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Abstract: The ubiquitin proteasome is a rapid, adaptive mechanism for selective protein degradation,
crucial for proper plant growth and development. The ubiquitin proteasome system (UPS) has also
been shown to be an integral part of plant responses to stresses, including plant defence against
pathogens. Recently, significant progress has been made in the understanding of the involvement of
the UPS in the signalling and regulation of the interaction between plants and viruses. This review
aims to discuss the current knowledge about the response of plant viral infection by the UPS and
how the viruses counteract this system, or even use it for their own benefit.
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1. Introduction

The ability of plants to survive stresses relies heavily on proteome plasticity via post-
translational modifications (PTMs) to regulate protein function. These modifications deter-
mine diverse fates of target proteins and enable cells to rapidly and specifically respond
to stimuli, avoiding time- and energy-consuming de novo protein synthesis. Reversible
protein modification with ubiquitin, ubiquitination, is a key regulatory mechanism that
controls diverse aspects of plant biology. Ubiquitination involves the addition of covalently
attached ubiquitin residues to substrates in a stepwise cascade: First, an E1 (ubiquitin-
activating enzyme) “activates” the ubiquitin by forming a high-energy thioester bond to a
ubiquitin moiety, which is then transferred onto the active site of a cysteine residue of an
E2 (ubiquitin-conjugating enzyme). Finally, the E2 partners with an E3 (ubiquitin-ligase)
and transfers ubiquitin to a lysine residue of the target substrate [1,2]. Compared with
other eukaryotes, plant genomes encode a large number of ubiquitin proteasome (UPS)
components. In fact, the Arabidopsis genome encodes more than 1600 proteins involved in
the ubiquitin-related pathway, underlining the importance of the ubiquitin-related pathway
in diverse cellular processes. Most of these genes (>1400) encode putative E3-ubiquitin
ligases that are responsible for substrate specificity, since they define the substrates for
ubiquitination [1–3]. E3 ubiquitin-ligase enzymes are the best characterized components
of the ubiquitination cascade, and they are classified into four different protein families
(HECT (homologous to E6-associated protein C-terminus), RING (really interesting new
gene), U-Box, and CRL (Cullin-RING ligases)), depending on their structural and functional
features [1].

Although the most recognized function of ubiquitination involves linkage via Lys48
and subsequently protein degradation through the ubiquitin/26S proteasome system,
polyubiquitination via other lysines or Met1 confers non-proteolytic function over the
ubiquitinated protein, such as endocytosis, autophagy, protein–protein interaction, pro-
tein trafficking or DNA repair [1,4–7]. This is possible because each linkage type has a
distinct three-dimensional topology that results in specific interactions and/or regulation
of different biological functions [8–10]. In addition, it is now known that there is also
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reversible ubiquitination, mediated by deubiquitinases (DUBs), which can direct non pro-
teolytic events that affect the regulation of transcription, chromatin structure, and vesicular
trafficking [11].

To effectively infect plants, pathogens need to overcome a multi-layered plant in-
nate immune system, coordinated by several subcellular compartments and interactions
between these compartments, which efficiently detect potential pathogens and initiate
a defence response. The first line of this defence is initiated during the early phases of
pathogen infection by the detection of conserved microbial- or pathogen-associated molec-
ular patterns (MAMPs or PAMPs). This recognition is achieved by plant extracellular
pattern-recognition receptors (PRRs), leading to PAMP-triggered immunity (PTI) [12].
PTI is a basal immune status that is effective against a broad spectrum of pathogens.
Pathogens have evolved ways to circumvent this defence by producing virulence effectors
that suppress crucial host PTI regulators, thereby counteracting plant defences, causing
effector-triggered susceptibility (ETS). As a consequence, plants have gained the ability
to recognise these effectors through resistance (R) proteins, leading to a fast, specific, and
effective form of resistance called effector-triggered immunity (ETI). ETI is frequently asso-
ciated with the development of the hypersensitive response (HR), a localised programmed
cell death that prevents the spread of the pathogen beyond the site of infection [12]. The
UPS has been shown to play a crucial role during the regulation of plant immune sig-
nalling, being involved in all steps of plant defence responses from pathogen perception to
regulation of downstream signalling [4,6,13–15].

