomics has been applied successfully to deter-
mine the metabolites responsible for root-knot nematode resistance in tomatoes [10]. Bisht
et al. [11] explained the advantage of using NMR spectroscopy to investigate tomato plant
resistance to pests and diseases, as the technique is non-destructive, has high sensitivity
and is highly reproducible. For these reasons, it is considered a suitable approach for
detecting plant-biotic interactions [12].

A review study of Galeano Garcia et al. [13] stated several studies have reported on
host-plant resistance to tomato plant diseases. Most of them, such as Zeiss et al. [7], used a
reductionist approach by applying several analyses or technologies to detect metabolites
and different plant cultivars. In this study, we applied NMR metabolomics analysis to re-
visit the chemical defense mechanisms of tomato to bacterial wilt caused by R. solanacearum.

2. Results
2.1. Disease Symptoms in Plants of Three Cultivars

Disease intensity scores showed that the three cultivars differed in their resistance
levels to R. solanacearum, and two groups could be distinguished (Figure 1). The first group
was resistant cultivars, including Permata and Hawaii 7996, with a DI value of 13.1% and
4.76%, respectively. In contrast, GM2 was categorized as a highly susceptible cultivar with
a DI value of 86.31%.
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Figure 1. Disease Intensity (DI) of three cultivars tomatoes treated with Ralstonia solanacearum. Bars
with the same letter were not significantly different at p = 0.05 based on Tukey’s HSD tests. Bars show
the average disease intensity from 5 replicates.

2.2. Plant Metabolomics

The 1H-NMR spectra obtained from tomato leaf extract are shown in Figure 2. These
spectra were processed by Mnova software using a semi-quantitative analysis and based
on metabolite data from the references of previous studies [10]. Eleven primary metabolites
were identified, including am ino acids, organic acids, and sugar groups (Table 1).
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Table 1. Peak assignments for the 1H-NMR spectrum of tomato leaf in Methanol-d4 (MeOD4).

Metabolite Chemical Shift (ppm) and Coupling Constants (Hz)

Leucine 0.94 (d, J = 0.7 Hz)
Valine 1.00 (d, J = 7.0 Hz); 1.05 (d, J = 7.0 Hz)

Alanine 1.44 (d, J = 7.2 Hz)
Acetic acid 1.94 (s)
Succinate 2.53 (s)

GABA (γ-amino-butyric acid) 1.88 (m); 2.37 (t, J = 7.2 Hz); 2.95 (t, J = 7.08 Hz)
Ethanolamine 3.12 (t, J = 5.5 Hz)

Choline 3.19 (s)
Glycine 3.5 (s)
β-glucose 4.45 (d, J = 7.8 Hz)
α-glucose 5.09 (d, J = 3.76 Hz)

Abbreviations: d = doublet; m = complex multiplet; s = singlet; t = triplet; J = the coupling constant.

The identified metabolites consisted of leucine, placed in the region of δ 0.94 with
d, J = 0.7 Hz; valine (δ 1.00 [d, J = 7.0 Hz]) and (δ 1.05, [d, J = 7.0 Hz]; alanine (δ 1.45
[d, J = 7.2 Hz]); acetic acid (δ 1.95 [s]); γ-amino-butyric acid (GABA) (δ 1.88 [m], 2.37 [t,
J = 7.2 Hz], and 2.96 [t, J = 7.08 Hz]); ethanolamine (δ 3.12, [t, J = 5.5 Hz]); Choline δ (3.19,
[s]); Glycine (δ 3.5 [s]); β-glucose in the region δ 4.45 (d, [J = 7.8 Hz]); and α-glucose in the
region δ 5.09 (d, [J = 3.76 Hz]) (Table 1). These metabolites varied in concentration between
cultivars (Figure 3a). The Variable Importance in Projection (VIP) of defined metabolites
shown in Figure 3b indicated that resistant cultivars had a higher concentration of leucine
and glycine than susceptible ones. In contrast, susceptible cultivars had higher levels
of valine, α-glucose, β-glucose, GABA (γ-amino-butyric acid), ethanolamine, acetic acid,
choline, succinate, and alanine than resistant cultivars. The most promising metabolites
with VIP values higher than 1.5 allowed identification of two important amino acids valine
and leucine.

