
plants

Article

Comparative Study of Chemical Composition and Antioxidant
Activity of Essential Oils and Crude Extracts of Four
Characteristic Zingiberaceae Herbs
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Abstract: The ginger family (Zingiberaceae) includes plants that are known worldwide to have a
distinctive smell and taste, which are often used as spices in the kitchen, but also in various industries
(pharmaceutical, medical, and cosmetic) due to their proven biological activity. The aim of this
study was to investigate and compare the chemical composition and antioxidant activity (AA) of
essential oils (EOs) of four characteristic ginger species: Elettaria cardamomum L. Maton (cardamom),
Curcuma Longa L. (turmeric), Zingiber Officinale Roscoe (ginger), and Alpinia Officinarum Hance
(galangal). Furthermore, the total phenolic content (TPC) and AA of crude extracts obtained after
using ultrasound-assisted extraction (UAE) and different extraction solvents (80% ethanol, 80%
methanol and water) were evaluated. A total of 87 different chemical components were determined
by GC-MS/MS in the EOs obtained after hydrodistillation, 14 of which were identified in varying
amounts in all EOs. The major compounds found in cardamom, turmeric, ginger, and galangal were
α-terpinyl acetate (40.70%), β-turmerone (25.77%), α-zingiberene (22.69%) and 1,8-cineol (42.71%),
respectively. In general, 80% ethanol was found to be the most effective extracting solvent for the
bioactivities of the investigated species from the Zingiberaceae family. Among the crude extracts,
ethanolic extract of galangal showed the highest TPC value (63.01 ± 1.06 mg GA g−1 DW), while the
lowest TPC content was found in cardamom water extract (1.04 ± 0.29 mg GA g−1 DW). The AA
evaluated by two different assays (ferric-reducing antioxidant power-FRAP and the scavenging
activity of the cationic ABTS radical) proved that galangal rhizome is the plant with the highest
antioxidant potential. In addition, no statistical difference was found between the AA of turmeric and
ginger extracts, while cardamom rhizome was again inferior. In contrast to the crude extracts, the EOs
resulted in significantly lower ABTS and FRAP values, with turmeric EO showing the highest AA.

Keywords: Zingiberaceae family; cardamom; turmeric; galangal; ginger; essential oils; GC-MS/MS;
antioxidant activity

1. Introduction

The ginger family (Zingiberaceae) consists of 53 genera and about 1300 different species,
mainly distributed in South and South-East Asia [1]. Many herbs from this family have
found applications in various industries (food, cosmetics, perfumery, pharmacy, etc.)
due to their characteristic organoleptic properties (color, taste, odor) and their diverse
chemical composition [2]. Indeed, Zingiberaceae species are a rich source of various phy-
tochemicals, from alkaloids, carbohydrates, proteins, phenolic acids, flavonoids, and di-
arylheptanoids [3,4]. In addition, ginger plants are frequently used for the production
of essential oils (EOs), which are typically rich in monoterpenes and sesquiterpenes [3,5].
Besides their well-known use in cosmetics, cleaning products, perfumes, and aromatherapy,
EOs also serve as natural preservatives due to their proven antimicrobial and antifungal
properties [6–8]. However, a thorough evaluation of the chemical profile of EOs is of
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great importance to uncover potential synergistic antimicrobial activities between EO
compounds, as already shown for thyme [9,10] and ginger EO [11].

Cardamom (Elettaria cardamomum L. Maton) is a spice with a characteristic rich taste
and aroma, also known as “true cardamom” or “green cardamom” [3], rich in essential oils,
fatty acids, pigments, proteins, cellulose, sugars, starch, silica, calcium oxalate, and miner-
als [12]. The content of EOs in cardamom fruits varies between 0.2–6.2%, while the most
dominant compounds found are 1,8-cineol (20–60%) and α-terpinyl acetate (20–55%) [3].
Based on the results published so far, the cardamom fruit has potential applications as an
antimicrobial, antibacterial, antioxidant, and an efficient skin-permeation agent for certain
drugs [13,14], but also as bacterial inhibitor [15].

