
plants

Review

Transport Proteins Enabling Plant Photorespiratory Metabolism

Franziska Kuhnert, Urte Schlüter, Nicole Linka and Marion Eisenhut *

����������
�������

Citation: Kuhnert, F.; Schlüter, U.;

Linka, N.; Eisenhut, M. Transport

Proteins Enabling Plant

Photorespiratory Metabolism. Plants

2021, 10, 880. https://doi.org/

10.3390/plants10050880

Academic Editor: Pavel Kerchev

Received: 26 March 2021

Accepted: 20 April 2021

Published: 27 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University
Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany; franziska.kuhnert@hhu.de (F.K.);
u.schlueter@hhu.de (U.S.); nicole.linka@hhu.de (N.L.)
* Correspondence: m.eisenhut@hhu.de; Tel.: +49-211-8110467

Abstract: Photorespiration (PR) is a metabolic repair pathway that acts in oxygenic photosynthetic
organisms to degrade a toxic product of oxygen fixation generated by the enzyme ribulose 1,5-
bisphosphate carboxylase/oxygenase. Within the metabolic pathway, energy is consumed and
carbon dioxide released. Consequently, PR is seen as a wasteful process making it a promising target
for engineering to enhance plant productivity. Transport and channel proteins connect the organelles
accomplishing the PR pathway—chloroplast, peroxisome, and mitochondrion—and thus enable
efficient flux of PR metabolites. Although the pathway and the enzymes catalyzing the biochemical
reactions have been the focus of research for the last several decades, the knowledge about transport
proteins involved in PR is still limited. This review presents a timely state of knowledge with regard
to metabolite channeling in PR and the participating proteins. The significance of transporters
for implementation of synthetic bypasses to PR is highlighted. As an excursion, the physiological
contribution of transport proteins that are involved in C4 metabolism is discussed.

Keywords: photorespiration; photosynthesis; transport protein; plant; Rubisco; metabolite; synthetic
bypass; C4 photosynthesis

1. Introduction—The Photorespiratory Metabolism

Oxygenic photosynthesis builds the foundation of life on earth. By the action of the
photosynthesis apparatus, energy from the sun is harvested and converted into chemical
energy, with oxygen (O2) as a byproduct. The chemical energy drives the Calvin–Benson
cycle to fix atmospheric carbon dioxide (CO2) and produce sugars. Central to CO2 fix-
ation is the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). This
world’s most abundant protein accomplishes assimilation of ca. 250 billion tons of CO2
into biomass per year [1]. As a biochemical reaction, Rubisco catalyzes the condensation
of one molecule of ribulose 1,5-bisphosphate with one molecule of CO2 to produce two
molecules of 3-phosphoglycerate (3-PGA). However, the enzyme also accepts O2 as a
substrate. In the case of oxygenation activity, Rubisco forms one molecule of 3-PGA and
one molecule of 2-phosphoglycolate (2-PG) [2]. 2-PG acts as an inhibitor of enzymes of
the central carbon metabolism. These are phosphofructokinase [3], sedoheptulose 1,7-
bisphosphatase [4], and triose phosphate isomerase [5]. Confronted with the challenge
to perform oxygenic photosynthesis and to thrive, cyanobacteria have evolved the pho-
torespiratory (PR) metabolism to degrade 2-PG rapidly [6,7]. Oxygenic photosynthetic
eukaryotes, including algae and land plants, inherited the indispensable ability to perform
PR metabolism (reviewed in [8]). The vital necessity of PR is indicated by the typical PR
phenotype: mutants with defects in PR metabolism grow only in an atmosphere with
elevated CO2 concentrations. When cultivated under ambient CO2 conditions (currently
0.041% CO2 in air) growth is impaired or even fully inhibited (reviewed in [9]). By the
concerted action of nine enzymatic steps (Figure 1), the metabolic repair pathway leads to
the detoxification of 2-PG and recycles 75% of the carbon contained in 2-PG to regenerate
3-PGA, which is resupplied to the Calvin–Benson (CB) cycle for the regeneration of the
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acceptor molecule ribulose 1,5-bisphosphate and production of triose phosphates. The
remaining 25% are lost in the form of CO2 during the glycine decarboxylation reaction
(reviewed in [8,10]). Reduction in photosynthetic efficiency and yield is estimated to reach
about 20% of the CO2 previously fixed by photosynthesis in C3 plants under temperate
climate conditions and can be even higher under hot and dry conditions [10]. Consequently,
PR—“respiration in light”—is considered as a wasteful process. However, besides the
detoxification of 2-PG, there are additional beneficial traits of the pathway: Firstly, since
PR metabolism dissipates energy and reducing power its action lowers the potential of
photoinhibition [11]. Secondly, PR metabolism is not an isolated pathway but is highly
metabolically interconnected (reviewed in [12–14]). Besides the carbon recycling, it is also
intertwined with nitrogen [15] and sulphur metabolism [16], and serves the production of
amino acids (glycine, serine, glutamate, cysteine) and activated one-carbon units [10,17].
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Figure 1. Simplified presentation of the plant PR metabolism. Oxygenation activity of Rubisco within the chloroplast results
in the generation of one molecule of 3-PGA and 2-PG each. While 3-PGA is metabolized in the CB cycle, 2-PG is degraded
by the PR metabolism. Within the chloroplast, 2-PG is dephosphorylated by 2-PG phosphatase (PGLP). Formed glycolate
is exported from the chloroplast by PLGG1 and BASS6 and enters the peroxisome by a yet unidentified (?) translocator.
Glycolate oxidase (GOX1/2) generates glyoxylate and H2O2. The latter one is converted by catalase (CAT) activity into O2