Viruses are small, intracellular, obligate, biotrophic parasites that rely on their host in
nearly every aspect of their life cycle as they do not possess their own replication machinery.
Although historically viruses have been considered non-PAMP-coding pathogens [16], sev-
eral lines of evidence suggest that PTI may play a role in both compatible and incompatible
plant-virus interactions [17,18]. Besides the role that plant innate immunity may play in de-
fence against viruses, other active defences include RNA silencing, translational repression,
protein degradation, and direct interaction and inhibition of viral proteins [16,19,20].

Because of their intracellular nature, viruses interact very closely with host cellular
compartments, which makes direct antiviral treatment difficult. Reports show that ex-
ogenous application of dsRNA can indeed confer resistance against RNA viruses, but the
application, especially under open field conditions, still faces several problems, such as
the delivery into plant cells and stability of the dsRNA [21,22]. Therefore, so far, the most
effective ways to control viruses in the field are genetic resistance by breeding for resistance
genes from wild relatives or chemical control of the vector. The most common vectors
for plant viruses are insects of the Hemipteran order, which transmit the virus from plant
to plant within the local population, but also to geographic distant locations [23]. Some
examples for genetic virus resistance are Rz1 and Rz2 in sugar beet (Beta vulgaris), which
confer resistance against beet necrotic yellow vein virus (BNYVV) [24,25]; Ty-1, TY-2, and
Ty-3 from tomato for resistance against tomato yellow leaf curl virus (TYLCV) [26]; and
CMV1 from melon against cucumber mosaic virus (CMV) [27]. However, creating genetic
resistance against viruses by breeding is not always possible. Finding and confirming
potential resistance genes from natural populations is a very labour intensive and costly
endeavour. Therefore, the use of fungicides or insecticides, such as neonicotinoids, is
still crucial for virus control. However, neonicotinoids were found to harm insects in
general, bees in particular, and are banned for use in the field in the European Union (EU)
(Regulation (EU) No. 485/2013). Furthermore, it is to be expected that agrochemicals in
general will be under stronger regulation in the near future. This will make chemical vector
control less efficient and, thus, it is to be expected that viral infections will become a big
problem, especially for field crops.

Viruses succeed during plant infection thanks to their ability to reprogram the host
cell. Although viruses usually possess very small genomes, and thus a very limited
set of encoded proteins, one protein often does have more than just one function [28].
Posttranslational modifications, such as phosphorylation, acetylation, glycosylation, and
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ubiquitination are crucial to fine tuning the different functions of the viral proteins and
re-localising them from one cellular compartment to another [29–32].

While there is an increasing body of evidence about the importance of the UPS
during the plant–virus interaction, it is becoming clear that the plant UPS acts as a two-
edged sword during viral pathogenesis, alternatively impairing and facilitating viral
infection [33,34]. While, on the one hand there are several studies describing the antiviral
function of the UPS in plants, on the other hand, more and more studies show that the host
UPS has a positive effect on viral replication. These interactions serve to regulate virus
infection and/or promote virus replication and movement, but they also modulate the
levels of RNA accumulation to ensure successful biotrophic interactions [34]. Here, we
summarize the current knowledge about the arms-race between plants and viruses to use
the UPS for their own respective benefit during infection.

2. The Role of the UPS in Plant Defences against Viruses
2.1. UPS-Dependent Activation of Viral-Induced Defence Responses

After an early report showing that tobacco plants expressing a ubiquitin variant
with a Lys to an Arg change had an altered response to viral infection [35], an increased
number of genes related to the UPS have been shown to be involved in regulating viral
infection [4,16,17,33].