The main compounds found in the rhizome of turmeric (Curcuma longa L., curcuma)
are essential oil [16,17] and curcuminoids (including curcumin, dimetoxycurcumin, and bis-
dimetoxycurcumin), a class of diarylheptanoids responsible for the characteristic orange-
yellow color of turmeric spices, but also for their pharmaceutical properties [18]. In general,
the therapeutic properties of curcuma include insecticidal, antimicrobial, antifungal, and an-
tioxidant activity [16]. However, the results of published studies have also shown neuropro-
tective, hepatoprotective, cardiovascular, anti-inflammatory, antidiabetic, and anticancer
effects of the turmeric extract [19–21].

The main ingredients of the ginger rhizome (Zingiber officinale Roscoe) are gingerols/
shogaols and essential oil. Gingerols (characteristic compounds of the Zingiberaceae family,
especially ginger) are the biologically main active components of fresh ginger, while gin-
gerol derivatives, shogaols (dehydrated form of gingerols) are components of dried or
cooked ginger [22]. Ginger is also rich in vitamins A and C, while the other compounds
such as fatty acids, proteins, carbohydrates, fiber, ash, minerals (potassium, calcium, phos-
phorus, magnesium, iron) are present in lower amounts [23]. Recent studies have shown
various pharmaceutical effects of the ginger rhizome, and the most important is the proven
antidiabetic effect [24,25].

Alpinia officinarum Hance, commonly known as lesser galangal, with proven anti-
inflammatory, cytotoxic, thermostabilizing, lipid regulating, antioxidant, antiviral, and an-
timicrobial properties, is also a rich source of phenolic compounds, in particular diarylhep-
tanoids and essential oil [26]. However, despite its proven healing effects, some research
has shown that diarylheptanoids are associated with some limitations including low oral
absorption, bio-distribution, and systemic bioavailability, which lead to its failure in clinic
as a drug [27].

In general, it can be stated that the antioxidant and pharmaceutical properties of
Zingiberaceae plants are related to their chemical composition; this is primarily due to
the presence of phenolic compounds and other biologically active constituents. Vari-
ous extraction methods have already been evaluated for the isolation and purification
of different bioactive compound classes from ginger spices, including classical hydrodis-
tillation [2,5,28,29], extractions with supercritical fluids (supercritical CO2, supercritical
water) [22,30,31], ultrasound-assisted extraction [32,33], and microwave-assisted extrac-
tion [34]. Gas chromatography-mass spectrometry (GC-MS) is a commonly used method
for chemical characterization of EOs [1,29,32,35,36]. On the other hand, the polyphenolic
profile of the selected herbs was usually evaluated by high performance liquid chromatog-
raphy (HPLC) using different detectors [37–39]. In general, the chemical diversity of
Zingiberaceae species and the content of the individual bioactivities have already been
studied. For instance, based on the study reported by Elguindy et al., the major phenolics
identified in the cardamom extract were tannic acid, gallic acid, caffeic acid, and 4,5-
dicaffeoyl quinic acid [40]. In turmeric extracts, curcumin and its corresponding isomers,
dimetoxycurcumin and bis-dimetoxycurcumin, were determined to be the major com-
pounds in polar solvents [30]. The biological activity of ginger crude extracts is related to
the presence of gingerol, turmeric, paradol, geraniol, geranial, borneol, linalool, camphene,
zingerol, and zingiberone found in high concentrations [41], while Köse et al. in their study
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found flavonoids like kaempferol, apigenin, and luteolin as the most dominant compounds
in galangal extracts [37].

However, to the best of our knowledge, there is no published work that systematically
compares the chemical composition of the four selected Zingiberaceae herbs. Therefore,
the main contribution of this work focuses on the study of the chemical composition
and antioxidant activity (AA) evaluated by two different assay (ABTS and FRAP) of the
essential oils of four plants, namely galangal, cardamom, turmeric, and ginger, which were
extensively investigated after conventional hydrodistillation. In addition, the total phenolic
content (TPC) and AA of the crude extracts were also examined. For this purpose, the plant
material was processed by UAE using three different extraction solvents: 80% ethanol, 80%
methanol, and water.

