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Abstract: Receptor-like proteins (RLPs) are a gene family of cell surface receptors that are involved
in plant growth, development, and disease resistance. In a recent study, 438 pepper RLP genes were
identified in the Capsicum annuum genome (CaRLPs) and determined to be present in response to
multiple biotic stresses. To further understand the role of CaRLPs in plant growth and development,
we analyzed expression patterns of all CaRLPs from various pepper tissues and developmental stages
using RNA-seq. Ten CaRLP genes were selected for further analysis according to transcript levels
with hierarchical clustering. The selected CaRLP genes displayed similarity of motifs within the
same groups and structures typical of RLPs. To examine RLP function in growth and development,
we performed loss-of-function analysis using a virus-induced gene silencing system. Three of the
ten tested CaRLPs (CaRLP238, 253, and 360) in silenced plants exhibited phenotypic alteration
with growth retardation compared to controls. All three gene-silenced peppers showed significant
differences in root dry weight. Only CaRLP238 had significant differences in both root and shoot dry
weight. Our results suggest that CaRLPs may play important roles in regulation of plant growth and
development as well as function in defense responses to biotic stresses in the RLP gene family.

Keywords: Capsicum spp.; functional analysis; virus-induced gene silencing (VIGS); growth
regulation; receptor-like protein (RLP)

1. Introduction

Plants have cell surface-localized receptors to perceive extracellular signals and com-
municate with the outside environment. Many plant cell surface receptors have been
reported to play key roles in very various processes of plant growth and development [1,2].
There are two major classes of extracellular receptors distinguished by their cytoplasmic
domains, namely, receptor-like kinases (RLKs) and receptor-like proteins (RLPs). RLKs
contain a single transmembrane domain and a cytoplasmic kinase domain, whereas RLPs
lack the cytoplasmic kinase domain and have a short cytoplasmic tail [3].

The major function of an RLP is its well-known defense response against pathogens. The
first RLP gene identified, Cf-9, was found in tomatoes (Solanum lycopersicum) and mediates
resistance to the fungal pathogen Cladosporium fulvum [4]. Several Cf genes in the RLP
gene family have been identified from tomatoes [5–8]. Since then, many RLPs have been
identified, and functions implicating disease resistance in plants have been revealed. Tomato
LeEIX2 mediates recognition of the ethylene-inducing xylanase (EIX) of the fungus Trichoderma
viride [9], tomato Ve1 also mediates resistance against Verticillium [10], and tomato CuRe1
improves resistance to attack by the plant parasite Cuscuta reflexa [11]. The RLP ReMAX of
Arabidopsis implicates recognition of eMAX from Xanthomonads [12], RFO confers resistance
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to the vascular wilt fungus Fusarium oxysporum forma specialis matthioli [13], and RLP23 is also
involved in disease resistance [14]. LepR3 from Brassica napus provides race-specific resistance
to the fungal pathogen Leptosphaeria maculans [15], HcrVf-2 from apple mediates resistance
towards the apple scab fungus Venturia inaequalis [16], and RLP85 (ELR) from potato confers
enhanced resistance to Phytophthora infestans [17].

RLPs also play key roles in plant development. In Arabidopsis, TOO MANY MOUTH
(TMM) regulates stomatal distribution on epidermis [18] and is negatively regulated.
CLAVATA2 (CLV2) in Arabidopsis is involved in plant biological processes. CLV2 has a
function in maintaining a balanced meristematic stem cell population [19]. CLV2 is also
implicated in the regulation of root apical meristem maintenance. Overexpression of
CLE genes shows the inhibition of root growth in a CLV2-dependent manner [20–23]. In
addition, the clv2 mutant in Arabidopsis displays novel developmental phenotypes, such
as reduced growth, development of more rosette leaves, and shorter stems [24]. In maize,
FASCINATED EAR2 (FEA2), an ortholog of CLV2, regulates meristem development [25].
Despite these significant insights into the plant growth and development-related function
of RLPs, only several RLP genes have been assigned functions in plant development.