The results of the 1H-NMR data analysis described different metabolites between
resistant and susceptible cultivars in the scores plot (Figure 4a) and loading plot (Figure 4b).
Before processing using multivariate data analysis, the data has been normalized with a
feature-wise normalization i.e., auto scaling. This model explained 69.9% (PC1) and 23.1%
(PC2) variation of the data and had a variance of the response R2 = 0.94 and a predictive
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ability Q2 = 0.88 (Figure 5a). The model was validated using a permutation test statistic,
giving p < 0.05, as shown in Figure 5b. R2 is explained the calibration of model samples.
However, Q2 described an estimate of the predictive ability of the model. Based on a study
by Bevilacqua and Bro [14], when R2 and Q2 had a sufficiently small difference, the score
plot models displayed a meaningful result. Therefore, it is clear that the result implied a
good model.

Plants 2021, 10, x FOR PEER REVIEW 4 of 11 
 

 

 
Remarks: I = Inoculated; N = Noninoculated 

 

(a) (b) 

Figure 3. The concentration of peak assignment of tomato metabolites (a) and Variable Importance in Projection (VIP) of 
defined metabolites (b). Bars with the same letter in each group were not significantly different at p = 0.05 based on Tukey’s 
HSD tests. 

The results of the 1H-NMR data analysis described different metabolites between re-
sistant and susceptible cultivars in the scores plot (Figure 4a) and loading plot (Figure 4b). 
Before processing using multivariate data analysis, the data has been normalized with a 
feature-wise normalization i.e., auto scaling . This model explained 69.9% (PC1) and 23.1% 
(PC2) variation of the data and had a variance of the response R2 = 0.94 and a predictive 
ability Q2 = 0.88 (Figure 5a). The model was validated using a permutation test statistic, 
giving p < 0.05, as shown in Figure 5b. R2 is explained the calibration of model samples. 
However, Q2 described an estimate of the predictive ability of the model. Based on a study 
by Bevilacqua and Bro [14], when R2 and Q2 had a sufficiently small difference, the score 
plot models displayed a meaningful result. Therefore, it is clear that the result implied a 
good model. 

The scores plot depicted perfect separation of resistant and susceptible cultivars, in-
dicating that several metabolites play a role in the discrimination of these cultivars. How-
ever, some undefined metabolites that were also distinguishable between resistant and 
susceptible cultivars were presented clearly in the VIP (Figure 6). These metabolites were 
shortlisted among the top 9 with the highest concentration. VIP described that metabolites 
with chemical shifts at δ 5.02, δ 1.31, δ 5.06, δ 3.79, δ 1.35, δ 3.66, δ 1.62, δ 2.1, and δ 5.098 
were sufficiently clear to differentiate between tomato resistant and susceptible to R. sola-
nacearum. Moreover, resistant cultivars had higher levels of metabolites in the chemical 
shifts of δ 5.02, δ 5.06, and δ 5.098. In contrast, susceptible cultivars had higher levels of 
metabolites in the regions of δ 1.3, δ 3.78, δ 1.35, δ 3.67, δ 1.62, and δ 2.1. 

Statistical analysis of 11 identified metabolites resulted that valine and leucine had a 
significant difference between resistant and susceptible cultivars based on Tukey’s HSD 
test with α = 5% (Figure 7). The histogram of valine presented in Figure 7a indicated that 
inoculation treatment decreased the valine concentration of resistant and susceptible cul-
tivars. However, the fall of the valine level in the resistant cultivars (Hawaii 7996 and 
Permata) was higher than the susceptible cultivar (GM2). Valine concentration in the sus-
ceptible cultivars GM2 decreased 30 % from 2.78 nmol (mg dry weight)−1 to 1.95 nmol (mg 
dry weight)−1. Meanwhile, in the resistant cultivar (Hawaii 7996) decreased 48 % from 2.63 

