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Abstract: While proteomics has demonstrated its value for model organisms and for organisms with
mature genome sequence annotations, proteomics has been of less value in nonmodel organisms
that are unaccompanied by genome sequence annotations. This project sought to determine the
value of RNA-Seq experiments as a basis for establishing a set of protein sequences to represent a
nonmodel organism, in this case, the pseudocereal chia. Assembling four publicly available chia
RNA-Seq datasets produced transcript sequence sets with a high BUSCO completeness, though the
number of transcript sequences and Trinity “genes” varied considerably among them. After six-frame
translation, ProteinOrtho detected substantial numbers of orthologs among other species within the
taxonomic order Lamiales. These protein sequence databases demonstrated a good identification
efficiency for three different LC-MS/MS proteomics experiments, though a seed proteome showed
considerable variability in the identification of peptides based on seed protein sequence inclusion.
If a proteomics experiment emphasizes a particular tissue, an RNA-Seq experiment incorporating
that same tissue is more likely to support a database search identification of that proteome.

Keywords: proteogenomics; Salvia hispanica; Salvia columbariae; nonmodel organisms; LC-MS/MS;
bioinformatics; RNA-Seq; proteomics

1. Introduction

Pseudocereals are broad-leaf nongrass species that produce fruits and /or seeds similar
to conventional cereal crops with considerable nutritive value [1]. Although there are
several plants under this group, the four that have garnered the most attention include
quinoa, amaranth, buckwheat, and chia.

Chia (Salvia hispanica L.) is a pseudocereal crop indigenous to Mesoamerican countries,
including Mexico and Guatemala. The cultivation of chia has recently expanded to nations
around the world because the plant seeds are rich in dietary nutrients (fiber, antioxidants,
minerals and vitamins, proteins, and unsaturated fatty acids) and phenolic compounds
often associated with health benefits [2]. Apart from the nutritional value of the seeds,
chia leaves and stems are a good source of polyunsaturated fatty acids (PUFA) and other
essential oils, which are used as feed additives in ruminant nutrition [3,4].

In recent years, chia has received considerable attention due to its nutritive value and
medicinal benefit in various chronic and lifestyle diseases. A few lines of research have
shown that chia seed consumption is beneficial in regulating symptoms associated with
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inflammation, cardiovascular diseases, and insulin resistance [5-7]. The high levels of
omega-3 fatty acid content in chia seeds may help reduce the risk of cardiovascular disease
and stroke. Omega-3 fatty acids, not naturally produced by the human body, are critical
for maintaining healthy blood pressure and cholesterol, as well as reducing inflammation
and coagulation [8]. Although it is hypothesized that the consumption of chia seeds may
be beneficial to human health, published human trials have been small and short, and they
have assessed the secondary markers of health rather than primary outcomes [9].

Since the popularization of liquid chromatography-tandem mass spectrometry (LC-MS/
MS) [10], a technology to identify thousands of peptides and, thus, proteins in complex mixtures,
proteomics has become broadly accessible and highly sensitive, enabling clinical research and
biological discoveries. The standard algorithm for matching peptide tandem mass spectra
to peptide sequences is the database search algorithm [11], which requires as an input the
list of all protein sequences that may be represented in a sample. For model organisms with
mature genome sequence annotations, such as Arabidopsis thaliana, the full complement of
protein sequences can be predicted with good accuracy [12]. If a genome sequence annotation
is unavailable, however, protein sequences have generally been based upon cDNA libraries,
which frequently omit substantial numbers of proteins. In a recent example, a bean proteome
identified 1400 proteins using a cDNA library of 9000 sequences, but the same data identified
4000 proteins when an annotated genome sequence became available [13,14].

A key feature of database search engines is that they typically expect the observed
masses of peptide ions to match the calculated masses of peptide sequences to a high degree
of mass accuracy, for example, 20 ppm (for a 2000 Da peptide, 20 ppm is a mass error of
0.04 Da). If the sequence database contains only an approximate match for the proteins
being observed (such as a substitution of Leu by Val in the protein sequence), that sequence
disparity would cause a mass difference large enough that the correct sequence would not
be compared to this tandem mass spectrum.

The first forays of proteomics into chia featured Salvia hispanica proper (2010) [15],
S. miltiorrhiza medicinal herbs (2010) [16], and S. splendens ornamental plants (2013) [17].
While the latter two studies employed 2D gels and MALDI-TOF/TOF from gel spots,
the lack of sequence data limited the number of identified proteins to a handful. The pio-
neering work in S. hispanica by Olivos-Lugo et al. quantified amino acids by a Beckman
Instruments System 6300 rather than a mass spectrometer.

The primary question that motivated this study was this: “Are transcript sequences assem-
bled from RNA-Seq experiments sufficiently complete to allow for proteome identification?”
This study published two new LC-MS/MS data sets for Salvia spp., employing Thermo Orbitrap
Fusion Lumos and Q Exactive instruments. The authors of recently published seed proteomics
papers [18,19] have graciously agreed to share their Q Exactive Plus data, as well. We have
analyzed these peptide tandem mass spectra using protein information derived from four con-
temporary RNA-Seq experiments, taking care to document each bioinformatics step required.
Overall, we demonstrate that protein identification based on assembled transcript sequence sets
is feasible even in the absence of an annotated genome sequence, allowing the identification of
tens of thousands of peptides from multiple plant tissues.

2. Results

Similar to many commercially important crops, chia has benefited from the ubiquitous
application of massively parallel sequencing. Perhaps unusually, many of the projects in-
cluded in the NCBI Sequence Read Archive for this species emphasize paired-end RNA-Seq
rather than whole genome shotgun experiments. We decided on a meta-analysis span-
ning four RNA-Seq projects: PRINA196477 (Sreedhar) [20], PRINA448759 (Pelaez) [21],
PRJNA597830 (Wimberley) [22], and PRJEB19614 (Gupta) [23]. Table 1 compares these
experiments. The Peldez data were further subdivided to four strains: The spotted cul-
tivars grown in Celaya and Veracruz were analyzed in triplicate experiments while the
Cualac cultivar grown in Celaya and the spotted cultivar grown in Jalisco were analyzed
in duplicates.
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Table 1. Trinity assembled each of four different chia RNA-Seq studies individually.
Sreedhar Pelaez Wimberley Gupta

Accession PRINA196477 PRJNA448759 PRJNA597830 PRJEB19614

Expts (pairs) 5 10 * 6 13 %
Tissues Developing Seeds Seeds Leaves and Roots Thirteen Tissues

Sequencer Genome Analyzer IIx HiSeq4000 HiSeq4000 HiSeq2500

Total Reads 178,652,566 314,945,194 224,284,401 138,921,028
Read Length 72 99 99 99

* This analysis included only cultivated strain data from Peldez; similarly, it included only the first of three FASTQ
pairs from each tissue for Gupta.