Recently, we reported that 438 hot pepper RLP genes in Capsicum annuum (CaRLPs)
were identified from pepper genomes, and three CaRLPs showed broad-spectrum resis-
tance against variable pathogens [26]. However, plant growth and development-related
functions of CaRLPs have not yet been identified. In this study, we conducted expres-
sion analysis of 438 CaRLPs using a comprehensive tissue-specific RNA-seq dataset. The
10 CaRLPs with a reads per kilobase per million mapped reads (RPKM) value > 5 of
transcripts were selected according to expression profiles and hierarchical clustering. Loss-
of-function analysis revealed that three CaRLPs showed phenotypic changes, such as
inhibition of root growth, in silenced plants compared to controls. Our study could provide
clues for better understanding of potential roles of RLPs in plant growth in pepper and
other plants.

2. Results
2.1. CaRLP Gene Expression Analysis in Various Organs and across Fruit Developmental Stages

To discover the biological function of CaRLPs in plant growth and development,
we obtained the CaRLPs information and tissue-specific RNA-seq data from a previous
study [26,27]. Expression analysis of a total of 438 CaRLPs was performed using RNA-seq
datasets from the different pepper tissues (root, stem, leaf, pericarp, and placenta), and
seven crucial fruit developmental stages. A total of 101 (23.1%) genes out of 438 pepper
RLPs were not expressed in any of the five tissues and developmental stages in pepper
and were excluded for expression analysis (Supplementary Table S1). We selected CaRLPs
with RPKM values of > 5 of transcripts at least in one of all five tissues and developmental
stages, and then eventually obtained 76 CaRLPs for further analysis. The expression val-
ues of 76 CaRLPs were visualized with Z-score and log2RPKM on a heat map (Figure 1).
According to the Z-score and RPKM value, 76 CaRLP genes showed various expression pat-
terns, with some CaRLPs evenly expressed in all tested tissues and some genes specifically
expressed in only one or a few organs.

Hierarchical cluster analysis and Z-scores were used to understand the characteristics
of 76 CaRLPs. The 76 CaRLPs were clustered into seven expression profiles along with a
representative curve displaying each transcript pattern of Z-score (Figure 1). The transcript
levels of CaRLPs detected in clusters 1, 2, and 3 were tissue-specific in particular vegetative
tissues. Relatively high abundant transcripts in the root, leaf, and stem of CaRLPs clusters
were detected compared to other tissues. To determine whether RLP gene members are
involved in potential functions during pepper fruit development, we profiled transcripts of
pepper RLP genes in the placenta and pericarp at seven crucial stages of fruit development.
The CaRLPs in clusters 4 and 5 reached the highest level in early and late pericarp develop-
mental stage, respectively. The 17 CaRLPs in cluster 4 and 14 CaRLPs in cluster 5 may be
involved in the placenta developmental stage. In addition, the CaRLPs in clusters 6 and 7
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were more highly expressed during the placenta developmental stage than in other tissues,
suggesting they may play a role at the reproductive stage. Taken together, these results
suggest that CaRLPs might be tissue-specific regulators in vegetative and reproductive
tissues in pepper. To validate that the putative functions of CaRLPs expressed in pepper
are tissue specific, we analyzed 76 CaRLPs sequences to perform loss-of-function analysis
using virus-induced gene silencing (VIGS). Finally, we selected 10 CaRLPs carrying a
specific nucleotide sequence in the genome for VIGS study. The information of selected
CaRLPs is presented in Table 1.
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Figure 1. Tissue-specific expression patterns of CaRLPs (Capsicum annuum receptor-like proteins).
The 76 RLP genes out of 438 genes were selected to construct the heat map. Heatmaps on left and
right sides are exhibited using the Z-score and RPKM (reads per kilobase of transcript per million
mapped reads), respectively. The selected 10 genes for VIGS (virus-induced gene silencing) assay
were marked with asterisks in the right side of the heatmap. The graphs represent the Z-score of
CaRLPs in each hierarchical cluster, and red lines indicate median Z-score within a cluster. Key: PR,
pericarp; PL, placenta; MG, mature green stage; B, breaker stage; DPA, days post anthesis; B5 and 10,
5 and 10 days post-breaker.
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Table 1. Information for VIGS (virus-induced gene silencing) analysis of 10 selected CaRLPs
(Capsicum annuum receptor-like proteins).