c

a

a

a

a

a
ab

a

a

ab

a

a

abc

a

a
a

a

a

ab

a

a
b

a

a

abc

a

a

a

a

a

ab

a

a

b

a

a

bc

b

a

a
a

a

a

a

a
a

a

a

ab

c

a

a

a

a

ab

a
a

b

a

a

a

d

a

a

a

a

b

a
a

b

a

a

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Leucine

Valine

Alanine

GABA(γ-amino-…

Acetic acid

Succinate

Ethanolamine

Cholin

Glycine

β-glucose

α-glucose

Unknown

I-Permata I-Hawaii7996 I-GM2 N-Permata N-Hawaii7996 N-GM2

Figure 3. The concentration of peak assignment of tomato metabolites (a) and Variable Importance in Projection (VIP) of
defined metabolites (b). Bars with the same letter in each group were not significantly different at p = 0.05 based on Tukey’s
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The scores plot depicted perfect separation of resistant and susceptible cultivars,
indicating that several metabolites play a role in the discrimination of these cultivars.
However, some undefined metabolites that were also distinguishable between resistant
and susceptible cultivars were presented clearly in the VIP (Figure 6). These metabolites
were shortlisted among the top 9 with the highest concentration. VIP described that
metabolites with chemical shifts at δ 5.02, δ 1.31, δ 5.06, δ 3.79, δ 1.35, δ 3.66, δ 1.62, δ 2.1,
and δ 5.098 were sufficiently clear to differentiate between tomato resistant and susceptible
to R. solanacearum. Moreover, resistant cultivars had higher levels of metabolites in the
chemical shifts of δ 5.02, δ 5.06, and δ 5.098. In contrast, susceptible cultivars had higher
levels of metabolites in the regions of δ 1.3, δ 3.78, δ 1.35, δ 3.67, δ 1.62, and δ 2.1.
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Statistical analysis of 11 identified metabolites resulted that valine and leucine had a
significant difference between resistant and susceptible cultivars based on Tukey’s HSD
test with α = 5% (Figure 7). The histogram of valine presented in Figure 7a indicated
that inoculation treatment decreased the valine concentration of resistant and susceptible
cultivars. However, the fall of the valine level in the resistant cultivars (Hawaii 7996 and
Permata) was higher than the susceptible cultivar (GM2). Valine concentration in the
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susceptible cultivars GM2 decreased 30 % from 2.78 nmol (mg dry weight)−1 to 1.95 nmol
(mg dry weight)−1. Meanwhile, in the resistant cultivar (Hawaii 7996) decreased 48 %
from 2.63 nmol (mg dry weight)−1 to 1.36 nmol (mg dry weight)−1. Furthermore, a
resistant cultivar (Permata) decreased 68 % from 2.43 nmol (mg dry weight)−1 to 0.78 nmol
(mg dry weight)−1.
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pcultivars × treatments = 0.1588.

The statistical analysis of leucine concentrations did not show an interaction between
treatments and cultivars (Figure 7b). In consequence, leucine was evaluated separately
between treatments and cultivars. The result revealed a rise in leucine after inoculation
treatment. Meanwhile, Permata had a significantly higher level of leucine at 5.71 nmol
(mg dry weight)−1, compared with the susceptible cultivar (GM2) at 3.68 nmol (mg dry
weight)−1. A higher level of leucine was consistently observed in Hawaii 7996, a resistant
cultivar, at 4.83 nmol (mg dry weight)−1. This result suggested that leucine is one of
the metabolites that affected the distinction between resistant and susceptible cultivars.
Permata, the most resistant cultivar, had a higher concentration of leucine, followed by
Hawaii 7996, and the lowest was the susceptible cultivar GM2. Interestingly, leucine and
valine showed a negative correlation at −0.68 analysed using Pearson correlation. This
may underline that both amino acids are a member of the pyruvate family in terms of their
biosynthesis.