2.1. Trimming and Assembly

The Harvard FAS Informatics and Scientific Applications group best practices guide
describes two orthogonal “trimming” challenges for assembling transcript sequences from
RNA-Seq data. The first, removing reads or truncating reads on the basis of low base-calling
quality scores, is frequently managed by the Trimmomatic software [24], and the software
is also capable of removing adapter sequences. The TrimGalore package (https://github.
com/ FelixKrueger/TrimGalore, accessed on 15 February 2021) specializes in the removal of
adapters and can also be configured to remove low-quality bases. The configurations tested
here (described in Methods and contextualized in Figure 1) were intended to be typical for
Trinity assemblies [25] rather than customized to these particular RNA-Seq experiments.
The TrimGalore (TG) route removed far more reads on median in Sreedhar (6.8%) and
Gupta (5.0%) than in Pelaez (0.2%) and Wimberley (0.1%), suggesting that efforts to remove
adapter sequences prior to the FASTQ export in the newer HiSeq 4000 instruments have
largely been successful. See Supplemental Script S1 for command-line details.

Trimmomatic (TM) was invoked as part of the call to Trinity. In two cases, Trimmo-
matic screened out a larger number of reads than did TrimGalore: The Peldez set was
carved down by 1.93% and the Gupta set was reduced by 6.3%, while the other two were
at essentially the same level. A further investigation of the reads retained by Trimmomatic
revealed that some FASTQ files retained small numbers of adapter sequences. In the Wim-
berley set, we observed a considerably higher Trimmomatic read reduction in the Leaf2
and Leaf3 sets (removing an average of 31.3% of reads) than in the other four experiments
(averaging 0.14% of reads).

Given the relatively small differences in read filtering, one might expect that Trin-
ity de novo assemblies derived from these two routes would be quite similar. Instead,
we observed that all the assemblies employing Trimmomatic contained more transcript
sequences (of greater length) than the assemblies derived from TrimGalore FASTQs (see
Table 2). The Wimberley data were particularly marked in their differences, with the TM
assembly doubling the transcript sequence count of the TG assembly.

Because the Pelaez data represented four different cultivars, each set of FASTQs were
separately assembled. The assemblies ranged considerably in size, with Veracruz and
Jalisco lagging Celaya and Cualac by a large margin. For many of the later analyses,
we used Celaya as a sole representative from the Peldez set. The Celaya experiments
accounted for 89,045,724 reads (28% of the total in Table 1 from Peldez). As the Gupta
BioProject enumerated 39 FASTQs, we incorporated only the first of three files for each
tissue to limit the RAM required for assembly. As a result, our analysis under-reports the
sensitivity of their experiments.
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Figure 1. Once sequencing reads have been assembled to a set of transcript sequences (represented by the orange pentagon),
a great variety of analyses become possible, with each information product represented by a green ellipse.

Table 2. The RNA-Seq assemblies ranged from 27,543 to 301,858 transcript sequences, with the trimming tool playing a
large role in the number and length of transcript sequences. “Genes” is reported by TrinityStats, representing the number of

sequence clusters from which transcript sequences were drawn.

TrimGalore! Trimmomatic

Assembly “Genes” Transcript Sequences Median Length “Genes” Transcript Sequences Median Length
Gupta 72,525 145,679 660 61,217 156,748 845
Sreedhar 34,590 53,127 857 30,649 63,468 1129
Wimberley 71,869 142,899 837 84,087 301,858 1388
Pelaez Celaya 60,319 108,164 756 56,761 186,842 1319
Peldez Cualac 41,802 71,324 775 39,705 109,835 1162
Peléez Jalisco 20,106 27,543 357 20,908 30,909 377

Peldez Veracruz 36,749 50,681 427 38,666 59,163 469
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These assemblies could become contaminated if species other than chia contributed
RNA to the samples. MCSC Decontamination [26] compared clusters of transcript se-
quences to UniRef90 sequences to determine the likely taxa of origin and remove clusters
deemed likely to have come from contaminating species. The number of transcript se-
quences remaining after this step was 74% of the original count in the TrimGalore assembly
for Gupta, 85% for Peldez Celaya, 69% for Sreedhar, and 95% for Wimberley. As we were
uncertain about the extent to which these reductions reflected spectral clustering or the
removal of contaminant taxa, the original assemblies were passed to the next step rather
than using those exported by MCSC Decontamination.

2.2. Determining Assembly Completeness

All other things being equal, one might naively assume that more reads imply a
better sensitivity and, thus, more transcript sequences. This would suggest that Wimberley,
with the most reads, should assemble to the most transcript sequences, with Sreedhar,
Gupta, and finally Pelaez Celaya ranking behind it. Neither TG nor TM assemblies follow
that ordering, however. Sreedhar yields far fewer transcript sequences than any of the
other three sets in both TG and TM assemblies (see Table 2). Gupta, Wimberley, and Peldez
Celaya all vary in rankings for most transcript sequences in TG and TM assemblies, with a
range from 108,164 to 301,858 transcript sequences. Helpfully, Trinity also organizes the
transcript sequences into “genes” (roughly speaking, these are clusters of sequences that
generate multiple transcript sequences). These cluster counts are far more consistent among
assemblies, though Sreedhar gives evidence for roughly half as many “genes” as do the
other data sets.

Benchmarking Universal Single Copy Orthologs (BUSCO) helps assess two key aspects
of RNA-Seq derived transcript sequence sets: completeness and redundancy [27]. Each of
the genes in a taxon-specific BUSCO database (eudicots in this case) is expected to appear
in almost all member species, and each of the genes is expected to appear only once in
the genome. Though Sreedhar consistently produced fewer transcript sequences and
“genes” than the other data sets, its BUSCO completeness (summing complete single-copy
and complete duplicated hits) rated it second among TM assemblies and third among
TG assemblies (see Figure 2). “Concise” is more correct than “insensitive” in describing
Sreedhar. BUSCO expects each gene to appear once in each assembly, and Sreedhar more
frequently meets that goal than the other, more redundant assemblies.

Because the transcript sequence sets contain generally larger numbers of transcript
sequences for Trimmomatic filtering than for TrimGalore filtering, it is possible that those
added transcript sequences match a larger fraction of the BUSCO genes, boosting the com-
pleteness (see Supplemental Table S1). In all experiments except Gupta, the TM assembly
achieves a higher BUSCO completeness than the TG, gaining as many as 136 more BUSCO
genes in Sreedhar (out of a total of 2326 genes in the BUSCO eudicots set). Those gains,
however, come with a cost; genes that should appear once in the set more frequently appear
in multiple copies. In the case of Wimberley, choosing an assembly that contains twice
as many transcript sequences seems an unreasonable cost to gain only 78 BUSCO genes.
For subsequent stages of comparison, only the TrimGalore assemblies were retained.

The publication of the Salvia splendens genome sequence annotation [28] afforded the
opportunity to recognize infrastructural RNAs such as rRNA and tRNA in these tran-
script sequence sets. The “GCA_004379255.1_SspV1” annotation contained 2208 sequences
annotated as RNA-coding genes for S. splendens. After similar sequences in S. splendens
and the four TrimGalore assemblies were clustered, reciprocal BLAST found relatively
few transcript sequences to match at least one set of infrastructural RNAs from S. splen-
dens: Six transcript sequences from Gupta, five from Peldez Celaya, six from Sreedhar,
and eight from Wimberley. Infrastructural RNAs do not comprise a large segment of
the assembled transcript sequence sets. The complete FNA assemblies are available in
Supplementary Information.
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Figure 2. BUSCO assesses whether or not single-copy orthologs are represented in an assembled
transcript sequence set (“completeness”) and whether or not they are present in multiple copies
(“redundancy”). The first five bars illustrate a high completeness (red plus grey: Percentages shown
below bar) but also considerable redundancy (grey bar) within the TrimGalore assemblies; the last
four bars illustrate the heterogeneity among the four cultivars in the Pelaez set.