CaRLP ID Location CDS Size (bp) Protein Size (aa) Group

CaRLP11 Ch1 1089 362 G07
CaRLP20 Ch2 1338 445 NG
CaRLP44 Ch2 1431 476 NG

CaRLP208 Ch7 1266 421 NG
CaRLP238 Ch8 2436 811 G11
CaRLP239 Ch8 1149 382 NG
CaRLP253 Ch8 657 218 G09
CaRLP257 Ch9 1023 340 G07
CaRLP360 Ch0 1 1288 428 NG
CaRLP380 Ch0 1172 382 G07

1 Ch0 indicates unmapped scaffolds on chromosome.

2.2. Structure Analysis of Selected CaRLPs

In a previous study, 10 selected CaRLPs were assigned to different pepper RLP groups
(Table 1) [26]. Five of the genes were designated as the none-group, three genes constituted
Group 07 (G07), one gene was assigned to Group 09 (G09), and one gene was put in Group
11 (G11), which contained the characterized RLP called CLAVATA2 (CLV2). To determine
the structure similarities of RLPs, we conducted conserved motifs analyses with 10 CaRLPs.
The motif analyses revealed that the 10 CaRLPs had various motif formations according to
their group (Figure 2). As predicted, CaRLP11, 257, and 380 in G07 had similar motifs to
one other, and there was low similarity of motif composition in the non-group to which
five genes belonged.
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Figure 2. Conserved motif analysis of 10 CaRLPs (Capsicum annuum receptor-like proteins). Con-
served motifs of the 10 selected CaRLPs were analyzed using the MEME program. The left side of
the gene name represents the CaRLP group to which each CaRLP belongs. Each color box in motif
locations displays different motifs.

Based on these motif analyses, the amino acid sequences of 10 CaRLPs were analyzed
with the SMART program (http://smart.embl-heidelberg.de/, accessed on 25 March 2021)
to predict putative domains and RLP structure. RLPs are cell surface receptors with an
extracellular ligand binding domain that is composed of several distinct domains such
as a signal peptide, a transmembrane domain, and an extracellular leucine-rich repeat
region (LRR) [28]. All 10 CaRLPs contained LRR domains (Figure 3a). Only two CaRLPs
(CaRLP238 and 360) had a full-type structure with three functional domains, such as signal
peptide, transmembrane domains, and LRRs. Seven genes contained the two domains

http://smart.embl-heidelberg.de/
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including signal peptide and LRRs. The remaining one gene (CaRLP11) had only a single
domain with LRRs (partial-type RLP). Taken together, the selected CaRLP genes displayed
similarity of motifs within the same groups and showed typical structures of RLPs.
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Figure 3. RLP (receptor-like protein) structure and schematic diagram of silenced region of each CaRLP (Capsicum annuum
receptor-like proteins) and TRV (Tobacco rattle virus)-based VIGS (virus-induced gene silencing) vector. (A) RLP structure
with the diagram of silencing region of CaRLPs. Partial fragment of the gene used for silencing are shown below full CDS
(coding sequence) region of each CaRLP. LRR, leucine rich repeat; SP, signal peptide; TM, transmembrane domain. Dark
gray region without domain name in CDS indicates non-LRR region. (B) Map of the TRV-based VIGS vector used in this
study. Partial fragments of each CaRLP were cloned into black colored region (named “CaRLP”) of pTRV2-LIC. LB, left
borders of the T-DNA; RB, right borders of the T-DNA; 2X35S, two copies of the Cauliflower mosaic virus 35S promoter;
CP, coat protein; RdRp, RNA-dependent RNA polymerase; MP, movement protein; 16 K, 16 Kda protein; R, self-cleaving
ribozyme; NOSt, nos-terminator.