3. Discussion

Based on the disease intensity criteria, according to Aslam et al. [3], Hawaii 7996 and
Permata are the most resistant plants against R. solanacearum. Based on a previous study by
Truong and Wang [15], plants possess physical and chemical barriers, which allow them to
mount a counterattack against pathogens such as fungi, nematodes, viruses, and bacteria.
Resistant plants develop an immune system comprising several structural, biochemical,
and protein-based defense systems to intercept pathogen invasion, including microbes,
pests and herbivores [16]. Resistant plants involve highly complex biochemical defense
mechanisms [17], including primary and secondary metabolites produced by inductive
and defensive. Isah [18] explained that the defensive system in the plant had a relationship
through the metabolite product, such as hypersensitive reaction, protein synthesis, and
production of some phytoalexin.



Plants 2021, 10, 1143 7 of 11

Based on the identified metabolites successfully found in this study, several metabo-
lites strongly differentiated between two resistant and one susceptible plants against
R. solanacearum. These metabolites were identified as leucine, valine, and other unknown
signals which placed in the region of 5.02, δ 1.31, δ 5.06, δ 3.79, δ 1.35, δ 3.66, δ 1.62, δ 2.1,
and δ 5.098. Indeed, this study found that resistant cultivars had a higher concentration of
leucine and metabolites in the chemical shifts of δ 5.02, δ 5.06, and δ 5.098. These metabo-
lites strongly contributed to the separation between resistant and susceptible cultivars.
This finding might indicate that leucine allegedly plays an important role in the tomato
resistance to R. solanacearum. Indeed, leucine was reported to act as an essential element in
antibacterial activity in the resistance mechanism [19]. In that study, leucine was demon-
strated essential for antimicrobial activity by incorporated with a cationic charge into amino
acid-based polymers. Mukherjee et al. [20] reported that the side-chain amino acid-based
cationic polymers with pendant leucine moieties indicated efficient antibacterial activity.

Moreover, the role of leucine in conferring resistance to bacterial wilt was reported by
Padnabhan et al. [21]. The study described that leucine-rich repeat (LRR) plays a role in
the immune receptors. Leucine-rich repeat could recognize microbe-associated molecular
pattern (MAMPs) and induce the plant immune response that inhibits pathogen access
by various chemical and physical barriers. This in line with the study of Yuan et al. [22]
and Chakraborty et al. [23]. The Leucine-rich repeat (LRR)-RLKs were identified to have
a fundamental role in plant immunity and have function in signal transduction pathway
upon the pathogen invasion. Thus, the leucine metabolic pathway constitutes an essential
part of the plant immune system [24].

In addition, leucine is one of the amino acids that have a crucial role in the plant
metabolism system, including contribution to the defense system. Fan et al. [25] also
explained that many plant defensive compounds were derived from an amino acid, such
as glucosinolates, a secondary metabolite produced by Brassicales to protect from a fungal
pathogen, bacteria, and insect. Aliphatic glucosinolates are derived from alanine, leucine,
valine, isoleucine, and methionine. Higher concentration of leucine upon infection with
Pseudomonas syringae in Arabidopsis thaliana suggests the importance of this amino acid in
the defense system mechanism in plants [26]. Hence, Zeiss et al. [7] also underlined the
branched-chain amino acids (BCAA), including isoleucine, leucine, and valine, contribu-
tion to the pre-existing secondary metabolite for the plant defense system. The secondary
metabolites associated with host-plant resistance are influenced by amino acids that mod-
ulate to cross-talk of jasmonic acid (JA) and salicylic acid (SA). JA and SA are known as
secondary metabolites-derived signals that regulate plant stress responses [27].

Besides leucine, another amino acid that contributes to the separation between re-
sistant and susceptible cultivars was valine. This study revealed that inoculation with
R. solanacearum lowered valine concentration in both resistant and susceptible cultivars.
Valine is one of the amino acids that isare important for the plant metabolism system.
Mikkelsen and Halkier [28] explained that numbers of amino acids included valine, ala-
nine, leucine, isoleucine, methionine, phenylalanine, tyrosine, and tryptophan generate
glucosinolates which had great potential for improving resistance against herbivores and
other pathogens. Furthermore, as part of the BCAA, both valine and leucine share a similar
biosynthesis pathway, the pyruvate-family amino acid [29]. Thus, it may explain the nega-
tive correlation between valine and leucine. When the plant synthesis a high concentration
of leucine, then a lower concentration of valine may occur as a consequence of having
similar precursors.