2.3. Comparing the Assemblies

The Wimberley et al. paper was distinctive for including their assembled and an-
notated transcript sequence set in Supplementary Material. The published FASTA file
contains 71,401 transcript sequences, with a median length of 1409 nucleotides (longer
than any of the assemblies in Table 2). The much smaller number of transcript sequences
reported by Wimberley et al. than assembled here likely resulted from their use of CD-
HIT-EST clustering (reducing redundancy) [29] and requiring a match to a plant family
ortholog. Using these published transcript sequences as an external reference can shed
light on the assemblies created here; mapping reads to the assemblies constructed from
them should match a large fraction of the sequences, while mapping them to an assembly
that potentially represents a different cultivar should cut into the mapping rate.

Salmon performed quasi-alignments [30] for each TrimGalore-cleaned FASTQ to the
assembly produced from that set of files and to the published assembly from Wimberley (see
Supplemental Table S2). When mapping reads to the assembly derived from those reads,
the Gupta set reads matched 85.6% of the time, while the other three experiments all matched
more than 95%. One possible interpretation is that the plants sampled for Gupta were more
genetically diverse than for the other three studies, with the genetic variants preventing the
software from matching reads to the assembled transcript sequences. While the TrimGalore-
cleaned FASTQs from Wimberley mapped very well to the assembly created here and to the
assembly published by Wimberley (all values above 97%), the mapping percentages for the
other three experiments to the published Wimberley sequences fell below 80%.
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As these reads were ultimately produced from mRNA, genes with higher levels of
transcription accounted for far more reads than did the others. Supplemental Table S3
quantifies this phenomenon, determining the smallest number of transcript sequences
required to account for 25%, 50%, 75%, and 100% of all mapped reads. For every pair of
FASTQs among all four transcript sequence sets, fewer than 600 transcript sequences were
necessary to account for the first quartile of mapped reads. The diverse tissues of Gupta
illustrate the difference sample selection makes in read concentration. While ERR1855155
(Day 3 Cotyledon), ERR1855165 (Day 3 Shoots), and ERR1855210 (Seed) were extremely
concentrated in just a few genes, ERR1855129 (Day 158 Raceme Top Half) and ERR1855202
(Day 69 Node) required an order of magnitude more genes to account for the first 25% of
mapped reads.

Discerning the sequence overlap among assembled transcript sequence sets requires
that we allow for sequence variants and truncations; two sequences from different assem-
blies may be homologous without being identical. ProteinOrtho software [31] determined
which transcript sequences were the best match among the four best TrimGalore assemblies
(using only the Celaya set from Peldez) and the published Wimberley transcript sequence
set. ProteinOrtho clusters together sets of related sequences within an assembly before
seeking orthologous sequences in another assembly.

ProteinOrtho reduced the numbers of transcript sequences in the four TrimGalore
assemblies to 68-80% as many sequence clusters before comparison between assemblies.
Of the four assemblies, the sequence clusters from Sreedhar were more frequently matched
to orthologs in the other three (80%), while 57-63% of the clusters from the other three
transcript sequence sets matched to one from at least one other assembly. The intersections
of orthologs for the four assemblies plus the transcript sequences published by Wimberley
et al. were visualized in an UpSet plot [32] (Figure 3). Of the 31 possible intersections
among transcript sequence sets, only the most frequent twelve are visualized here.

It would be tempting to assume that a big chia assembly contains almost all sequences
of a smaller chia assembly. To the contrary, the TrimGalore Sreedhar transcript sequence
set, though smallest, contains 7157 sequences that appear in none of the other assemblies
(eighth bar in Figure 3). Although all these sequence databases share a common core of
11,339 orthologs (sixth bar), each assembly contributes a considerable number of unique
sequences. One might reasonably have expected that the intersection between the pub-
lished Wimberley transcript sequence set and the one assembled here from the same data
would have been the most common intersection between two databases (seventh bar),
but sequences appearing in both the TrimGalore Wimberley assembly and the TrimGa-
lore Gupta assembly were even more frequent (fifth bar). ProteinOrtho employed the
BLASTN algorithm to compare these nucleotide sequences; a comparison at the protein
level could appear quite different as many genetic variants (such as the “wobble” position
in a codon) do not alter the protein sequences, and homology scoring differs as one shifts
from nucleotides to amino acids.
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Figure 3. UpSet plot visualizing orthology among assemblies. Each transcript sequence set is internally clustered; its size
after clustering is represented by the bar size in the lower left. The sizes of intersections (sets of sequences found in multiple
assemblies) are shown by bars in the main plot, sorted with the most common intersections first. The beads connected by
lines below report which assemblies contain each set of homologous sequences. “Plants” represents the transcript sequence
set published by Wimberley et al., while “TGWimberley” represents a new Trinity assembly of the Wimberley FASTQs,
pruned by TrimGalore.

2.4. Annotation via InterPro and Taxonomy Relationships

To produce a putative transcript sequence from de novo assembly is a good start,
but determining its putative molecular function is necessary for the sequence database to
be useful. We employed two avenues for functional determination: Seeking orthologs in
the nearest taxonomic neighbors and checking for sequence motif matches in InterProScan.
These “hits” could then be used to assemble an initial description line to accompany protein
sequences in the FASTA file.

Detecting orthologs among taxonomic relatives evaluates the degree of detectable
orthology among assembled sequences. At the time of writing, the order Lamiales contained
nine species at NCBI with fully annotated genome sequences (featuring both genome-
derived mRNA and protein sequence sets as described in Table 3). We six-frame translated
the four “TG” transcript sequence sets, retaining every polypeptide of at least 100 amino
acids. ProteinOrtho compared each transcript sequence or each protein sequence to those
of the other species, seeking the clearest orthology relationships for each gene product.
As the assembled transcript sequence sets were so much larger than the annotations to
which they were being compared, the software was configured to exclude any gene product
that lacked orthologs in any other species.
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Table 3. The completed genome sequences within the order Lamiales range widely in transcript
sequence set size, from 17,685 transcript sequences for the carnivorous G. aurea to 67,009 transcript
sequences for the European olive. [1] A. thaliana falls within the order Brassicales rather than the order
Lamiales. [2] The transcript sequence set for S. asiatica contains redundant accessions that greatly
outnumber the proteins listed for this species.

Species Transcript Sequences Proteins
[1] Arabidopsis thaliana 53,827 48,265
Dorcoceras hygrometricum 47,778 47,778
Erythranthe guttata 34,410 31,861
Genlisea aurea 17,685 17,685
Handroanthus impetiginosus 30,271 30,271
Olea europaea 67,009 58,334
Phtheirospermum japonicum 30,299 30,330
Salvia splendens 55,562 53,354
Sesamum indicum 38,621 35,410
Striga asiatica [2] 100,380 33,426

The orthology results for the four assembled transcript sequence sets, relying on
BLASTN matching in ProteinOrtho, were unanimous; the most frequent orthology rela-
tionship discovered was between a transcript sequence in chia and a transcript sequence
in S. splendens (data not shown). Given that S. splendens and S. hispanica were the only
two species in the same genus, this is unsurprising. S. indicum and H. impetiginosus were
universally found to have the next closest relationship. As others have frequently noted,
nucleic acid sequence comparisons tend to highlight the nearest neighbors rather than
distant evolutionary relationships.