2.3. Phenotypic Alterations in Root Growth of CaRLP-Silenced Plants

To investigate the possible functions of CaRLPs in the development of peppers,
10 CaRLP genes were silenced using TRV-mediated VIGS (Figure 3b). Approximately,
200–300 bp cDNA fragments carrying the gene-specific sequences of each CaRLP gene
were inserted in the TRV2 vector for the loss-of-function study (Figure 3a,b). We monitored
plant growth and morphological changes, including plant height, chlorophyll contents,
leaf area, and plant fresh weight, for six weeks after silencing. Even though silenced plants
exhibited slight differences in the aforementioned phenotypes compared to control plants
(TRV-GFP), eventually there were no significant differences in plant height, leaf area, and
chlorophyll contents in CaRLP-silenced plants compare to controls (Figure 4a–c). However,
plant fresh weight of three CaRLP-silenced plants (CaRLP238, CaRLP253, and CaRLP360)
were significantly reduced compared to that of control plants. The level of fresh weight
in these three CaRLP-silenced plants was decreased 0.7–0.85-fold compared with control
plants (Figure 4d). These results indicate that the three CaRLP genes may be involved in
plant biological processes in peppers.
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Figure 4. Phenotype analysis of 10 CaRLP (Capsicum annuum receptor-like proteins)-silenced pepper
plants. Comparison of plant height (A), leaf area (B), chlorophyll contents (C), and fresh weight (D)
in control plants (GFP; green fluorescent protein) and CaRLP-silenced plants. CaRLP-silenced plants
and control plants were used for phenotypic analysis at six weeks after silencing. The plant height
was measured from the ground to the growth point of the shoot. The plant fresh weight included
shoot and root weight. The leaf area and chlorophyll contents were measured on the third true leaf
and third and fourth leaves, respectively. Data are shown as mean ± SD. Statistically significant
differences compared with the TRV2-GFP control determined using Student’s t-test are indicated by
asterisks (* p < 0.05).

To further understand a possible function, we observed the silencing effects of
three CaRLPs (CaRLP238, CaRLP253, and CaRLP360) in the growth of shoots and roots.
The expression level of each of the three CaRLPs, determined using semi-quantitative
RT-PCR, was significantly lower in CaRLP-silenced plants than in the TRV2-GFP control
plants (Figure 5a). Slight phenotypic alterations among the three CaRLP-silenced plants
and TRV-GFP plants were observed. (Figure 5b). Even though significant differences were
not detected in the plant height of CaRLP-silenced plants compared with control plants
(Figure 3a), the growth of plant shoots in CaRLP-silenced plants was smaller than that of
control plants (Figure 5b). The root phenotype of three CaRLP-silenced plants showed
inhibition of root growth compared with control plants. In addition, we measured the
dry weight of the whole plant, shoot, and root in three CaRLP-silenced plants and control
plants. The whole-plant dry weight was significantly reduced in all three CaRLP-silenced
plants compared to controls (Figure 5c). Interestingly, only CaRLP238-silenced plants had
significantly decreased shoot dry weight compared with controls (Figure 5d). Root dry
weights of all three CaRLP-silenced plants were significantly reduced compared to controls.
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Taken together, suppression of three genes resulted in retardation of shoot and/or root
growth, suggesting that these genes may be involved in regulation of plant normal growth.
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plants (TRV-GFP). The photo was taken at six weeks after agro-infiltration for a VIGS assay. Scale bar indicates 5 cm.
(C–E) Comparison of whole-plant dry weight, shoot dry weight, and root dry weight in control plant (TRV-GFP), and
CaRLP238, 253, and 360 silenced plants. Data are shown as mean ± SD. Statistically significant differences compared with
the TRV2-GFP control determined using Student’s t-test are indicated by asterisks (* p < 0.05, ** p < 0.01, *** p < 0.0001).