Two Nicotiana tabacum ubiquitin-activating enzymes (E1), NtUBA1 and NtUBA2,
were found to be upregulated during tobacco mosaic virus (TMV) and tomato mosaic
virus (ToMV) infections [36], suggesting the involvement of the UPS in plant defence
against these viruses. A later report showed that silencing of NtUBA1 promotes tomato
yellow leaf curl virus (TYLCSV) infection in N. tabacum [37]. This indicates that this
UPS component is crucial in either suppressing viral infection or that it is a target of a
viral pathogenicity factor. Similarly, silencing of tomato 26S proteasome subunit SlRPT4a
caused the conversion of tolerant plants into susceptible plants after tomato leaf curl Delhi
virus (ToLCNDV) infection [35]. Furthermore, functional characterization linked SlRPT4
interference of ToLCNDV infection to the activation of HR [38].

One of the three major signalling modules that function in early HR signalling com-
prises an adaptor protein, SUPPRESSOR OF THE G2 ALLELE OF SKP1 (SGT1), which
physically interacts with REQUIRED FOR MLA12 RESISTANCE1 (RAR1), HEAT SHOCK
PROTEIN90 (HSP90), and R proteins [39–41]. SGT1 interacts with multiple E3-ubiquitin-
ligase components, such as S PHASE KINASE-ASSOCIATED PROTEIN1 (SKP1) and
CULLIN1 in the CRL complex and components of the COP9 signalosome (CSN) [42]. Dur-
ing TMV infection of Nicotiana benthamiana, both SGT1 and RAR1 interact with CSN3 and
CSN8 to mediate the N gene resistance against TMV; plants knocked out for expression of
NbSGT1, NbSKP1, or the CSN are compromised in resistance against TMV [43,44].

Beside its proteolytic activities, the 20S proteasome also contains ribonuclease (RNase)
activity and this activity appear to impact virus accumulation. The UPS RNase activity,
previously detected in 20S proteasome preparations from Helianthus annuus, has been
shown to specifically target Lettuce mosaic virus (LMV) and TMV RNAs in vitro [45].

These examples support the idea that the UPS is a crucial player in the molecular
dialogue between plant and virus, and, moreover, represents an integral part of the plant
antivirus defence system.

2.2. Targeting of Viral Proteins by the UPS

The first viral proteins found to be ubiquitinated were TMV coat proteins (CPs) [46].
This work suggested for the first time that ubiquitination could be part of the plant re-
sponses to viral infection. Since then, a growing body of evidence has shown that, in fact,
the UPS is able to directly target different viral proteins, affecting viral infection and disease
symptoms (Table 1).

Many plant viruses encode for specialized movement proteins (MPs) to facilitate
virus trafficking from one infected cell to neighbouring cells. Degradation of MPs by the
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UPS may be considered an effective host defence pathway against viral infection, since
MPs are crucial for the spreading of viruses and may play a role in suppression of RNA
silencing [47,48]. The first MP reported to be degraded in vivo was TMV 30K MP. The use of
plant proteasome inhibitors led to an increased accumulation of TMV 30K MP, suggesting
that targeting and subsequent degradation of this protein by the UPS may play a role in
regulation of the systemic spread of the virus and in the damage caused by accumulation
of MP in the endoplasmic reticulum [49]. Additionally, Gillespie et al. [50] showed that
impairment of TMV MP degradation by disruption of the UPS improved viral transport.
Turnip yellow mosaic virus (TYMV) MP 69K is also specifically recognized as a substrate
for polyubiquitination and is subsequently degraded by the proteasome [51]. Potato virus
X (PVX) triple gene block protein 3 (TGBp3) is required for virus cell-to-cell movement and
is targeted for degradation by the host proteasome [52]. Another example is potato leafroll
virus (PLRV) MP 17K, which has been shown to accumulate in aggresomal-like structures
upon inhibition of the host proteasome [53].

A way of limiting virus infection is to limit virus replication by targeting proteins
crucial for this process. Viruses depend on many critical interactions with the host in order
to assemble viral replication complexes, thus, modification of complex subunits by selective
ubiquitination is likely to interfere with proper viral replication [33]. A N. benthamiana
RING E3 ligase (NbUbE3R1) has been shown to be involved in the accumulation of bamboo
mosaic virus (BaMV), since silencing of this gene induces an increase in virus accumulation.
Further analysis identified the replicase of BaMV as the possible substrate of NbUbE3R1,
which resulted in down-regulating BaMV replication [54].