and H2O. The PR intermediate glyoxylate is aminated by glutamate:glyoxylate aminotransferase (GGAT1) to yield glycine.
Glutamate serves as a donor for the amino group. The peroxisomal importer for this amino acid but also glycine is to
date unknown. Glycine needs to be imported by an unknown translocator into the mitochondrion. Here, the concerted
action of the multienzyme system glycine decarboxylase (GDC) and serine hydroxymethyltransferase (SHMT) results
in release of CO2 and NH3 from one molecule of glycine but also conversion of another molecule of glycine into serine.
The substrate(s) of the transporter À BOU DE SOUFFLE (BOU) are unclear. BOU is likely involved in mitochondrial
glutamate transport and functionally linked with glycine-to-serine conversion. Export of serine from the mitochondrion is
facilitated by an unknown transporter protein. This applies also to the import into the peroxisome. Serine is deaminated by
serine:glyoxylate aminotransferase (SGAT1) to form hydroxypyruvate. For the subsequent reduction of this intermediate
to glycerate, hydroxypyruvate reductase 1 (HPR1) depends on NADH, which is provided by the oxidation of OAA into
malate. NAD+ is basically imported into peroxisome by the peroxisomal NAD carrier PXN. Glycerate leaves the peroxisome
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by an unknown mechanism and imported into the chloroplast by PLGG1. The concluding step in the PR pathway is
the phosphorylation of glycerate and formation of 3-PGA by glycerate kinase (GLYK). 3-PGA enters the CB cycle. The
dicarboxylate translocators DiT1 and Dit2.1 function as two-translocator system for the refixation of NH4

+ in the chloroplast
by the GS/FdGOGAT system. Further details are given in the main body.

2. Metabolite Channeling in Photorespiratory Metabolism

In plants, the PR pathway is distributed over the three organelles chloroplast, per-
oxisome, and mitochondrion (Figure 1). The organellar compartmentalization allows
embedding of the PR pathway into the signature metabolic alleys of the specific organelle.
To enable efficient flux of metabolites through the pathway and also supply with co-factors
for involved enzymes, specific transport steps are inevitable. In the following, the current
knowledge about those transport processes at the plastidial, peroxisomal, and mitochon-
drial membranes is presented. A list of identified transport proteins involved in PR in
Arabidopsis thaliana (henceforth Arabidopsis) is given in Table 1.

Table 1. List of identified PR transporters in Arabidopsis thaliana.

Transporter Abbreviation Substrate Arabidopsis thaliana Identifier References

plastidial glycolate/glycerate transporter PLGG1 glycerate/glycolate At1g32080 [18]
bile acid sodium symporter 6 BASS6 glycolate At4g22840 [19]

2-OG/malate translocator DiT1/OMT1 2-OG/malate At5g12860
[20,21]glutamate/malate translocator DiT2.1/DCT1 glutamate/malate At5g64290

À BOUT DE SOUFFLE BOU glutamate At5g46800 [22,23]
uncoupling protein 1 UCP1 aspartate/glutamate At3g54110 [24,25]