3. Discussion

The RLP gene family is one of the largest super families involved in various biological
functions in plants, yet only a few RLP genes have been functionally characterized re-
garding biological processes. The RNA-seq has been widely applied to research including
the analysis of gene expression and prediction of gene function since next-generation se-
quencing has been easily available to use. Several studies have reported the genome-wide
identification of RLP genes in Arabidopsis, rice, tomato, Brassica, and legumes [24,29–33].
However, no previous study has reported the genome-wide transcriptional profiles in
organ-specific of RLPs in pepper. Previously, we identified 438 pepper RLP genes and a
comparative transcriptomic analysis revealed the role of core RLP regulators in disease
resistance against various pathogens [26]. In the study reported here, we attempted to dis-
cover the additional function involved in plant growth by analyzing pepper tissue-specific
transcriptome. A total of 76 CaRLPs had variable expression patterns whereby some were
expressed evenly in all stages tested or specifically in one or a few stages (Supplementary
Table S1). The hierarchical clustering of 76 CaRLPs was detected via categorization into
seven clusters showing distinct tissue-specific expression patterns. Among them, ten
CaRLP genes having specific sequences and distinguishable expressions were selected for
further analysis.

Motif analysis of 10 CaRLP proteins revealed that CaRLPs had 20 motifs in total
and shared conserved motifs in the same subgroup, which is consistent with a previous
study [26]. The distribution of motifs also showed the conserved position of each gene in
the same group (Figure 2). This result suggested that the genes in the same group might
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have similar evolutionary histories and possibly a similar function [34,35]. RLPs are pattern
recognition receptors containing N-terminal signal peptides, transmembrane domains,
and LRR [28]. However, some proteins without transmembrane domains or without
signal peptides are considered as RLPs [29,31]. A previous study reported RLPs without a
transmembrane domain attached to the extracellular side of the plasma membrane using
a glycosylphosphatidylinositol (GPI) anchor [36]. In the case of the tomato, structure
analysis of tomato RLPs show that 30.7% of genes of all tomato RLPs are considered full-
type RLPs encompassing all three domains and 42.6% of genes contain two domains [30].
Therefore, even though some CaRLPs were predicted as partial-type RLPs (not having all
three domains) in this study, they could be considered as a typical RLP gene.

Most biological processing genes are under purifying selection to maintain specific
functions [37]. Therefore, developmental genes are less likely to be duplicated compared to
gene families for stress adaptation, like resistance genes, and they are more structurally and
functionally conserved among plant species. Moreover, analysis of Arabidopsis and rice
RLP genes shows that developmental genes are less likely to be duplicated and undergo
diversifying selection than disease-resistance genes [24]. For instance, CLV2 is involved in
plant growth and development processes, including shoot meristem development, root
apical meristem maintenance, and organ development [2,19]. The FASCIATED EAR2
(FEA2), an orthologue of CLV2 involved in meristem development, shows a similar mutant
phenotype to CLV2 [25]. Previously, a small number of CaRLP genes were classified with
TMM and CLV2 as Group 10 and 11, respectively. The CaRLPs in Group 10 and 11 were
predicted to duplicate before tomato/pepper speciation, suggesting evolutionary pressure
to conserve function [26]. Interestingly, CaRLP238, which shows most phenotypic changes
in both root and shoot of silenced pepper plants in this study, was grouped with CLV2
in Group 10 (Table 1) based on a phylogenetic tree of sequence similarity. According to
the aforementioned results, it can be predicted that genes belonging to groups like CLV2
and TMM could possibly function in relation to plant development. Therefore, functional
analysis of other CaRLPs belonging to the same group as CLV2 and TMM, through further
research, might provide clues to find biological roles in plant biological processes for the
RLP gene family.

To understand their role in plant growth, 10 selected genes were silenced in pepper
plants, and then three CaRLP genes (CaRLP238, CaRLP253, and CaRLP360) were character-
ized further. CaRLP238, highly expressed in the root (Figure 1), displayed morphological
changes in growth after silencing such as reduced dry weight of whole plant, shoot, and
root. Additionally, CaRLP253 and 360 displayed high expression levels in placenta and
stem, respectively, but they showed significant differences in root dry weight when silenced.
For these three CaRLP genes, although additional phenotypic analysis of other tissues was
not performed, these CaRLPs might be involved in growth processes in peppers. However,
in order to unveil the function, further studies including more morphological analysis and
molecular biology analysis during growth and fruit development will be needed.