Another recent example of an active defence role of the UPS against viruses is the
degradation of the silencing suppressor p3 from rice stripe virus (RSV) [55]. Although Ub
was the first polypeptide modifier described [1,3,56,57], the discovery of Ub-like mod-
ifiers (UBLs) led to a constellation of peptide tags that can be reversibly attached to
substrates [58–60]. It has been shown that a ubiquitin-like protein (UBL5) interacts with p3
directly and that silencing of UBL5 leads to an accumulation of p3 in N. benthamiana. On
the other hand, overexpression of UBL5 inhibited RSV infection [55].

The yeast Rsp5p is a member of the Nedd4 family of E3 ubiquitin ligases and it blocks
tomato bushy stunt virus (TBSV) replication by interacting with the RNA-binding sites on
two replication proteins (p33 and p92pol) [61–63]. Since the ability to block viral replication
was dependent on the Rps5p WW protein interaction domain, but was independent of the
HECT domain, interaction rather than ubiquitination plays a role in virus replication [61].
The fact that purified recombinant Rsp5p also inhibited RNA replication in a cell-free TBSV
replication assay, underlines the complexity of Rsp5p inhibitory function [61]. Similar
proteins with a WW domain could have similar viral inhibitory effects in planta, opening
the possibility of using the interaction mediated by WW domains as a potential antiviral
strategy [61,64].

The initiation of replication of positive-strand RNA viruses relies on viral RNA-
dependent RNA polymerase (RdRP). Camborde et al. [65] showed that RdRP (termed
66k) is a target of the UPS at rather late infection time points, supporting the idea that
proteasomal degradation may constitute an essential way of regulating viral replication
and systemic spreading.

The βC1 protein of tomato yellow leaf curl China virus (TYLCCV) is a determinant
for symptom development during viral infection. Interaction of βC1 with tobacco RIN E3
ubiquitin-ligase NtRFP1 mediates its ubiquitination and degradation, attenuating virus
infection and symptom development [66]. βC1 induces severe stunting and leaf curling
when overexpressed in transgenic lines [67]. Plants overexpressing NtRFP1 have attenuated
disease symptoms, while NtRFP1 knock-down plants develop more severe symptoms.
However, in both cases viral DNA accumulation is not affected [66], indicating that in this
case the UPS is able to mitigate disease symptoms rather than to prevent disease.

A recent report has provided evidence for the role of plant ubiquitin extension pro-
teins (UEPs), which are the main source of ubiquitin, in disease resistance against TMV
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and CMV. Plants silenced for UEP1 exhibited intensive cell death and increased disease
resistance, probably due to the increased accumulation of UPS targets due to the limitation
of ubiquitin [68].

Taken together these examples (summarize in Table 1) show how effective the UPS
can be at limiting virus replication, spread, or virus dependent symptom development, by
targeting viral proteins for degradation or inhibiting their function.

Table 1. Viral proteins targeted by the UPS.

Virus Virus Type Target Protein Type Proposed Outcome Reference

TMV +ssRNA CPs coat proteins host defence response? [46]
TMV +ssRNA 30K movement protein prevention of systemic virus spread [49,50]

TYMV +ssRNA 69K movement protein ensuring protein transient accumulation? [51]
PVX +ssRNA TGBp3 movement protein [52]

PLRV +ssRNA 17K movement protein [53]
BaMV +ssRNA replicase replicase downregulation of viral replication [48]
RSV -ssRNA p3 silencing suppressor inhibition of viral infection [55]

TBSV +ssRNA p33 replicase blockage of viral replication [62,63,69]
TBSV +ssRNA p92 replicase inhibition of viral replication [62,63,69]
TYMV +ssRNA 66k polymerase [70]

TYLCCV ssDNA βC1 pathogenicity determinant mitigation of disease symptoms [66,67]

3. Using the Host for Your Own Benefit
3.1. Active Manipulation of the UPS by Viruses

Proteasomal degradation pathways play a central role in regulating a variety of protein
functions by controlling not only their turnover but also the physiological behaviour of the
cell. Furthermore, the UPS does not differentiate between ubiquitinated proteins originated
from the plant itself or from a virus. This makes this system an attractive target for viruses
to manipulate the plant cellular machinery for their own propagation and pathogenesis.