Comparing among translated sequences via Diamond [33], however, detected the
orthology across the Lamiales quite well. In all four of the assemblies, the most common or
second-most common outcome was that protein sequences were associated with orthologs
across the entire set of proteomes (even A. thaliana, which falls in a different order). A some-
what less common result was that orthologs were found among all species except for G.
aurea, which features the most compact genome/shortest protein list of all the species in
the comparison. In Figure 4, the ProteinOrtho/UpSetR plot for TGGupta demonstrates
how many orthologs the following species contributed for gene products in S. hispanica:
S. splendens: 2133, O. europaea: 1166, G. aurea: 1066, S. asiatica: 1025, and P. japonicum: 735.
This ordering of species was universal among the four translated assemblies. After P. japon-
icum, the ordering of species varied among them. These ortholog pair counts illustrate the
need to include many species in taxonomic databases used to attribute putative functions
to novel sequences.

The orthology relationships with annotated genome sequences can yield information
that ranges considerably in value. If a predicted chia protein sequence has an ortholog in
S. splendens, for example, the S. splendens protein might be described only as a putative
or hypothetical OREF. In this case, both S. splendens and S. hispanica annotations could be
updated to reflect the conservation of this sequence between species. Discovering the
orthology to a well-characterized protein, such as A. thaliana “cytochrome P450, family 714,
subfamily A, polypeptide 2,” is far more informative. It is worth noting, though, that one
may align multiple putative protein sequences from one species to a single ortholog in
another, potentially highlighting gene duplication events or incorrectly fragmenting a
transcript sequence to separate accessions due to incomplete sampling in RNA-Seq.
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Figure 4. Like Figure 3, this UpSet plot shows the extent of the orthology between sequence databases, but in this case,
the diagram visualizes the homology among protein sequences rather than transcript sequences, and the comparison ranged
across Lamiales rather than between assembled S. hispanica transcript sequence sets. Clusters of protein sequences found in
only one species were excluded. The TGGupta transcript sequence set, when translated to amino acids, showed a strong
homology to proteins of other taxa within Lamiales. The number of orthologs found across the entire set of species was
almost as large as the number of orthologs found uniquely with its genus-mate Salvia splendens.

We sought to coordinate the information from InterProScan (motif matching) and
from ProteinOrtho (orthologous sequences) into FASTA description lines that suggest
potential annotations for the protein sequences. The Zorbit Analyzer software (https:
// github.com/dtabb73/Zorbit- Analyzer, accessed on 15 February 2021) can be configured
to export only the translations that are orthologous to sequences from neighboring taxa or
that match to sequence patterns recorded by InterPro, and it is able to track which sets of
translations stem from an individual transcript sequence for reading frame determination.

In the case of the four translated assemblies constructed in this project, Zorbit Analyzer
found that the great majority of sequences matching to orthologs in ProteinOrtho also
matched to at least one InterPro signature (see Supplementary Table S4). An average of
46.6% of the translated sequences neither matched an ortholog nor matched an InterPro
signature (this value is expected to be high because each transcript sequence was translated
in six frames, though only the sequences that were longer than 100 amino acids were
retained). While an average of 23.1% of the translations were matched to both InterPro and
ProteinOrtho hits, only 1.0% matched via ProteinOrtho only. On the other hand, an average
of 29.3% matched via InterPro but not by ProteinOrtho. InterProScan is much more likely
to produce annotation information for a protein sequence than orthology hunting among
nearby taxa.
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2.5. Identification of LC-MS/MS Proteomes

Three distinct LC-MS/MS proteomes were employed to test the identification efficacy
resulting from the different TrimGalore Trinity assemblies after the translation to amino
acid sequences. Husselmann 2017 (1,000,863 MS/MS scans) was the Thermo Q-Exactive
shotgun proteome that motivated this project, representing a trypsin digestion of total leaf
protein from seedlings grown from either black or white chia seeds. Aguilar-Toald 2019
(44,208 MS/MS scans) was a stress test for the databases, as the Alcalase and Flavourzyme
digestion of seed proteins disallowed the use of trypsin specificity to filter database pep-
tides. As these data were produced on a Thermo Q Exactive Plus mass spectrometer,
the fragment ions were measured with high mass accuracy. Cooper 2021 (877,885 MS/MS
scans) represented a broader investigation of chia tissues, including cotyledons, hypocotyls,
roots, and seeds via simple RPLC and four-fraction RPLC on a Thermo Lumos, but it
differed from the others in capturing low-resolution MS/MS scans and in using the closely
related Salvia columbariae [34] rather than Salvia hispanica.

By incorporating the fractionation of three different tissues and benefiting from the ion
trap scan rate of the Lumos instrument, Cooper 2021 generated the most sensitive proteome
in this study, with nearly 33,000 distinct peptides identified in the best database search.
The five-cohort Husselmann 2017 study incorporated almost twice as many LC-MS/MS
experiments, but because it analyzed only one tissue and used no fractionation prior to
LC-MS/MS, its most sensitive search identified fewer than 7200 distinct sequences.

The MSFragger database search algorithm [35] identified the Cooper 2021 and Hussel-
mann 2017 sets of LC-MS/MS experiments five times; the first employed a translation of the
published Wimberley transcript sequence set, and the next four each used a translation of a
TrimGalore assembly. For a first look, we considered the total number of distinct peptides
identified confidently from the aggregate of all RAW files in each of these proteomics data
sets (see Supplemental Tables S5-57; quality metrics appear in Supplemental Table S8).
The sequence database providing the most sensitive search for Cooper 2021 identified 18%
more peptides than the least sensitive, while the most sensitive search for Husselmann
2017 identified 24% more peptides than the least. In both cases, the best sequence database
to support protein identification resulted from the six-frame translation of TGGupta, and in
both cases, the sequence database producing the fewest peptides was translated from
TGPeldez Celaya. It may not be coincidence that the TGGupta assembly spanned the
largest number of tissues (13) while TGPeldez Celaya incorporated only seeds.

The use of different sequence databases resulted in different numbers of distinguish-
able proteins and a variation in empirical protein false discovery rates. For Husselmann
2017, the number of distinguishable proteins ranged from 1355 to 1634, with the maximum
produced by the TGGupta search that yielded the most distinct peptide sequences (7145;
see Supplementary Table S5), accounting for 170,492 PSMs (peptide-spectrum matches:
An MS/MS with a confident peptide sequence assigned to it). The target/decoy method
listed decoy proteins along with target proteins in the list, and an empirical protein False
Discovery Rate (FDR) was estimated at 0.45%; all of the databases, in this case, produced
an empirical protein FDR below 1%, with IDPicker 3.1 applying a conservative parsimony
criterion and the two-distinct-peptide rule for protein inclusion [36]. Out of more than a
million tandem mass spectra collected in Husselmann 2017, TGGupta made it possible to
identify 17.03%, a respectable but not outstanding rate of identification.