2.1. Transport Processes at Chloroplasts

Chloroplasts, the starting and end point of the PR pathway, are surrounded by two
membranes, namely the outer and the inner envelope. The outer envelope contains porins,
which make it permeable to low molecular weight molecules. In contrast, the inner
envelope forms a permeability barrier for metabolites and ions. As such, the shuttle across
the inner envelope requires specific transport proteins [26,27]. Early studies on isolated
chloroplasts from spinach and pea leaves showed that the core substrates of the PR pathway,
glycerate and glycolate, are both shuttled across the chloroplast inner envelope in a carrier-
mediated process. It was initially proposed that the metabolite shuttle was mediated by the
same carrier protein in an anion-exchange reaction. Subsequent experiments also suggested
a proton-driven symport as transport mode for glycolate [28–32]. It took about 40 years
until the respective genes encoding for those transporters were identified and characterized
on a molecular level in Arabidopsis [18,19]. In 2013, the plastidial glycolate/glycerate
transporter PLGG1 was discovered by co-expression analysis. Knockout mutants deficient
for PLGG1 show a typical PR phenotype and accumulate intermediates of the PR pathway,
such as glycolate, glycine, and glycerate. Biochemical studies with recombinant PLGG1
protein as well as O2 flux analyses of wildtype and plgg1 knockout plants eventually
revealed its role in PR as a plastidial glycolate/glycerate translocator [18]. Four years
later, yeast complementation assays as well as phenotypic analyses of a knockout mutant
identified the bile acid sodium symporter 6 (BASS6) as a plastidial glycolate transporter in
Arabidopsis [19]. To identify a transporter involved in PR, South and colleagues exploited
that PR mutants are impaired in photosystem II activity and thus display reduced Fv/Fm
chlorophyll fluorescence in low CO2 conditions [19,33]. Similar to the plgg1 mutant, the
bass6 mutant accumulates photorespiratory intermediates, such as glycolate and glycine
but not glycerate, indicating its role as glycolate but not glycerate transporter. A double-
knockout mutant of both plgg1 and bass6 contains significantly higher amounts of glycolate
than either of the single-mutant lines or the wildtype. Interestingly, accumulation of
serine and glycine reverts back to wildtype levels, indicating an overall alteration of PR
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metabolism [19]. Together, PLGG1 and BASS6 allow balanced export of two molecules of
glycolate against one molecule of glycerate [18,19].

The first Arabidopsis PR transporter to be identified was a chloroplast dicarboxylate
carrier in the early 1980s. The dct mutant was identified in a forward genetic approach
developed by Chris and Shauna Sommerville in William Ogren’s laboratory. The mutant
is lacking a transporter of the inner envelope, which is capable of catalyzing the flux of
aspartate, 2-oxoglutarate (2-OG), malate, and glutamate [34,35]. Soon after, it was demon-
strated that the transport of dicarboxylates across the chloroplast inner envelope requires
at least two distinct carriers, later termed as 2-OG/malate translocator (DiT1/OMT) and
glutamate/malate translocator (DiT2.1/DCT1) [36,37]. Both proteins exhibit overlapping
substrate specificities. While both DiT1/OMT and DiT2.1/DCT1 are specific for dicarboxy-
lates, such as malate, 2-OG, fumarate, and succinate, DiT2.1/DCT1 also accepts the amino
acids glutamate and aspartate. Comprehensive genetic and biochemical studies supported
the initial model of a two-translocator system for the refixation of ammonia in the chloro-
plast by the glutamine synthetase (GS)/ferredoxin-dependent glutamine:oxoglutarate
(FdGOGAT) system. DiT1/OMT imports 2-OG into plastids in counter exchange with
malate export. DiT2.1/DCT1 exports glutamate against cytosolic malate import, result-
ing in zero net-malate transport [20,21,38–40]. During PR, ammonia is released by the
glycine decarboxylase (GDC) multi enzyme system in the mitochondria, and refixed by the
GS/FdGOGAT system in the chloroplasts. As reviewed before, ammonium import into
chloroplasts likely requires active transport or channeling [12]. However, such a transporter
has not been identified to date. Thus, it remains elusive how and in which form ammonium
crosses the plastid inner envelope.

2.2. Transport Processes at Peroxisomes

In the early 1970s, Tolbert’s laboratory at the Michigan State University discovered
that peroxisomes in photosynthetic plant tissues play an essential role in PR. Tolbert and his
colleagues intensively studied the peroxisomal enzymes involved in the fate of glycolate
by labelling experiments, which is known as the glycolate or Tolbert pathway [41,42].
To functionally integrate leaf peroxisomes within the PR metabolism, a high flux of core
intermediates across the peroxisomal membrane has to be coordinated [13]. For example,
glycolate and serine have to enter peroxisomes, whereas glycerate and glycine have to be
exported (Figure 1) for further conversion [14].

Beyond the transfer of core metabolites, PR-associated reactions within peroxisomes
require the shuttling of additional molecules [14]. The reduction of hydroxypyruvate to glycer-
ate by peroxisomal HPR1 depends on NADH, which is provided via the malate/oxaloacetate
(OAA) shuttle [43]. This redox shuttle comprises two transport steps: the import of
malate and the export of OAA. For the transamination of glyoxylate to glycine by gluta-
mate:glyoxylate aminotransferase (GGAT), the amino group donor glutamate has to be
transferred from chloroplasts to peroxisomes, where in return its 2-keto acid 2-OG has to
be shuttled back into plastids to close the PR nitrogen cycle (Figure 1).