Viruses have the possibility to exploit the UPS at different levels (Figure 1). They
can (I) induce/inhibit the expression of UPS related genes, or they can induce/inhibit the
activity of E3-ubiquitin ligases and associated proteins; (II) directly influence the activity of
subunits of the proteasome, and (III) manipulate the ubiquitination status of host proteins.
One example of a direct targeting of the host proteasome, considered as part of a general
antiviral defence pathway, is the one carried out by HcPro (helper component proteinase)
protein from LMV. HcPro is involved in numerous steps of the viral lifecycle, including
replication, cell-to-cell movement, and vector transmission [71]. In addition, it is also well
described as a silencing protein that suppresses post-transcriptional gene silencing [72–74].
This viral protein was shown to interact with different 20S proteasome subunits to inhibit
its RNAse activity, and thus lead to viral accumulation [75]. Furthermore, potato virus Y
(PVY) HcPro has been shown to interact in vitro and in vivo with three Arabidopsis 20S
proteasome subunits (α1, β2, and β5) [76].

Geminiviruses, which possess circular single stranded DNA genomes, replicate in
the nucleus of the plant cell, and manipulate several UPS-related mechanisms to promote
their own replication. The C4 protein from beet severe curly top virus (BSCTV) induces
the transcription of RELATED TO KPC1 (RKP) in Arabidopsis thaliana. RKP encodes an
E3 ubiquitin ligase that regulates the degradation of the cell-cycle inhibitor proteins KIP-
RELATED PROTEINS (KRPs). This, in turn, enhances the cell cycle transition and creates a
favourable environment for BSCTV replication [77].

Transcriptional activation of another E3 ubiquitin ligase, VARIAN IN METHYLA-
TION5 (VIM5), was found to be associated with the Rep protein from BSCTV. VIM5
triggers the degradation of the DNA methyltransferases MET1 and DNA (cytosine-5)-
methyltransferase (CMT3). Without MET1 and CMT3 present, the circular viral genome
is hypomethylated, and the transcription of the C2 and C3 genes is induced [78]. In
addition, C2 from BSCTV itself blocks protein degradation by the UPS indirectly to pre-
vent methylation-mediated gene silencing of the circular genomic DNA. Earlier, it was
demonstrated that C2 interacts with S-ADENOSYL-METHIONINE DECARBOXYLASE1
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(SAMDC1), a susceptibility factor for BSCTV infection, and attenuates its degradation
by the proteasome. SAMDC1 catalyses the conversion of S-Adenosyl-methionine (SAM)
to decarboxylated S-adenosyl-methionine (dcSAM). SAM is the major methyl donor for
methylation processes, including DNA methylation, and dcSAM is considered to be a com-
petitive inhibitor of SAM [79]. Thus, attenuation of the degradation of SAMDC1 will result
in higher concentrations of dcSAM with a stronger inhibition of viral DNA methylation.
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structures from the host. TBSV uses the UPS in order to facilitate the formation of VRCs.

Furthermore, the C2 protein from another Geminivirus, TYLCV, seems to promote
the interaction of whiteflies (the vector for TYLCV) and infected plants [80] by interact-
ing directly with the ubiquitin moiety of ubiquitin-40S ribosomal protein S27a (RPS27a).
Although the direct mechanism is not known yet, it is postulated that this interaction is
possibly responsible for the block of ubiquitination and subsequent 26S proteasomal degra-
dation of JAZ1, which blocks MYC2 dependent expression of defence-related genes [80].