Another interesting point is that several metabolites (a group of undefined metabolites)
also contributed to the separation between resistant and susceptible varieties. Furthermore,
according to Al Sinani and Eltayeb [30], generally, plants have the ability to involve
and adapting several metabolites for improving a wide range of resistance mechanisms
toward pathogens. For instance, plants synthesized and developed various biochemical
compounds to counterattack the infection of the pathogen. Many studies had been reported
the secondary metabolites associated with R. solanacearum. These metabolites vary in
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each genotype and are based on the method used to detect metabolomic in that plant.
Zeiss et al. [7] studied tomato-host-plant resistance to R. solanacearum. In that study, they
observed that flavonoids, HBAs, and HCAs had important roles in the defense mechanism
of tomato against R. solanacearum.

4. Materials and Methods
4.1. Bacterial Inoculum

This research used bacterial wilt (R. solanacearum), race 1 and biovar 3, which was
obtained from the culture collection of Plant Protection Laboratory, Faculty of Agriculture,
Universitas Gadjah Mada, Yogyakarta, Indonesia. It had been collected from wilted tomato
plants from Seyegan sub-district, Sleman district, Yogyakarta, Indonesia. Firstly, infected
tomato plants were cleaned with distilled water, the stem cut into 0.5 cm and sterilized with
alcohol 70%, followed by soaking into sterile water for 10 min. The bacterial suspension
was streaked into YPGA (yeast peptone glucose agar) media containing yeast extract (5 g),
10 g peptone and glucose, 15 g agar in 1 L distilled water and then incubated for 48 h.
Furthermore, the bacteria cells were suspended in sterile distilled water, and the density of
inoculum was set to 1 × 108 cfu·mL−1 [31].

4.2. Plant Materials

Three tomato cultivars, GM2, Permata, and Hawaii 7998 were used in this study. GM2
is a cultivar owned by the Faculty of Agriculture, Universitas Gadjah Mada. It was used
as the susceptible cultivar, as it is known to have a high susceptibility to R. solanacearum,
as reported by Maulida et al. [32]. Permata is a commercial tomato hybrid produced by a
private company, East West Seed Indonesia, Purwakarta, West Java, Indonesia. Based on the
cultivar description, this hybrid is resistant to bacterial wilt caused by R. solanacerum [33].
Hawaii 7996 is a cultivar introduced from World Vegetable Center (WVC), previously
identified as resistant to R. solanacearum [34].

4.3. Experimental Procedure

The study was carried out in a greenhouse, Faculty of Agriculture, Universitas Gadjah
Mada. Tomato seeds were sown in the sterile media added nitrogen, phosphorus, and
potassium (NPK) fertilizer (1:1:1) with a ratio of 1:50 (w/w) (fertilizer and sterile soil).
Twenty-one days after germination, these plants were moved into polybag 130 × 130 mm
individually. Seven days after transplanting, tomato plants were inoculated with bacterial
wilt (100 mL per plant). Before infection, tomato roots were injured by the knife through
plant media and then 100 mL of inoculum solution with a density of 1 × 108 cfu·mL−1 was
poured into the wounded area to make infection through the plant.