The Cooper 2021 set also showed a considerable range in the number of distinguish-
able proteins, ranging from 4572 to 5443; again, TGGupta identified the largest number
of proteins, supported by the largest number of distinct peptide sequences (32,923) and
PSMs (241,993). The empirical protein FDR values were also somewhat higher than in Hus-
selmann 2017, ranging from 1.09% to 2.19% (all generally within proteomics community
expectations). The identification rate for Cooper 2021 rose to 27.57% of all spectra, which is
the more impressive because the tandem mass spectra contained only low-resolution
fragment ion data and represented sequence variants due to the S. columbariae/S. hispan-
ica difference.
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The protein sequences accounting for the most spectra in these two experiments will
produce few surprises. In both sets, the sequence accounting for the largest fraction of all
spectra was recognizable as a ribulose bisphosphate carboxylase large chain. The proteins
ranked second by total PSMs in the two experiments differed, though their functions were
inversely related: ATPase AAA core domain-containing protein (Husselmann 2017) and
ATP synthase subunit beta, chloroplastic (Cooper 2021). Of these three, only the ATPase
AAA core domain-containing protein was absent from the TTEMBL knowledge base.

One might reasonably expect that a transcript sequence set that incorporates the
same tissue as a proteome would yield more identifications. The Cooper 2021 proteomes
separately analyzed cotyledons, hypocotyls, and roots for five-day old seedlings plus
ungerminated seeds. If we track which sequence database identified the most peptides for
each LC-MS/MS experiment (see Supplemental Table S6), only root and seed proteomes
yielded more peptides with databases other than TGGupta. Root tissue was not included
among the 13 tissues of Gupta, but they represented half of the RNA-Seq experiments of
Wimberley, which “won” in the proteomic identification for all five of the Cooper root LC-
MS/MS experiments. These findings reinforce the idea that an RNA-Seqg-derived transcript
sequence set for a given tissue is better able to represent the proteins that may be identified
by LC-MS/MS from that same tissue.

The Aguilar-Toala 2019 experiment was not easily analyzed, because Alcalase/
Flavourzyme cleavage is far less specific than trypsin. As “no enzyme” searches of large
FASTA files in MSFragger require a prohibitively large amount of RAM, we opted to use the
MS-GF+ algorithm [37] instead. The time required to search the <3kDa fraction (comprising
44,208 high-resolution tandem mass spectra) against these large protein sequence databases
was at least five hours for each database (using a Xeon x5650 six-core processor).

This LC-MS/MS experiment, however, reveals the largest differences between best and
worst identification sensitivity (see Supplemental Table S7). The TGWimberley database
identified a low of 118 distinct peptide sequences in 144 PSMs, while the TGGupta database
revealed 697 distinct peptides matching to 1068 different PSMs. The two RNA-Seq ex-
periments containing reads from seed tissue (TGGupta and TGPeldez Celaya) identified
more peptides than did the two RNA-Seq experiments that excluded seed tissue. When the
peptide lists from these four experiments were overlapped in Venny (Oliveros, J.C.:
https:/ /bioinfogp.cnb.csic.es/tools/venny/index.html, accessed on 15 February 2021),
however, the assembly from TGSreedhar contributed the most peptides distinctive to any
single assembly (see Figure 5). As the overall number of identified proteins was much
lower in Aguilar-Toala 2019 (reaching a maximum value of 73 distinguishable proteins)
than in the other two sets, including or omitting individual proteins from the protein
sequence database had an exaggerated impact on identification sensitivity.

An examination of the Sreedhar-specific set revealed that four of the peptides from
a single protein matched to a total of 18 spectra in Aguilar-Toald 2019. NCBI BLASTP
was able to align the protein sequence to UniProtKB, matching an uncharacterized Salvia
splendens sequence and to Sesamum indicum 11S seed storage globulin/legumin B. In this
case, choosing either of the seed-containing transcript sequence sets for identification
would still have missed identifying a seed protein.


https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html

Plants 2021, 10, 765

13 of 22

TGPelaezCelaya TGSreedhar

)

(22.6%)

(0%)

Figure 5. Different sets of peptides are identified from Aguilar-Toala 2019 in each of the four translated
assemblies. The two assemblies that incorporated seeds (TGGupta and TGPelaezCelaya) identified
the most peptides, but the assembly that added the most peptides uniquely was TGSreedhar.
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2.6. Evaluating Sequence Homology for Seed Storage Proteins and PUFA Synthesis

Because the Cooper 2021 proteome featured four different plant tissues, a spectral
count table could illustrate proteins that were far more abundant in one tissue than in
another. Seed storage proteins of chia are nutritionally interesting because these seeds are
particularly high in protein content [38]. A very simple test sought proteins that matched
more than 100 spectra in the seed proteome but less than 100 spectra in the three other
tissues (this threshold is entirely arbitrary but helped focus attention on clear differences).
The sequences of eleven proteins that met this “seed-specific” criterion from the TGGupta
database have been included in a separate FASTA file in the Supplementary Information.
All eleven proteins were matched by the BLASTP algorithm to the SwissProt database.
Nine of the eleven can be putatively classified as seed storage proteins.

Given the interest in the chia synthesis of PUFA, it is unsurprising that Xue et al. sought
to clone the FAD2 genes from this species [39]. We sought evidence of the expression for
fatty acid desaturases from our assembled transcript sequence sets and identified pro-
teomes. We identified the following integrated signatures in InterPro corresponding to this
class of enzymes: IPR001522, IPR005067, IPR005803, IPR005804, IPR012171, and IPR021863.
Of these, IPR001522 produced only two matches in any translated assembly, while the
others ranged from 29 to 261 different transcript sequence matches (see Supplementary
Table S9). These matches were frequently redundant, with multiple transcript sequences
from the same Trinity “gene” cluster matching the same signature.

The two sequences published by Xue et al. matched both IPR005804 and IPR021863,
leading us to emphasize those two signatures. IPR005804 was a more sensitive detector,
with only 56 of its 146 transcript sequence matches also hitting IPR021863. IPR021863
matched to only three transcript sequences across the four assemblies that were not also
matched by IPR005804. Ten ortholog sets were found to be present in all four assemblies
while producing translations matching IPR005804. Clustal Omega produced multiple
sequence alignments for each of these ten sets of orthologs (see Supplementary Information
Figure S1 and the FASTA files supporting these images).

Each of the IPR05804 alignments demonstrated a high degree of agreement among
the translated sequences from each assembly, though an assembled transcript sequence
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would sometimes lack the N-terminus or C-terminus of the polypeptide. BLASTP was able
to match to a sequence from either Salvia splendens or Salvia hispanica itself, in each case
indicating a desaturase enzyme, generally differentiated by the specific substrate. The pro-
teomics experiment from Cooper 2021 was used to see whether any of these fatty acid
desaturases were detected. A variety of sequences from Sreedhar DN8237 were detected
(36 spectra in a total of nine peptides drawn from three isoforms), joining proteomics and
transcriptomic evidence for the presence of a sphingolipid delta(4)-desaturase (DES1-like).
Similarly, the Gupta DN205 sequence cluster was detected in six spectra for three peptides
that supported the detection of an omega-6 fatty acid desaturase (delta-12 desaturase),
and eight spectra for three peptides supported the detection of a stearoyl-CoA desaturase
(delta-9 desaturase). By combining RNA-Seq and proteomics evidence, the certainty of
identification is greater than if either of these technologies were applied separately.