The uptake of tightly bound cofactors into peroxisomes for the PR enzymes, such
as flavin mononucleotide (FMN)-containing GOX [44] or pyridoxal phosphate (PLP)-
dependent aminotransferase [45,46], can be neglected. In contrast to chloroplasts and
mitochondria, the peroxisomal matrix proteins can fold, acquire cofactors, and assemble
into oligomers in the cytosol before targeting to peroxisomes [47]. Only for the coenzyme
NAD+ [48] does a specific import mechanism exist at the peroxisomal membrane in plants
(Figure 1).

Since the lipid bilayer functions as a main permeability barrier, most solutes cannot
freely pass the peroxisomal membrane [13,49]. Channeling PR metabolites into and out
of peroxisomes is achieved by integral membrane proteins that mediate the passage of a
variety of PR intermediates. The recent model for peroxisomes suggests that the peroxiso-
mal membrane contains two types of transporters: non-selective pore-forming diffusion
channels and highly specific carrier proteins (for review, see [13,49]). Porins allow the
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transport of small hydrophilic solutes with molecular masses up to 300–400 Da, such as
carboxylic acids and amino acids, whereas carrier-type transporters are involved for the
transfer of larger molecules, such as NAD+ [13,49]. However, our current knowledge about
the molecular identity of these transport proteins responsible for shuttling PR intermediates
across the peroxisome membrane is rather limited.

First studies investigating the traffic of PR metabolites at the peroxisomal membrane
were performed with leaf peroxisomes from spinach. The peroxisomal PR cycle was stimu-
lated in vitro by adding glycolate, serine, glutamate, and malate to these intact organelles
and analyzed by detecting the formation of glycerate [50–52]. These experiments indi-
cated the existence of efficient uptake systems for these molecules across the peroxisomal
membrane, allowing functional PR metabolism in isolated spinach peroxisomes.

Further electrophysiological lipid bilayer measurements using enriched peroxisomal
membranes characterized a porin-like channel in spinach leaf peroxisomes [53,54]. This
high-abundant channel is strongly selective for negatively charged solutes and displays
a broad permeability for structurally diverse inorganic and organic anions. In respect
to peroxisomal PR metabolism, this specific porin facilitates the transport of the anionic
intermediates glycolate, glycerate, glutamate, malate, OAA, and 2-OG, but does not allow
the passage of the zwitter-ionic amino acids glycine and serine (for review see [55]). Such a
peroxisomal channel represents an efficient transport system allowing high flux of most of
the metabolic intermediates through the PR cycle (Figure 1).

In Arabidopsis, the peroxisomal membrane protein of 22 kDa (PMP22) is proposed to
be responsible for the pore-like channel activities, which has been described above [56].
This protein belongs to a small eukaryotic family of non-selective pore-forming channels,
which are distributed to mitochondria and peroxisomes in human, mouse, yeast, and
plants [13]. However, if the Arabidopsis PMP22 contributes to the permeability of PR,
intermediates for the peroxisomal metabolism needs to be investigated in the future.

It is still an open question how the amino acids glycine and serine are shuttled through
the peroxisomal membrane during PR. In plants, a high number of amino acid trans-
porter classified into three major families are known. While numerous plasma membrane-
localized amino acid carriers have been reported, only a few members have been found
in plastids and mitochondria, but no member of this carrier group has been identified in
peroxisomes so far [57].

To provide the peroxisomal malate dehydrogenase as part of the redox shuttle with
NAD, Arabidopsis possesses a peroxisomal NAD carrier, called PXN [48,58]. This carrier
protein imports NAD+ into peroxisomes to allow redox reactions in the peroxisomal lumen
(Figure 1). In case of PR, NAD+ is reduced to NADH via the oxidation of malate to OAA,
providing NADH for the HPR1 reaction. The Arabidopsis loss-of-function mutants for
PXN do not display any obvious growth defects under PR conditions. Instead, dynamic
light conditions, such as high-light fluctuations, triggered a significant photosynthetic
defect in the pxn plants, whereas elevated CO2 levels completely rescued the observed
phenotype [59]. It is assumed that the loss of PXN leads to an impairment of photosyn-
thesis, because the PR pathway is disturbed due to an imbalance of reducing equivalents.
Peroxisomal NAD+ imported by PXN might compensate for an increased NADH demand
of the HPR1 reaction during PR under abiotic stress conditions [59].