Observation and scoring of the disease symptoms were based on Chen et al. [35];
1 = no symptoms, 2 = Less than a half of leaves wilted, 3 = a half of leaves being wilted,
4 = All of leaves wilted, 5 = whole the plant wilted and dead. Furthermore, the disease
intensity was used as a classification of plant resistance. Cultivars have a disease intensity
of 0–20% were categorized as high resistant (HR), 21–30 was Resistant, 31–40% was Moder-
ately Resistant (MR), 41–50 was Moderately Susceptible (MS), 51–60 was Susceptible (S),
61–90 was Highly Susceptible (HS), and 91–100 was Extremely Susceptible (ES) [6]. Hence,
DI was calculated using the formula of Chen et al. [35]:

DI = ∑ n
5N

× 100%

Remarks: ∑ n = A sum from ratings of all plants scored at 1–2, e.g., ∑ (1A + 2B+3C +
4D + 5E), whereas A, B, C, D, and E were a total of the plants that categorized at score 1, 2, 3,
4, and 5; N = The number of inoculated plants; 5 = the highest category of symptom scale.

The leaves of plants were harvested 14 days after R. solanacearum inoculation. Leaves
were collected 5 g per plant for freez drying process. The leaves were ground with mortar
and pestle in liquid nitrogen then immediately sent to freeze drier for 48 h and then
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taken about 50 mg for NMR analysis The method used in this study was based on the
modification of Schripsema and Dagnino [36].

4.4. Statistical Analysis

This study was arranged in a Split Plot Design with the cultivars served as the main
factor (GM2 vs. Permata vs. Hawaii 7998) and the bacterial infection as a sub-factor
(Healthy vs. infected). The collected data (Disease intensity and the semi-quantitative
concentration of identified metabolites) were statistically analysed by analysis of variance
(ANOVA) and continuous with Tukey’s HSD test for determining the significant difference
with α = 5%. Furthermore, the multivariate data were performed using Partial Least-
Squares Discriminant Analysis (PLS-DA) by MetaboAnalyst Software version 5.0 (www.
metaboanalyst.ca accessed on 27 May 2021).

4.5. 1H-NMR Measurement

NMR conditions were based on López-Gresa et al. [37] modified by Afifah et al. [10].
Approximately 50 mg freeze-dried tomato leaves were used for 1H-NMR analysis. Each
of the samples was placed into a 2 mL Eppendorf tube, added 1 mL of deuterated
methanol (CD3OD) containing 0.05% of internal standard (trimethyl silyl-3-propionic
acid (C6H14O2Si)). The tubes were vortexed for 1 min and sonicated for 20 min. Subse-
quently, the tubes were centrifuged at 13,000 rpm for 10 min. Approximately ~800 µL of
the supernatant was transferred into the NMR tube for 1H-NMR measurement using a
500 MHz ECZR-JEOL NMR spectrometer (JEOL USA Inc., Peabody, MA, USA). Each NMR
spectra was recorded at 30 ◦C, 128 scans, 26 s acquisition time, 0.16 Hz per point, with
pulse’ width of 30 and relaxation delay of 1.5 s.

4.6. Data Quantification

Spectra from 1H-NMR were analysed using Mnova software version 11 from Mestrelab
Research (Timber Glen, Escondido, CA, USA) for metabolites identification and semi-
quantitative analysis following the published data of Kim et al. [38], López-Gresa et al. [37],
and Escudero et al. [39]. Previously, the spectra were manually corrected, phased, and
baselined correction. Furthermore, an internal standard (trimethyl silyl-3-propionic acid
(C6H14O2Si)) was calibrated by setting at 0.0 ppm. Residual water in a range of δ 4.7–4.9
and methanol in a range of δ 3.28–3.34 was excluded from the analysis.

5. Conclusions
1H-NMR is the appropriate metabolomic study to reveal the biochemical compounds

that associated to the defense mechanism in the tomato plants against R. solanacearum. This
study identified that leucine, valine, and other metabolites which placed in the region of
5.02, δ 1.31, δ 5.06, δ 3.79, δ 1.35, δ 3.66, δ 1.62, δ 2.1, and δ 5.098 were alleged to differentiate
between resistant and susceptible tomato against R. solanacearum. Leucine dominated in
the resistant plant (Permata). Meanwhile, resistant cultivars had a significant decrease of
valine after inoculation about 1.5–2 times compared to the susceptible cultivar. Leucine is
alleged to contribute to the immune system and the existence of secondary metabolites for
defense systems in plants toward bacterial wilt.
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