3. Discussion

Having produced two different assemblies for each of four RNA-Seq experiments in
Salvia hispanica, we were surprised at the variation in the numbers of transcript sequences
among these products (Table 2). One interpretation is that adapter sequences can con-
found the transcript sequence set assembly as repeats confound the genome sequence
assembly; the adapter sequences may cause the assembler to overlap sequence reads that
belong to completely different transcript sequences. Naturally, one might expect that a
transcript sequence set assembled from a larger number of reads of greater length would
contain more potential transcript sequences from each gene due to sensitivity differences.
Given the diversity in the numbers of tissues sequenced for each experiment, we might
have anticipated a greater difference in the comprehensiveness (estimated through BUSCO)
of these assemblies than observed.

Once quality RNA-Seq data have been produced in a species, proteomics becomes
possible. Understanding gene expression should not be limited to RNA-Seq. Measuring
the proteome remains the only route to understanding the role of post-translational modifi-
cations. As protein turnover operates by different mechanisms than transcript turnover,
quantitative proteomics is quite necessary to understanding which biological activities are
at play in a system.

3.1. Is There Any Point in Working with RNA-Seq from Older Sequencer Models, Given How
Quickly This Technology Evolves?

The three DNA sequencers employed in the above experiments were the Illumina
Genome Analyzer IIx (an updated variant of an instrument first released by Solexa in
2006), capable of producing more than 2 gigabases of sequence per day; the Illumina
HiSeq 2500, capable of more than 50 gigabases per day; and the Illumina HiSeq 4000,
capable of more than 400 gigabases per day (based on manufacturer-provided specification
sheets). As should be apparent from the BUSCO completeness presented in Figure 2 and
in Supplementary Table S1, the Sreedhar RNA-Seq experiment achieved an admirable
completeness despite using the oldest of the three sequencer models. A new sequencer
that is multiplexed to analyze many barcoded samples at once may not outperform an
older sequencer that can give more “attention” to a particular sample, especially if sample
queues are less pressing on the older instrument.

3.2. If RNA-Seq Technology Is More Comprehensive Than Proteomics, Are All RNA-Seq
Assemblies Good Enough for Protein Identification?

While LC-MS/MS gains considerable sensitivity with each passing year, the number
of peptides detected in an experiment is dwarfed by the number of peptides available for
sampling in a whole-cell lysate. The ability to quantify 10,000 proteins across tissues is still
quite demanding in instrument time due to the need to fractionate and then subject each
fraction to LC-MS/MS. In our Husselmann 2017 and Cooper 2021 proteomes, the potential
gains for the best database versus the worst were 24% and 18% in aggregate distinct pep-
tides. Those values represent the case where a very large number of proteins were present
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(1634 for Husselmann 2017 and 5443 for Cooper 2021). The seed proteome of Aguilar-Toala
2019, however, concentrated all of its peptides in just 73 proteins. Including or failing
to include a particular protein sequence could have an outsized impact on identification
because the seed peptides were concentrated in a small number of protein sequences.

3.3. Is the Assembly of RNA-Seq Data within Reach for Most Proteomics Laboratories?

For newcomers to RNA-Seq to assemble their first sets of transcript sequences,
they may not require many lines of script, but many challenges line that path. Our path
to these assemblies started with a taxonomy search of the NCBI website followed by an
investigation of the “Bio Projects” that had been posted for our species of interest. Our labo-
ratory already had experience with Linux and had access to a computer with 96 GB of RAM,
but proteomics laboratories frequently run their bioinformatics workflows on Microsoft
Windows computers, and computers with more than 16 GB of RAM may be uncommon
for proteomics facilities at present; without high-memory Linux workstations, Trinity is
not an option. The collaboration between genomics researchers and proteomics researchers
is likely to be the route to success for many teams.

Conversely, laboratories that are already fluent in RNA-Seq can add proteomics
analyses to their repertoires by making use of the core facilities now available at many
universities. The difference for nonmodel organisms will be that the laboratory needs
to provide a protein sequence database in addition to the protein samples for analysis.
At present, core facilities frequently rely upon the reference proteomes available through
UniProt, which may under-represent plant proteins.

3.4. Is a Six-Frame Translation an Appropriate Search Space for Proteomics?

A single transcript sequence in an RNA-Seq assembly becomes six translations by
considering each of the strands as coding and by having an uncertainty about which reading
frame is correct for that strand. A given reading frame may have multiple long ORFs within
it, leading to more ambiguity in the translations proposed from each transcript sequence.
In species other than viruses, though, one generally expects that a given transcript is
translated to produce just one polypeptide. Using a six-frame translation as input for
proteomics substantially bloats the pool of potential peptides for comparison to tandem
mass spectra. Most proteomics tools, at present, do not evaluate which of the six reading
frames for a given transcript sequence is the dominant one, for example, by excluding
identifications from the other five reading frames. Some statistical models for estimating
false discovery rates explicitly assume that the number of decoy sequences in the protein
database is equal to the number of target (potentially real) sequences; if one then takes the
perspective that reading frames that are not the biologically significant one are also decoy
sequences, the FDR computations will require significant adjustment.

4. Materials and Methods
4.1. RNA-Seq Source Data

Sreedhar 2015: A team with Malathi Srinivasan from the Central Food Technological
Research Institute in Mysore, India evaluated five different stages of seed development in
RNA-Seq using an Illumina Genome Analyzer IIx [20] (San Diego, CA, USA). Their Trinity-
based de novo assembly yielded 76,014 transcript sequences; a FASTA file representing
these sequences was not, however, included in their publication. The five sets of paired-end
reads were released publicly as BioProject PRINA196477 at NCBI.

Pelaez 2019: A team with Angélica Cibrian-Jaramillo from UGA-Langebio Cinvestav
in Guanajuato, Mexico evaluated genetic diversity and expression differences among the
RNA-Seq experiments of eight different cultivated and wild chia seeds using an Illumina
HiSeq 4000 [21]. Their Trinity-based de novo assembly spanned 69,873 transcript sequences;
a FASTA file representing these sequences was not included in their publication. A total of
sixteen sets of paired-end reads were released publicly as BioProject PRJNA448759 at NCBL
Our re-analysis included only the samples for which multiple sequencing experiments were
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performed: Spotted Celaya (3 x), Cualac Celaya (2x), Spotted Jalisco (2x), and Spotted
Veracruz (3 x).

Wimberley 2020: A team with Hagop S. Atamian from Chapman University in Orange,
California sequenced root and leaf cDNA using an Illumina HiSeq 4000 [22]. Their Trinity-
based de novo assembly produced 103,367 transcript sequences; unlike the other studies,
the team published a FASTA file with the paper documenting their effort. The leaf triplicates
and root triplicates were each sequenced as paired-end reads, released publicly as BioProject
PRJNA597830 at NCBL

Gupta 2020: A team with Pankaj Jaiswal from Oregon State University in Corvallis,
Oregon sequenced three replicates of thirteen tissues from different developmental stages
of chia using an Illumina HiSeq 2500 [23]. Their Velvet/Oases assembly included 82,663
transcript sequences; their work, currently available as a pre-print, does not include the
FASTA file enumerating the assembled sequences. All 39 paired-end experiments were
released publicly as BioProject PRJEB19614. Our re-analysis included only the first of three
paired-end replicates for each tissue.