2.3. Transport Processes at Mitochondria

Similar to plastids, mitochondria are surrounded by two membranes, namely the
outer and inner mitochondrial membrane. The first of these two membranes is permeable
to molecules smaller than 5 kDa [60]. In contrast, metabolites rely on specific translocators
in order to cross the inner mitochondrial membrane. Arabidopsis mitochondria contain at
least 128 different transport proteins, many of which belong to the mitochondrial carrier
family [61]. To date, none of them could be assigned to function either as glycine or as serine
transporters. Earlier studies on isolated mitochondria from pea leaves suggested that the
uptake of both core metabolites of the PR pathway, glycine and serine, is likely mediated
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by non-specific diffusion [62,63]. In contrast, a similar study on isolated mitochondria
from spinach leaves proposed a concentration-dependent transport system. Glycine and
serine are actively transported across the inner mitochondrial membrane at concentrations
lower than 0.5 mM, whereas the diffusion process dominates at concentrations higher
than 0.5 mM [64]. However, it remains elusive to date how glycine and serine cross the
mitochondrial inner membrane and, if present, which transport proteins catalyze the
putative shuttle of one or both metabolites.

During the combined reaction of GDC and serine hydroxymethyltransferase (SHMT)
in the mitochondria, one molecule of serine is formed out of two molecules of glycine.
Additionally, ammonia, NADH, and CO2 are released in equimolar amounts. It is as-
sumed that ammonia diffuses towards the chloroplast where it is reassimilated by the
GS/FdGOGAT system. However, given the toxicity of free ammonia, it was speculated
that ammonia is transported towards the plastids in the form of an amino acid, such as
glutamine or citrulline, utilizing an ornithine–citrulline or glutamate–glutamine shuttle
system [65]. Both scenarios require the presence of a GS in mitochondria [65]. GS was
previously hypothesized to be dual-localized to chloroplasts and mitochondria based on
localization studies using fluorescent fusion-proteins [66]. However, in a recent proteomic
study, it was reported that GS exists only in 26 copies per mitochondrion [67], which does
not meet the demand for the high fluxes during PR, and is therefore negligible. In addition
to a putative mitochondrial ammonia transporter, transporters of GDC and SHMT cofactors
or their precursors remain to be identified. There are at least five transport steps necessary
to provide GDC and SHMT with their respective cofactors (Vitamin B6 vitamers, lipoate or
octanoate, malonate, folate precursor 6-hydroxymethyldihydropterine, NAD+). They were
previously reviewed by Eisenhut and coworkers [68].

Recent advances have been made by identifying transporters of auxiliary metabolic
pathways, such as the uncoupling proteins UCP1 and UCP2 in Arabidopsis [24,25]. UCP1
and UCP2 have a broad substrate spectrum. Next to the amino acids glutamate and as-
partate, they also accept the dicarboxylates malate, succinate, and malonate to a lesser
extent [25]. A recent study proposed that UCP1 and UCP2 contribute to the shuttle of redox
equivalents during PR by catalyzing an electroneutral aspartate/glutamate exchange [25].
Aspartate and glutamate are substrate and product of the mitochondrial glutamate:OAA
transaminase, which produces OAA that is required for NAD+-recycling by mitochondrial
malate dehydrogenase. Analyses of Arabidopsis ucp1 knockout mutants support this
hypothesis. Even though ucp1 mutants do not show a typical photorespiratory pheno-
type, they exhibit reduced levels of malate, reduced CO2 assimilation rates, and a strong
reduction in glycine oxidation rate [24,25]. Double-knockout mutants of both UCP1 and
UCP2 do not show any synergistic effect. Given the fact that UCP2 has been alternatively
reported to reside in the membrane of the Golgi apparatus [69], its involvement in PR is
still under debate [70,71]. In addition to UCP1, redox equivalents might be shuttled in
the form of OAA/malate. The Arabidopsis genome contains three dicarboxylate carriers
(DIC1-3), which are capable of efficiently transporting different dicarboxylates, such as
malate, oxalate, malonate, succinate, and OAA [72]. However, their physiological role
remains elusive as to date mutant studies are not available.

