Priming metal	Plant material	Secondary stress	Effects	Reference
Ag (10–30 mM Ag nano- particles)	Pennisetum glaucum seeds	salt stress (120-150 mM NaCl)	↑ biomass ↑ proline content ↑ improved antioxidant defense, ↑ accumulation of phenolic com- pounds	[36]
Ca (0.3–0.5 mM Ca(OH) ₂ ,Ca(NO3) ₂ , and CaCl ₂)	Oryza sativa seeds	oxidative stress (fluo- ride induced)	oxidant enzymes and profine and glycine betaine synthesis path- way enzymes ↓reduced ROS and fluoride ac- cumulation	[38]
Cu (80 µM CuSO4)	Zea mays seedlings	biotic stress (insect herbivore attack)	↑ JA synthesis ↑volatile organic compounds (VOCs) emission	[39]
Cu (69.4µM nano-Cuºna- noparticles)	Zea mays seedlings	drought	 ↑shoot morphology ↑plant biomass and improved grain yield ↑ content of chlorophyll, carote- noids and anthocyanins ↓ROS production 	[32]
K (50 mM KCl)	Brassica oleracea seeds	salt stress	 ↑seed survival rate, ↑seedling morphology, ↔ nutritional status and phenolic compounds profile 	[30]
K (150–300 kg·ha ⁻¹ K ₂ O)	Gossypium hirsutum plants	drought	 ↑ fiber strength ↑ concentrations of carbohy- drates (sucrose, cellulose) ↑glucanase activity 	[31]
V (VOSO ₄ , 10 ⁻⁶ M oxi- dovanadium(IV) com- plexes)	Arabidopsis thaliana seed- lings	oxidative stress (100 mM H ₂ O ₂ treatment)	niasitos ano celi walis profecieo	[37]
Zn (4 mM ZnSO ₄)	Zea mays seeds	salt stress (100 mM NaCl)	↑ biomass ↑ nutrient and micronutrient sta- tus	[34]
Zn (4 mM ZnSO ₄), K (23 mM K ₂ SO ₄)	Zea mays seeds	salt stress, saline- sodic soil	↑biomass ↑elevated shoot Ca and Zn con- centrations ↑ photosynthesis	[35]
Zn (10 mM NA ¹)	Zea mays seeds	drought	↑ germination capacity, ↑activity of antioxidant enzymes ↑ higher Zn translocation to shoots	[33]

Table 1. Application of metals as priming agents towards secondary non-metallic stress tolerance.

↓ decrease/reduction; \uparrow increase/enhancement, \leftrightarrow no effect. ¹ data unavailable