All data sets were acquired through the use of the NCBI SRA Toolkit version 2.10.8
via the “prefetch” command (https://www.ncbinlm.nih.gov/books/NBK158900/, ac-
cessed on 15 February 2021). The “fastq-dump” command then exported the FASTQ files
with these parameters: “-defline-seq ‘@$sn[_$rnl/$ri’ -defline-qual ‘+’ -split-
files” to generate Trinity-compatible description lines and blank the quality descrip-
tion lines. The Sreedhar set required a reformatting of the description lines for Trinity
via this operation: “awk ‘{{print (NR%4 == 1) ? “@1_> ++i */1”: $0}}’”. FASTQC
version 0.11.9 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed
on 15 February 2021) generated a quality report for each FASTQ file produced by the four
RNA-Seq experiments.

4.2. Trimming and Assembly

The de novo assembler used in this study was Trinity, version 2.11.0 [25]. Each assem-
bly was produced using two different “trimmers.” The first employed Trimmomatic version
0.39 [24] as part of the command-line invocation of Trinity and excluded the use of Salmon.
The second employed TrimGalore! version 0.6.6 (https://github.com/FelixKrueger/
TrimGalore, accessed on 15 February 2021)/cutadapt version 2.8 [40] prior to Trinity, keep-
ing only the reads for which the paired end was retained when adapter sequences and low-
quality basecalls had been stripped away; this second pipeline employed Samtools version
1.10[41], Salmon version 1.3.0 [30], Bowtie2 version 2.4.2 [42], and Jellyfish version 2.3.0 [43].
TrimGalore! was launched with this command line: “trim_galore -cores 6 -length 25
-paired -output_dir galore -q 5 -e 0.1 left.fastq right.fastq”, while Trimmo-
matic was run in-line with this addition to the Trinity command line: “-trimmomatic
-quality_trimming_params ILLUMINACLIP:adapters/TruSeq2-PE.fa:2:30:10 LEADING:5
TRAILING:5 SLIDINGWINDOW:4:5 MINLEN:25”.

For Sreedhar, Trinity produced a single assembly spanning all five samples. For Pelaez,
Trinity produced separate assemblies for Celaya, Cualac, Jalisco, and Veracruz seeds to
avoid the problems of assembly in the presence of extensive sequence variation [44].
For Wimberley, Trinity produced a single assembly spanning the triplicates of roots and
triplicates of leaf tissues. For Gupta, Trinity produced a single assembly spanning the
first replicate for all thirteen tissues. Only the Sreedhar assembly was small enough to be
assembled by a Linux workstation with 16 GB of RAM; the others required servers with at
least twice that capacity.

CD-HIT clustering is frequently applied to de novo assemblies to reduce the redundancy
of assembled sequences [29]. It can, however, mask short isoforms that may be produced for
a gene in favor of longer transcript sequences. It was omitted from this workflow.

MCSC Decontamination [26], downloaded on 12 March 2021, was applied to evaluate
the extent of species other than chia in RNA-Seq assemblies. The UniRef90 providing
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sequences for comparison was updated on 30 June 2020. MCSC was configured for
clustering level 6, with a target taxon of “Chlorobionta.”

BUSCO version 4.1.4 [27], supported by Augustus 3.3.3 [45], evaluated the complete-
ness of each assembly. The software employed the “eudicots” lineage dataset (10 September
2020 version) and operated in “transcriptome” mode. NCBI BLAST version 2.11.1+, specifi-
cally tblastn, powered the homology search.

4.3. Assembly Mapping

Trinity includes a Perl script titled “align_and_estimate_abundance” to determine the
number of reads mapped to genes and transcript sequences of a given assembly. This script,
in turn, launched Salmon v1.3.0 to prepare the reference database indexes and then estimate
the abundance of genes and transcript sequences. The Salmon “quantmerge” software then
combined the salmon mappings from the different reads that comprised each data set into
a single table. In each TrimGalore Trinity assembly, Salmon was configured to operate in
“trinity_mode” to retain the information of which transcript sequences corresponded to
each gene (except for the published Wimberley transcript sequence set).

4.4. Transcript Sequence Overlap

The same transcript sequence in multiple assemblies might differ in which exons
were detected or may be homologous rather than identical if a different cultivar of chia
were grown. ProteinOrtho version 6.0.24 [31] detected the best matches among transcript
sequence sets, using the NCBI BLAST version 2.11.1+ [46] engine for scoring matches
(specified by the “~p=blastn” option). The -singles option ensured ProteinOrtho included
unmatched sequences in its report. The software generated its table of matching sequences
in both tab-separated values and interactive HTML reports.

A script in R statistical environment version 3.6.2 [47] read the TSV report from
ProteinOrtho and determined which transcript sequences (rows) contained an accession
for each transcript sequence set (columns), with an asterisk marking a transcript sequence
that was not detected in a transcript sequence set. The scripts made use of the UpSetR
library [32] to visualize the transcript sequences overlapping among transcript sequence
sets. The R script is included as Supplemental Script S2.

4.5. Protein Sequence Annotation

Tools for functional annotation frequently emphasize protein sequences rather than
transcript sequences. For these and later analyses, we limited our examination to the more
compact TrimGalore assemblies and chose the Peldez Celaya assembly to represent that
project rather than considering the full set.

EMBOSS version 6.6.0.0 [48] offers the transeq and checktrans tools for this purpose.
Transeq accepts a transcript sequence FASTA and outputs a protein sequence FASTA in
six frames via the “-frame 6” option. Checktrans screens these protein FASTA databases
to report only the ORFs of at least 100 amino acids via the “-orfml 100" option. Setting
the length threshold at 100 greatly reduces the number of spurious translations included
in output, but it also has the effect of screening out short protein sequences. For context,
the NCBI S. splendens protein database uses a minimum length of 50 amino acids; 1950
(3.6%) of the proteins are 100 amino acids or fewer, and 6491 (12.1%) are 150 amino acids or
fewer. As checktrans has the side effect of removing description information from FASTA
accession lines, we also created a short Python script capable of retaining this information
(https:/ /github.com/dtabb73/SixFrame-Translate, accessed on 15 February 2021).

Attributing a function to a novel transcript sequence or its translated product gen-
erally depends upon establishing homology to a better annotated sequence. As above,
ProteinOrtho was employed to find orthologous proteins for each translated assembly.
Where these examinations took place among amino acids, ProteinOrtho was able to use
the high-speed Diamond version 0.9.30.131 homology aligner. For comparing transcript
sequence sets, ProteinOrtho employed NCBI BLAST+ version 2.11.1+. As in the assembly
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comparison above, the -singles option was employed so that unmatched proteins were re-
tained in the ProteinOrtho output. The complete protein databases at NCBI from the order
Lamiales that were included in this comparison appear in Table 3. Due to the maturity of its
annotation, the more distantly related Arabidopsis thaliana was included as a model. Tran-
script sequence sets for each of these species were downloaded, where provided, and where
necessary, the transcript sequence sets were recreated from the complete genome sequences
by gffread version 0.12.3 [49] with this command line: gffread -w transcripts.fna -g
genome.fna transcripts.gtf. The transcript sequence set for S. asiatica was excluded
because multiple transcript sequences bore identical accessions.