2. Results and Discussion
2.1. Essential Oils (EOs) Composition

The content of total extracted EOs in the selected species from the Zingiberaceae family
varied from 0.29% to 3.74% of dry weight. GC-MS/MS analysis was used for the detailed
analysis of EOs of the four selected plant species (cardamom fruit and rhizomes of turmeric,
ginger and galangal) obtained by hydrodistillation. Consequently, GC-MS/MS analysis
revealed the presence of a total of 87 different chemical structures (compounds), 14 of
which were identified in varying amounts in all the EOs. All the identified compounds
and their respective contents in the target plants are listed systematically in Table 1 in the
order of elution from the non-polar VF-5ms capillary column.

Table 1. Chemical composition of essential oils (EOs) of four Zingiberaceae plants identified by GC-MS/MS after 3 h of
hydrodistillation.

No. Chemical Compound

Peak Area Percentage (%)

Classification
Cardamom Turmeric Ginger Galangal

Elettaria
cardamomum

L. Maton

Curcuma longa
L.

Zingiber
officinale
Roscoe

Alpinia
officinarum

Hance

1 4-acetyl-1-methyl-1-
cyclohexene - 0.03 - - other

2 p-acetyl toluene - 0.08 - - other
3 trans-anethole - 0.04 - 0.42 other
4 cis-α-bergamotene - - 0.11 - sesquiterpene
5 trans-α-bergamotene - 0.09 0.08 0.22 sesquiterpene
6 Borneol - - 0.04 0.06 monoterpene
7 β-bisabolene - 3.04 7.55 0.38 sesquiterpene
8 Butyl isobutyrate - - - 0.34 other
9 sec-butyl isobutyrate - - - 0.19 other

10 Benzyl acetone - - - 0.14 other
11 3-carene - 0.03 - - monoterpene
12 o-cymene - 0.01 - - monoterpene
13 p-cymene 0.11 3.36 0.10 0.52 monoterpene
14 Camphor - 0.01 0.10 2.24 monoterpene
15 p-cymenol - 0.17 0.03 0.03 other
16 Carvone - 0.06 - 0.34 monoterpene
17 Carvacrol - 0.22 - / monoterpene
18 β-caryophyllene - 0.85 0.06 0.49 sesquiterpene
19 ar-curcumene - 11.42 11.63 0.94 sesquiterpene
20 Caryophyllene oxide - 0.69 - 0.43 sesquiterpene

21 1-(3-cyclopentylpropyl)-
2,4-dimethylbenzene - 1.47 - - other

22 Cedrenol - 0.73 - - sesquiterpene
23 Curlone - 7.59 - - sesquiterpene
24 1,8-cineol/eucalyptol 33.78 2.01 2.92 42.71 monoterpene
25 Camphene - - 5.84 4.58 monoterpene
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Table 1. Cont.

No. Chemical Compound

Peak Area Percentage (%)

Classification
Cardamom Turmeric Ginger Galangal

Elettaria
cardamomum

L. Maton

Curcuma longa
L.

Zingiber
officinale
Roscoe

Alpinia
officinarum

Hance

26 Citronellol - - 0.07 - monoterpene
27 Citronellyl acetate - - 0.17 - monoterpene
28 α-copaene - - 0.21 0.05 sesquiterpene
29 δ-cadinene - - 0.19 0.38 sesquiterpene
30 α-calacorene - - - 0.63 sesquiterpene
31 β-calacorene - - - 0.08 sesquiterpene
32 Cubenol - - - 1.26 sesquiterpene
33 Cadalene - - - 0.74 sesquiterpene
34 Dimethyl styrene - 0.05 - - other