Another example of viruses using the host UPS to degrade host factors is the induced
expression of P3-INDUCIBLE PROTEIN (P3IP1), a U-box type E3 ligase, in rice plants after
infection with rice grassy stunt virus (RGSV) or after overexpression of the P3 protein alone.
P3IP1 was shown to be a negative regulator for resistance against RGSV by targeting a
subunit of the rice Pol-IV (OsNRPD1a) for proteasomal degradation [81]. Interestingly, the
same study showed a direct interaction of P3 with the rice NUCLEAR RNA POLYMERASE
D1a (OsNRPD1a), although the function of this interaction remains unknown.

RNA plant viruses have a strong need to suppress the activity of their host RNA-
silencing machinery in order to promote viral genome replication. The P0 protein from
Poleroviruses functions as a silencing suppressor [82–88] and is responsible for the ac-
tive degradation of ARGONAUTE1 (AGO1), a central component of the RNA-induced
silencing complex (RISC) [89]. Because of initial reports showing that P0 proteins from
different viruses interact with the F-BOX PROTEIN S PHASE KINASE-ASSOCIATED
PROTEIN1 (SKP1), a member of the SCF E3 ubiquitin complex, and trigger ubiquitination
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of AGO1 [90,91], it was thought that P0 hijacks the UPS to suppress the plant silencing
machinery. In contrast to that conclusion, later findings suggest that P0-triggered AGO1
degradation is insensitive to proteasome inhibitors [92,93]. Moreover, the P0 protein from
PLRV does not interact with SKP1, but it is still capable of triggering AGO1 degradation.
Zhou et al. and Derrien et al. [94,95] found that autophagy is responsible for AGO1 degra-
dation. Therefore, it seems clear that silencing suppression of Polerovirus P0 proteins does
not rely on the UPS. So, the real function of the described P0-SKP1 interaction is still elusive
and more research is needed to decipher its real function.

Other viral proteins interacting with components related to the SCF complex are
the pathogenicity factor P25 from BNYVV and βC1 from cotton leaf curl multan virus
(CLCuMuV). It has been shown that P25 interacts with a KELCH-REPEAT F-BOX FAMILY
PROTEIN (FBK) from sugar beet, which in turns interacts with SKP1-LIKE (ASK) [96].
However, to date the real effect of this interaction is still unknown.

Additionally, the βC1 protein from CLCuMuV was found to interact with the tomato
ubiquitin conjugating enzyme SlUBC3 [97]; however, silencing of UBC3 in N. benthamiana
did not show any effect on symptom development or viral DNA accumulation [98]. How-
ever, in this last work the authors were able to demonstrate that CLCuMuV βC1 impairs
the function of SCF complexes in N. benthamiana by direct interaction with SKP1s and that
this interaction disrupts the interaction between SKP1 and CUL1.

3.2. Using Antiviral Responses for Yourself

It is unclear if the sole role of viral protein degradation by the plant UPS is limiting
virus spread and thus promoting host defence. Viruses may well regulate their lifecycle
by targeting abnormal or excess proteins for degradation, taking advantage of the host
UPS machinery [33]. Although viral proteins can make up to 20% of the total protein
mass of a cell, infected cells are able to survive for weeks [99]. In this work the authors
could demonstrate that only the misfolded and insoluble CP from TMV is ubiquitinated,
but not soluble CP. Later, it was shown that soluble CP from TMV and potato virus A
(PVA) can also be ubiquitinated by plant E3 ligases and that they are degraded by the
proteasome [100,101]. It is speculated that ubiquitination of CP is the molecular switch that
regulates the transition from early-to-late infection stages [101].