In 2013, the mitochondrial carrier protein À BOUT DE SOUFFLE (BOU) was identified
in a co-expression analysis with PR genes in Arabidopsis [22]. Knockout mutants in BOU
show a strong PR phenotype and accumulate intermediates of the PR pathway. The study
proposed a transport function of BOU linked with the activity of GDC and SHMT. The
transport substrate, however, remained enigmatic [22]. Recently, it was demonstrated that
BOU facilitates mitochondrial glutamate transport in yeast [23]. Glutamate is essential for
polyglutamylation of tetrahydrofolate (derivate of Vitamin B9), a cofactor of the T-protein of
GDC and the SHMT. However, polyglutamylating enzymes are present in the chloroplasts
and the cytosol as well, and it remains to be clarified how and which form of Vitamin
B9 is transported across the mitochondrial membrane [73]. In a recent review, it was
suggested that BOU might play a role in mitochondrial protein synthesis by supplying the
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mitochondria with glutamate [71]. Alternatively, glutamate might not be the only substrate
of BOU. Besides glutamate, Porcelli and coworkers tested many additional substrates, such
as aminoadipate, aspartate, asparagine, and glutamine. Transport activity could only be
detected for L-homocysteine sulfinic acid, a substrate analog of glutamate [23]. However,
the study lacks molecules that are related to PR, such as glycine, serine, and cofactors of
the GDC/SHMT reaction. Further studies will be necessary to identify the physiological
role of BOU with respect to PR.

3. Significance of Transport Steps in Synthetic Bypasses to PR

PR is frequently considered as a wasteful process: CO2 loss and energy consumption
lower the photosynthetic efficiency and yield of plants, respectively. To counteract yield
penalty, scientists developed different strategies. One tested strategy aimed at eliminating
enzymatic bottlenecks, such as the mitochondrial glycine-to-serine conversion (reviewed
in [14,74]). Another strategic concept envisages synthetic bypasses to PR that circumvent
mitochondrial glycine decarboxylation and thus avoid release of CO2 and ammonia. In first
attempts, glycolate-oxidizing pathways were implemented into Arabidopsis chloroplasts,
either on the basis of bacterial [75] or plant [76] enzymes. An increase in biomass was
observed for both engineering strategies under controlled growth conditions [75,76]. The so
far most efficient bypass (Figure 2) was engineered by South and coworkers ([77], reviewed
in [14,78]). They used tobacco as model crop and installed a mitochondrial glycolate
dehydrogenase from the green alga Chlamydomonas reinhardtii and a peroxisomal malate
synthase from Cucurbita maxima into chloroplasts. In the resulting engineered chloroplasts,
Rubisco produced 2-PG is dephosphorylated by native 2-PG phosphatase. Glycolate is
then oxidized by green algal glycolate dehydrogenase to yield glyoxylate, which, under
control of transgenic malate synthase, reacts with acetyl-CoA to form malate. Malate is
converted by the native chloroplast enzymes malic enzyme and pyruvate dehydrogenase
into acetyl-CoA and two molecules of CO2. In total, the synthetic bypass facilitates the
decomposition of glycolate into CO2 with regeneration of acetyl-CoA for renewed malate
biosynthesis within the chloroplast only. The released CO2 elevates the CO2 to O2 ratio
next to Rubisco and enhances the carboxylation versus the oxygenation activity of the
enzyme. Furthermore, since mitochondrial ammonia release is also reduced, less energy
needs to be spent for its reassimilation. As a consequence, transgene tobacco plants showed
in greenhouse screens an increased biomass by 18% and in field trials by 10%. Strikingly,
silencing of the chloroplast glycolate/glycerate transporter PLGG1 by RNAi technique
and hence directing a large amount of glycolate into the bypass route even enhanced crop
biomass by 24% compared to wild-type plants in both greenhouse and field trials [77].
PLGG1 works in tandem with BASS6 to ensure stoichiometric exchange of two molecules
of glycolate against one molecule of glycerate at the chloroplast envelope [19]. Future
studies will investigate whether additional silencing of BASS6 will result in even higher
growth stimulation [77]. Due to the reduced but not fully abolished transcription of plgg1,
in the transgene bypass plants, flux through the native PR pathway is likely not fully
blocked but reduced. This allows continued generation of amino acids and one-carbon
units, with simultaneous significant reduction in carbon loss. Though the actual numbers
in flux distribution between native and synthetic route have not been determined yet, the
results by South and colleagues [77] clearly demonstrate the significance and power of
metabolite flux control by PR transport proteins.

In future attempts, advanced synthetic bypasses will be tested. Those systematically
designed bypasses will combine existing and new-to-nature enzymes to ideally function in
a carbon-conserving way and boost plant productivity [79]. Like the South bypass, those
routes will also take place in the chloroplast only. Thus, the activities of PLGG1 and BASS6
will be a determinator for flux distribution through the native and the synthetic route.
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4. Excursion: Metabolite Channeling in C4 Photosynthesis

Reduction of PR can increase carbon fixation and yield [80], and plants evolved
mechanisms for reduction of PR by separating the Rubisco activity either temporally
(crassulacean acid metabolism, CAM) or spatially (C4) from a primary CO2 fixation step by
phosphoenolpyruvate carboxylase (PEPC). In this way, CAM plants possess remarkable
water use efficiency [81]. C4 plants are characterized by high light, water, and nitrogen
use efficiencies enabling crops species such as maize, sorghum, and miscanthus to achieve
high biomass production and yield [82]. As demonstrated for a GOX mutant in maize,
the presence of a working PR pathway is however essential for C4 species under ambient
conditions [83].