35
4,4-dimethyl-3,4-

dihydro
coumarin

- 0.63 - - other

36 Ethyl dihydrocinnamate - - - 0.10 other
37 β-elemene 0.11 - 0.36 - sesquiterpene
38 δ-elemene - - 0.03 - sesquiterpene
39 α-farnesene - - 2.26 - sesquiterpene
40 endo-fenchol - - - 0.03 monoterpene
41 exo-fenchol - - - 0.12 monoterpene
42 Fenchyl acetate - - - 0.55 monoterpene
43 D-germacrene - - 2.79 1.89 sesquiterpene
44 Geranial 0.08 - 0.04 - monoterpene
45 Geraniol 0.24 - - - monoterpene
46 Geranyl acetate 0.23 - 1.23 - monoterpene
47 α-humulene - 0.26 - 0.17 sesquiterpene
48 2-heptanol - - 0.04 - other
49 Isobutyl isovalerate - - - 0.08 other
50 Isoamyl isovalerate - - - 0.04 other

51 Isoamyl-2-
methylbutyrate - - - 0.06 other

52 Isoborneol - 0.01 1.42 0.60 monoterpene
53 Isobornyl acetate - - 0.58 0.22 monoterpene
54 Isobutyl benzoate - - - 0.21 other
55 Limonene 2.32 0.15 7.90 2.76 monoterpene
56 Linalool 2.72 0.02 0.41 0.41 monoterpene
57 Linalyl acetate 0.67 - - - monoterpene
58 Myrcene 0.78 0.05 0.43 0.20 monoterpene
59 6-methyl-5-hepten-2-one - 0.01 0.13 0.41 other
60 Methyl isovalerate - - - 0.05 other
61 Neral - - 0.36 - monoterpene
62 Neryl acetate 0.08 - - - monoterpene
63 Ocimene 0.06 - - - monoterpene
64 α-pinene 0.98 0.20 1.83 3.56 monoterpene
65 β-pinene 0.26 0.03 0.15 3.85 monoterpene
66 Phenethyl isobutyrate - - - 0.56 other
67 Phenethyl isovalerate - - - 0.44 other
68 α-phellandrene - 1.33 0.40 - monoterpene
69 α-selinene - - - 0.72 sesquiterpene
70 β-selinene - - 0.38 0.49 sesquiterpene
71 Sabinene 1.82 0.01 0.08 - monoterpene
72 β-sesquiphellandrene - 10.44 10.08 - sesquiterpene
73 Sabinyl acetate - 0.20 - - monoterpene
74 α-thujene 0.14 0.02 0.01 0.07 monoterpene
75 α-terpinene 0.36 0.03 0.03 0.25 monoterpene
76 γ-terpinene 0.61 0.03 0.04 0.31 monoterpene
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Table 1. Cont.

No. Chemical Compound

Peak Area Percentage (%)

Classification
Cardamom Turmeric Ginger Galangal

Elettaria
cardamomum

L. Maton

Curcuma longa
L.

Zingiber
officinale
Roscoe

Alpinia
officinarum

Hance

77 Terpinolene 0.32 0.26 0.14 0.20 monoterpene
78 4-terpineol 1.85 0.08 0.21 2.29 monoterpene
79 α-terpineol 2.98 0.20 0.69 11.11 monoterpene
80 α-terpinyl acetate 42.65 0.46 0.21 0.31 monoterpene
81 ar-turmerone - 12.28 - - sesquiterpene
82 β-turmerone - 25.77 - - sesquiterpene
83 Tricyclene - - 0.12 0.11 monoterpene
84 Thymol - 0.48 - - monoterpene
85 2-undecanone - - 0.38 - other
86 Valencene - - - 0.35 sesquiterpene
87 α-zingiberene - 5.13 22.69 - sesquiterpene

Total monoterpenes (%) 93.04 9.26 25.52 77.40
Total sesquiterpenes (%) 0.11 78.29 58.42 9.22

Other compounds (%) - 2.48 0.58 3.07
Total compounds identified (%) 93.15 90.03 84.52 89.69