In other cases, ubiquitination of viral proteins seems to be a prerequisite for successful
viral replication. For TBSV, for example, it could be demonstrated that the replication
protein p33 is ubiquitinated by two host factors, Rad6/ubc2 and cdc34p [28,102]. Muta-
tions in either of these two proteins inhibits viral replication, indicating a direct positive
role of these proteins in viral replication. Nevertheless, it has been shown that too high
levels of p33 ubiquitination are inhibitory for viral replication [28], demonstrating that
regulation of the biological function of viral proteins by ubiquitination is a complex and
fine-tuned system. Furthermore, Rad6/ubc2 is an important factor for the recruitment of
VPS23p to the replication complex [103]. VPS3p is an endosomal sorting complex required
for transport (ESCRT) proteins, and ESCRT proteins are necessary to the formation of
spherular compartments along membranes, also called viral replication complexes (VRC).
Tombusviruses form VRCs, as do all plant RNA viruses, to replicate their genome and
assemble new viral particles in an environment protected from exposure to host antiviral
mechanisms [69,103,104].

The protein 66k, the RdRP from TYMV, is another example, where ubiquitination and
degradation of viral proteins is detrimental to successful viral replication. The 66k accumu-
lates only at low levels within the cell and, as mentioned above, it was demonstrated that
66K is indeed ubiquitinated by host factors [65]. Therefore the host induced ubiquitination
and subsequent degradation is very important for a successful TYMV replication. However,
to prevent total degradation of 66K and counteract the ubiquitination on at least a small
amount of protein, TYMV encodes for a protease protein (TYMVpro) that also functions
as a DUB. Furthermore, recently, is has been shown that the deubiquitination activity
of TMYVpro is 10–1000-fold lower than that known from other viral deubiquitinating
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proteins, and it is postulated that this low activity is an evolutionary compromise to keep
the 66k levels low in order to ensure proper viral replication [105]. These apparently
conflicting results highlight the complexity of the interactions between plant viruses and
the UPS pathway.

4. Conclusions

Viruses, as intracellular obligate biotrophic pathogens with a very limited amount
of self-coded proteins, depend on host factors at every step of their lifecycle. The UPS
machinery of plants is an essential part of cellular immunity and can intervene at each step
of the viral infection. Viruses, in turn, have developed many ways to not only circumvent
UPS-dependent plant defence responses but also to utilize the UPS for their own benefit.
They use the UPS to reshape physiological processes or cellular compartments in order to
facilitate their own replication or movement. Thus, the UPS is yet another important area
of the arms race between viruses and plants, where shutting down or manipulating the
UPS by the pathogen is an important factor in determining successful infection or defence.

Since viruses depend heavily on their host, they have an intimate relationship with
many host proteins. These host proteins can be divided into two major categories. One
includes proteins with antiviral functions, where the interaction aims to suppress plant
immunity. The second comprises proteins that are detrimental for successful infection,
replication, movement, and/or transmission, where a successful interaction makes the
plant susceptible to the virus. Therefore, these genes are called susceptibility genes (S-
genes) [106].

In turn, if viruses need these proteins for successful infection, it should be possible to
generate virus-resistant plants by either modifying host factors in order to prevent viral
protein interactions or by inhibiting the expression of these host factors [106,107]. This
leads to the question if factors of the UPS, which are actively manipulated by viruses,
can/should be considered as potential susceptibility factors (S-factors) [108].

Genome-editing technologies are rapidly evolving and can be used to disrupt or
interfere with virus–host protein–protein interactions in order to create virus resistant
plants. Probably the best described example for this kind of resistance is the translation
initiation factor eIF4E1 [109]. Design of a synthetic eIF4E1 allele by introducing amino
acid changes associated with resistance to Potyvirus in Pisum sativum, confers resistance
to A. thaliana while retaining protein functionality. It is especially important to keep in
mind that the UPS has been shown to be a crucial component of plant defence responses,
including defence against viruses, and thus the modification of host factors should not be
detrimental for the plant. In fact, in some of the examples described knockout mutations
are detrimental for virus infection, but in other cases knockout mutations are beneficial
for the virus, leading to a higher virus accumulation and a more aggressive disease. This
shows that detailed knowledge about the specific virus–host interaction is necessary to
engineer variants of the S-factors. In order to exploit the UPS as a potential target to create
resistant plants, it is evident that more research is necessary to gain sufficient understanding
of the comprehensive and competitive network formed between plants and viruses in
this context.
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