In contrast to Rubisco, PEPC catalyzes just a carboxylation reaction. It is superior at
CO2 fixation under conditions of low CO2 (e.g., when stomata are closed), high O2 or high
temperatures. In the large majority of C4 species, the mesophyll cells are devoid of Rubisco,
and the entering CO2 is fixed by PEPC producing a 4-carbon (C4) metabolite. The C4
metabolites malate and aspartate diffuse to the bundle sheath cell through plasmodesmata
where they are decarboxylated again producing a high CO2 atmosphere around Rubisco.
The establishment C4 photosynthesis is connected to major reconstruction of metabolic
networks in the mesophyll and bundle sheath cells as well as anatomical adjustments.
Additionally, operation of the C4 pathway also depends highly on inter- and intracellular
transport activities. While C3 photosynthesis relies on one transporter for the formation of
a three-carbon product, up to 30 transport proteins can be necessary for the synthesis via
the NADP malic enzyme (NADP-ME) decarboxylation C4 subtype [84].

Already in C3 species, efficient trapping of photorespired CO2 can be achieved by
changes to the bundle sheath shape and size, its organelles number, size, and arrange-
ment [85]. In a next decisive evolutionary step, the PR decarboxylation reaction moves
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completely from the mesophyll to the bundle sheath, realized by cell specific expression of
the glycine decarboxylate P-protein (GLDP) [86,87]. Consequently, glycine accumulates
in the mesophyll cells and moves to the bundle sheath cells, where high decarboxylation
activity increases the CO2 concentration around the bundle sheath cell Rubisco. Plants
with such a glycine shuttle mechanism can be found in many phylogenetic groups and
can be identified by significantly reduced CO2 compensation points [85,88]. The operation
of the pathway goes along with increased transport activities. The continuous transport
of glycine from mesophyll to bundle sheath requires rebalancing of the C, N, and redox
metabolism between the two cell types [89–91]. So far, experimental evidence for the
identity of the involved balancing compounds is missing. Modeling approaches identified
glutamate and 2-OG, aspartate and malate, or alanine and pyruvate as possible shuttled
metabolites between the mesophyll and bundle sheath cell [89]. Depending on the nature of
the compound, additional intracellular transporter activities could be involved, including
carriers from the PR pathway for the shuttling of glutamate and 2-OG between peroxisome,
cytosol, and plastid or the shuttling of malate between plastid and cytosol. Significant
changes in transcript abundance of the dicarboxylate transporters could, however, not be
found when the closely related species Moricandia arvensis or M. suffruticosa with a glycine
shuttle and M. moricandioides without a glycine shuttle were compared [88].

Further general reduction of PR is possible when, on top of the glycine shuttle, PEPC
activity rises in the mesophyll cells [85,89]. The processes described in the following para-
graphs all relate to the operation of the NADP-ME subtype of C4 photosynthesis. CO2
entering the cells would partly be converted into bicarbonate by the carbonic anhydrase
and fixed by PEPC. The produced OAA would be converted into malate in the plastids
of the mesophyll cells—requiring additional dicarboxylate transporters for intracellular
exchange (Figure 3). In Flaveria species displaying different stages between C3 and C4
photosynthesis, the increasing activity of PEPC is associated with increased transcript
abundance of the dicarboxylate transporters DiT1/OMT and DiT2.2/DCT2 [89]. In the C4
species, F. trinervia and F. bidentis, all genes connected to the PR pathway were transcription-
ally downregulated; this also includes genes related to N assimilation. The only exceptions
were genes for the dicarboxylate transporters DiT1/OMT and DiT2.2/DCT2 indicating
their involvement in the C4 shuttle pathway [92,93]. In maize leaves, DiT1/OMT and DCT1
were more abundant in the mesophyll cell fraction, while DCT2 and DCT3 accumulated in
the bundle sheath [94]. Besides malate and 2-OG, Dit1/OMT proteins also possess high
affinity for OAA, suggesting that this transporter is capable of OAA and malate exchange
at the mesophyll chloroplast membrane during C4 photosynthesis [20,21,95] (Figure 3).
Mesophyll specific upregulation of the DiT1/OMT transporter can also be found in other
species using NADP-ME for decarboxylation such as Sorghum bicolor [94], and S. viridis [96].
Experiments overexpressing Dit1/OMT in rice resulted in strong reduction of photosynthe-
sis and growth, and it could only be rescued by concomitant expression of DiT2.2/DCT2.
The results suggest that the DiT1/OMT transporter activity needs to be regulated in close
coordination with photosynthesis [97]. The DiT1/OMT gene was also shown to be under
strong evolutionary pressure during evolution of C4 in NADP-ME type grasses [98].