Although the expression level of silenced genes was significantly lower than control
plants, one gene, CaRLP238, may not be down-regulated enough to compromise CaRLP
function (Figure 5a). A VIGS assay could be a very useful tool for assessing gene functions
and this tool has been developed in a wide variety of plant species [38]. However, VIGS has
weaknesses, including partial silencing, that require consideration and prudence in its use.
Partial silencing happens in an unpredictable manner. Therefore, less obvious phenotypes
could impair the use of VIGS in the analysis. This problem can be addressed by increasing
the sample size to include enough individuals [39,40]. In this study, we performed more
than three independent assays for the VIGS that consisted of at least eight to ten plants for
a replicate, totally more than thirty plants. In the case of silencing reduction, even though
the silencing efficiency of CaRLP238 genes was approximately 40% lower compared to
the control, we achieved the same stable results and phenotypic alteration-like significant
differences in whole plant weights including both shoot and root compared to controls.
In addition, a previous report showed that using VIGS, even target genes were reduced
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between 65 and 24% (p < 0.05) compared to WT plants and the silenced plants also exhibited
clear phenotypic alterations [41]. Taken together, three CaRLPs (CaRLP238, 253, and 360)
showed acceptable and reasonable ranges in expression reduction to phenotypic changes.

4. Materials and Methods
4.1. CaRLP Information, RNA-Seq Data, and Expression Profiling

We obtained gene information and sequences of CaRLP genes from a previous
study [26]. The RNA-seq of five pepper tissues, including root, stem, leaf, pericarp,
and placenta [42], were used for the expression analysis of CaRLPs. The pericarp and
placenta RNA-seq contained seven developmental stages: 6, 16, and 25 days post anthesis;
mature green (MG); breaker (B); and 5 and 10 days post breaker. All transcriptome data
were analyzed using in-house pipelines [43,44]. The expression values of tissues were
normalized using RPKM. To analyze expression profiles of CaRLPs, CaRLPs with RPKM
values of >5 at least in one of all five tissues and developmental stages selected, and
then, 76 CaRLPs were obtained. The expression patterns and hierarchical clustering of
significant genes were visualized with Z-score and log2 RPKM using Heatmap by R pack-
age (http://bioconductor.org/, accessed on 25 March 2021). Of 76 CaRLPs, we selected
10 CaRLPs possessing a gene-specific sequence for further analysis.

4.2. Motif Analysis and Structure Analysis of CaRLP Genes

Identification of conserved motifs in 10 selected CaRLPs was performed using the
MEME suite (http://meme-suite.org/tools/meme, accessed on 25 March 2021). The
analysis parameters were as follows: maximum number of motifs, 20; minimum width
of motifs, 15; maximum width of motifs, 200, and other details were used with default
settings. To find functional domains of RLPs, 10 selected CaRLPs were analyzed using
functional structure annotation with SMART (http://smart.embl-heidelberg.de/, accessed
on 25 March 2021) with default values.

4.3. Gene Cloning for Virus-Induced Gene Silencing (VIGS) Assay

Capsicum annuum (‘Nockwang’) was used in this study for functional analysis. Seedlings
were grown in a growth chamber at 25 ◦C under a 16 h light/8 h darkness cycle. The newly
emerging cotyledons of germinating pepper seedlings were used for a VIGS assay.

To construct the plasmids for analysis of loss-of-function, Tobacco rattle virus (TRV)-
based VIGS vectors containing pTRV1 and pTRV2-LIC were used. To find gene-specific
sequences of CaRLPs for VIGS, 10 CaRLPs performed BLASTn against the C. annuum
‘CM334’ v. 1.55 genome. The gene-specific region, which is the 3′ or 5′ CDS region
with untranslated region (UTR), of each CaRLP was amplified using SolgTM Pfu-X DNA
polymerase (Solgent, Daejeon, Korea) with primers (Supplementary Table S2). The PCR
products were cloned into the pTRV2-LIC vector according to a method used in a previous
study [45,46]. The pTRV2-LIC-CaRLP plasmids were transformed into Agrobacterium
tumefaciens strain GV3101 using the freeze-thaw method. Agrobacterium cultures, including
pTRV1 and pTRV2-LIC-CaRLP, were mixed in a 1:1 ratio (OD600 = 0.5) and infiltrated
into two fully expanded cotyledons of pepper seedlings (approximately 10 days after
germination) using a needleless 1-mL syringe. In this experiment, TRV2-green fluorescent
protein (GFP) and TRV2- phytoene desaturase (PDS) were used as a negative and positive
control for VIGS, respectively.