The UpSetR script in Supplemental Script S2 includes the code used to produce
these intersection plots; a key difference is that all protein/transcript sequences that
were unique to only one species were eliminated from the table prior to visualization
(the assemblies contained far more sequences than the FASTAs derived from genome
sequence annotations).

InterProScan v5.47-82.0 [50] screened the translated assembly sequences for sequence
motifs and protein family relationships. SignalP v5 [51] and TMHMM v2 [52] supported
this motif search with tools to recognize signal peptides and transmembrane domains.
In order to accelerate this matching, the amino acid FASTA databases were split into
sub-databases of no more than 10,000 sequences by FASTA File Splitter version 1.0.5381
(available from Pacific Northwest National Laboratory at https://omics.pnl.gov/software/
fasta-file-splitter, accessed on 15 February 2021). InterProScan exported its reports to GFF3,
JSON, XML, and TSV formats.

In order to analyze the combined outputs of InterProScan and ProteinOrtho, a Python
script using a Pandas database (https://pandas.pydata.org/, accessed on 15 February
2021) was developed. The Zorbit Analyzer (https://github.com/dtabb73/Zorbit- Analyzer,
accessed on 15 February 2021) integrates information from the translated Trinity assembly
in FASTA format, the ProteinOrtho TSV file, and the InterProScan GFF3 file. Accessions in
the protein sequence database can be matched to the accessions in the ProteinOrtho table
and in the InterProScan GFF3. The Pandas library creates a database joined by these three
sources of information, using the accession number as the key. It can then write a new
description line for each protein accession that yields orthologs in ProteinOrtho or domain
matches in InterProScan, outputting the protein FASTA database at the script conclusion.
The code employs the numpy and pandas libraries and was developed in Python 3.9.0.

4.6. Proteomics Source Data

Husselmann 2017: Following Williams’ gel and TOF/TOF investigation of chia salin-
ity stress (http:/ /hdl.handle.net/11394 /5650, accessed on 15 February 2021), Husselmann
and Klein designed an LC-MS/MS experiment for five replicates in each of five cohorts:
Caffeic acid stress, salt stress, both stresses, and controls for black chia seeds, along with
controls for white chia seeds. Extracted proteins were analyzed at the Centre for Proteome
and Genome Research. L. Bell denatured proteins, reduced disulfides with TCEP and
alkylated cysteines with MMTS, and digested proteins with trypsin in a HILIC magnetic
bead workflow. The RPLC gradients yielded an average of 34,512 tandem mass spectra per
LC-MS/MS experiment on the Thermo Q Exactive (San Jose, CA, USA). Quadruplicates
of samples pooling all cohorts were produced for chromatographic peak normalization.
Detailed methods can be found in the Supplementary Text S1. The RAW files and represen-
tative identifications are available from ProteomeXchange as MSV000086861.

Aguilar-Toala 2019: Investigators with Andrea Liceaga at the Department of Food
Science at Purdue University examined the proteomes of chia seeds for their anti-microbial
properties and enzyme inhibition [18,19]. They followed the activity for different size exclu-
sion chromatography fractions of peptides generated through Alcalase and Flavourzyme
digestion. Tandem mass spectra were generated on a Q Exactive Plus by Emma Doud
in the Proteomics Core at the Indiana University School of Medicine. The LC-MS/MS
experiment representing proteins below 3 kDa was emphasized because it represented the
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biological activity they sought; the instrument produced 44,208 tandem mass spectra at a
rate peaking near 11 Hz. When sequence availability for chia proved to be problematic,
Doud made use of PEAKS Studio (Waterloo, ON, Canada) to infer sequences directly from
the fragment ions. The RAW files and representative identifications are available from
ProteomeXchange as PXD024163.

Cooper 2021: Cooper sought to increase the sensitivity of peptide detection and
broaden the range of tissues covered through his analysis of chia proteomes. As both
S. hispanica and S. columbariae are both colloquially called “chia”, a miscommunication
led to the preparation of S. columbariae proteomes rather than S. hispanica proteomes.
Targeted tissues were ungerminated seeds and the roots, hypocotyls, and cotyledons
of five-day-old seedlings. As in Husselmann 2017, TCEP was employed for reducing
disulfides, but iodoacetamide alkylated the cysteines. Mass spectrometry took place at
the Mass Spectrometry and Proteomics Facility at the Johns Hopkins School of Medicine.
The Thermo Orbitrap Fusion Lumos Tribrid mass spectrometer yielded an average of 54,868
tandem mass spectra per LC-MS/MS experiment, producing up to twenty MS/MS per
second at its peak. Detailed methods can be found in the Supplemental Text S2. The RAW
files and representative identifications are available from ProteomeXchange as PXD024181.

4.7. Proteomic Identification

Each proteomic dataset was analyzed via quality metrics and via database search-
based identification. As an initial step, Thermo RAW files were converted to mzML
format in ProteoWizard msConvert 3.0 [53], using -z1ib to compress peak intensities
and m/z values and -filter ‘‘peakPicking true 1-’to centroid all peaks. QuaMeter
IDFree generated quality metrics from these mzML files [54]; the tables are available in
Supplemental Table S8.

In each case, the amino acid FASTA databases were supplemented with contaminants
and were doubled to contain each sequence in both normal and reversed orientation
(the latter serving as decoys for FDR estimation). This operation was automated by the
Philosopher database [55] commands. The MSFragger database search engine [35] was
operated in “narrow” search, using a precursor mass accuracy of 20 ppm, and semi-
trypsin specificity (requiring each peptide to either begin or end at a trypsin cutting site).
The software was configured to consider Met residues in normal or oxidized (+16 Da)
form, and protein N-termini acetylation was allowed (+42 Da). For Husselmann 2017,
Cys residues were all expected to be +46 Da, reflecting the use of MMTS, while Cooper
2021 Cys residues were expected to be +57 Da, reflecting the use of iodoacetamide. The two
searches differed in that the fragment mass tolerance for Husselmann 2017 was set to
20 ppm while Cooper 2021 required a much wider 0.5 Da tolerance for fragments.

The Aguilar-Toala 2019 set used cleavage enzymes with a much broader specificity
than trypsin. MS-GF+ [37] was employed to produce this search rather than MSFragger
because MS-GF+ requires far less RAM for this type of operation. The configuration was
similar to the search for Husselmann 2017, though MS-GF+ uses “Instrument ID” set to
“Q Exactive” rather than specifying the fragment tolerance directly. The “Enzyme ID”
should ideally have been set to Alcalase and Flavourzyme, but this option has not been
defined for MS-GF+; instead, it was set to “Chymotrypsin,” and the “Number of Tolerable
Termini” was set “NTT = 0,” implying that neither end of a given peptide needed to meet
the chymotrypsin specificity requirement for the peptide to be matched to spectra. Cys was
left at its standard mass rather than adding a mass to reflect an alkylation step.

Database search results were imported from pepXML or mzIDentML format into
the IDPicker 3.1 protein assembler [36]. Default filtering options held the PSM FDR to
no greater than 2% (based on target-decoy analysis) for each LC-MS/MS experiment.
Two distinct peptides were required for each protein to be included, and parsimony
was employed.
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