In the bundle sheath cells of NADP-ME species, malate again needs to enter the chloro-
plast in exchange with pyruvate (Figure 3). The high abundance of DiT2.2/DCT2 copies in
bundle sheath cells of NADP-ME species suggest that the corresponding transporters are
involved in the C4 related metabolite exchange. In maize, DCT2 seems to enable transport
of malate into the BS plastid [99]. The transport mechanism of DCT2 in the bundle sheath is,
however, unclear. The malate transport could be coordinated with aspartate transport, but,
if malate would be exchanged with aspartate, a second transporter for aspartate uptake
into the plastid would be necessary [99]. In S. bicolor, another member of the gene family,
DCT4, seems to be the predominant transporter in the bundle sheath [100]. For the export
of pyruvate out of the bundle sheath plastid, no transporter could be identified so far. It has
been suggested that diffusion of pyruvate in its electroneutral form could be possible [101].
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Completing the C4 cycle, pyruvate diffuses back to the mesophyll cell for regeneration
of PEP. The step is catalyzed by the plastid localized PPDK and therefore requires exchange
of pyruvate and PEP at the mesophyll chloroplast membrane. In dicotyledonous C4 species
from the genus Flaveria, the process is mediated by the BASS2/NHD/PPT transport system.
BASS2 transports pyruvate in a sodium dependent manner, and the sodium influx is
balanced by a sodium–proton antiporter (NHD1) [102]. In maize and related C4 species,
a different, not sodium dependent pyruvate transport system seems to be active [103].
The proton is transported back across the plastidial membrane together with PEP and
in exchange with phosphate by the PPT. In contrast to the dicarboxylate transporters
described above, PPT was not present in high abundance in the C3 leaf and had to obtain
its C4 related expression pattern during C4 evolution [104].

The C4 transport systems differ between the C4 subtypes [105–107]. A compa-
rably strong transcript abundance of the dicarboxylate transporters DiT1/OMT and
DiT2.2/DCT2 was not detected in the leaves of NAD-ME Cleome species [108] and Pan-
icum virgatum [105]. In this subtype, mitochondrial dicarboxylate carriers (DIC) were en-
hanced [105]. Nevertheless, the BASS2/NDH/PPT transport system described for NADP-
ME Flaveria species was also found in an NAD-ME species from the Cleomaceae [102].

In C4 species, the CB and PR cycles start with Rubisco activity in the bundle sheath.
However, the activity of the light reactions and consequently reductive power is higher
in the mesophyll cells, especially in the NADP-ME subtype. The reduction steps of the
CB cycle from 3-PGA to triose phosphate are therefore localized in the mesophyll. This
requires additional metabolite shuttling between the cells and transport of 3-PGA and triose
phosphate across plastidial membranes in both cell compartments [109]. In C4 species,
the triose phosphate translocator (TPT) is generally transcribed at high levels [105]. In the
last step of PR, glycerate kinase catalyzes the production of 3-PGA. In coordination with
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the CB cycle, this step is also localized in the mesophyll cells. It requires the transport of
PR glycerate from bundle sheath to the mesophyll. The PLGG1 translocator exchanges
glycolate and glycerate at the plastid membrane [18], but, in the C4 leaf, the transport of
both metabolites would be largely uncoupled. In the bundle sheath, BASS6 could contribute
to glycolate export [19], but, in the mesophyll plastid, the absence of PR glycolate would
limit glycerate uptake by the PLGG1 translocator.

In general, efficient C4 photosynthesis relies heavily on the presence and activity
of numerous transporters and intercellular diffusion processes. The facilitation of high
metabolite fluxes remains one of the challenges for the engineering of the C4 cycle into C3
species [107,110].

5. Conclusions and Perspectives

Transport proteins connect the cellular compartments involved in PR metabolism and
thus enable efficient metabolite flow. Apparently, the molecular identification of genes
encoding those proteins proves challenging. Future attempts may include additional
screening strategies, such as the chlorophyll fluorescence-based assay used for the iden-
tification of BASS6 [19]. Alternatively, higher order mutants and physiological analyses
of biochemically characterized transporters (e.g., DICs in mitochondria) might identify
transporters that are involved in PR but do not show the classical PR phenotype due to
overlapping substrate specificities and functional redundancy. Next to forward genetic
approaches and co-expression analyses [111], those approaches might serve as powerful
tools to identify the enigmatic transport proteins involved in PR.
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