4.4. Semi-Quantitative RT-PCR Analysis

The total RNA was extracted from pepper leaves using the TRIzol reagent (Thermo
Fisher Scientific, Inc., Waltham, MA, USA) according to the manufacturer’s instructions.
cDNA was synthesized from 2 µg of total RNA using oligo d(T) primer and M-MLV reverse
transcriptase (Promega, Madison, WI, USA) following the manufacturer’s protocol. Each
gene-specific primer was designed to detect the levels of silenced-CaRLP gene expression.
For semi-quantitative RT-PCR reaction, we tested the RT-PCR cycles between 26–32 cycles
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with all samples to ensure the linearity of the results. Then, to determine efficiency of gene
silencing, semi-quantitative RT-PCR was performed using rTaq polymerase (Takara, Shiga,
Japan) on a MiniAmp™ Thermal Cycler (Thermo Fisher Scientific Inc., Waltham, MA, USA)
under the following conditions: initial denaturation step was 94 ◦C for 2 min, followed
by 30 cycles of 94 ◦C for 30 s, then an annealing step at 58 ◦C for 30 s, and an elongation
step at 72 ◦C for 30 s. The pepper actin gene (CaActin) [47] was used as reference gene.
All PCR reactions were repeated in triplicate using at least three independent samples. To
determine quantification of RT-PCR products, images of the amplicon in ethidium bromide-
stained agarose gel were obtained using WiseCaptureII software (Daihan Scientific Co.,
Ltd., Wonju, Korea). Quantification of the amplicon bands in agarose gel was measured
using ImageJ software (https://imagej.nih.gov/ij/, accessed on 25 March 2021). Band
intensity of CaActin of each cDNA sample was calculated to normalize for variation in
sample concentration. Mean and standard deviation of each CaRLP expression level in
silenced pepper plants and mock plants (TRV-GFP) were calculated after normalization to
CaActin. Statistically significant differences (p < 0.05) of CaRLP expression levels in CaRLP-
silenced plants were verified by comparison with those of the control plant (TRV-GFP). It
was determined using one-way analysis of variance (ANOVA) and Student’s t-test using
SAS software (version 9.4; SAS Inc., Cary, NC, USA).

4.5. Phenotypic Analysis of CaRLP-Silenced Pepper Plants

The morphological changes of each CaRLP-silenced pepper plant were measured,
such as plant height (from soil surface to shoot growing point, cm), leaf area (3rd true leaf,
cm2), plant fresh weight of whole plant (mg), and chlorophyll contents (SPAD value) at
6 weeks after silencing. Relative chlorophyll contents of the 3rd and 4th leaves of CaRLP-
silenced plants were measured with a Chlorophyll Meter (Minolta Camera Co., Ltd., Japan).
The silenced plants at 6 weeks after a VIGS assay were dried at 65 ◦C in an oven for
two days, and then, dry weights of whole plants, shoot, and root were measured. All
phenotypic analyses were performed using more than three independent experiments, with
8–10 plants for each experiment. Statistically significant differences (p < 0.05) of phenotypic
analysis between control plants (TRV-GFP) and CaRLP-silenced plants (TRV-CaRLP) were
determined using one-way ANOVA and Student’s t-test using SAS software (version 9.4;
SAS Inc., Cary, NC, USA).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10050972/s1, Table S1: Reads per kilobase of transcript per million mapped reads
(RPKM) from tissue-specific RNA-seq of pepper RLP genes, Table S2: Primers used for VIGS (virus-
induced gene silencing) analysis.
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