From these results (Table 1), it can be concluded that monoterpenes generally predom-
inate in cardamom and galangal EOs, while sesquiterpenes are mainly found in turmeric
and ginger EOs. Interestingly, cardamom rhizome contains the highest content of α-terpinyl
acetate, which occurs in the low concentrations in the other herbs. The variations in the
content of common individual compounds found in EOs of the Zingiberaceae species studied
are shown in Figure 1.
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The highest extraction yield of EO in this study was achieved with cardamom fruits
originating from Guatemala (3.74%). Compared to the previously published works, this re-
sult was slightly higher. For example, Singh et al. achieved an extraction yield of 3.1%
for the Indian samples [42], while Kuyumcu Savan and Küçükbay reported an extraction
yield of 1% for the 3-h hydrodistillation of dried cardamom fruits from Turkey [43]. In our
particular case, based on the GC-MS/MS analysis, a total of 22 chemical constituents were
identified tentatively (Figure S1), which represents 99.15% of the total peak value recorded
(Table 1). The most important compounds (99.04%) were monoterpenes, among which
α-terpinyl acetate (42.65%) and 1,8-cineol/eucalyptol (33.78%) dominated. In addition to
many proven pharmaceutical properties of cardamom EO (antioxidant, anti-inflammatory,
antibacterial, anticancer, antifungal, and insecticidal effects) [3,14], the recently published
study also showed that α-terpinyl acetate has multi-target directed ligand (MTDL) po-
tential in Alzheimer’s disease [44]. The other compounds with a significant content in
cardamom EO were α-terpineol (2.98%), linalool (2.72%), limonene (2.32%), 4-terpineol
(1.85%), and sabinene (1.82%). These results are in good agreement with the previously
published works for the cardamom samples from Guatemala [32,45,46].

The extraction yield for EO from curcuma rhizome was 0.25%, which is comparable
with the results published by Naz et al., who achieved a yield of 0.67% for the Pakistani
sample [47], but significantly lower than the result published by Zhang et al. (4.03%)
for the samples from China [48]. This inconsistency in the results can be explained by
differences in the origin of the sample, the time of harvest, the characteristics of the
sample (dried or fresh samples), and the extraction method used [49]. Similarly, the plant
material analyzed in this work represents the products available on the Slovenian market.
Consequently, the process of storage, distribution, and preservation may influence the
chemical composition and quality of the products themselves [50–52]. The most important
of the 44 compounds identified in our specific sample were β-turmerone (25.77%) and
ar-turmerone (12.28%), followed by ar-curcumen (11.42%), β-sesquiphellandrene (10.44%),
curlone (7.59%), and α-zingiberene (5.13%) (Table 1 and Figure S2). The results are in good
agreement with those presented in the previously published studies on the characterization
of curcuma samples from China [2,16]. However, in the curcuma samples from India,
the mainly confirmed volatile integrities were α-phellandrene, β-sesquiphellandrene, and
1,8-cineol [17]. Furthermore, the chemical composition of the curcuma leaves differs
significantly from the chemical composition of the rhizome. In fact, EO of the curcuma
leaves contains terpinol (52.88%) and α-phellandrene (21.13%) as the main constituents [53].
However, clinical studies have shown that turmerones (in particular ar-turmerone and
β-turmerone) are the dominant compounds responsible for the pharmaceutical properties
of curcuma EO, justifying greater use of the turmeric rhizome over the plant leaves [54].
Indeed, based on the studies published so far, anti-inflammatory [55], anti-invasion [55],
anti-angiogenic [54], and anti-tumor [20] effects of turmerones have been reported.

In the case of the ginger rhizome originating from Madagascar, the yield of the ex-
tracted EO was 0.29%, and was comparable to the previously published results for the
hydrodistillation. For example, Al-Dhahli et al. reported extraction yields of 0.14% and
0.20% for Chinese and Saudi ginger [36]. However, a significantly improved extraction
yield (2.62%) was achieved by Mesomo et al., who used supercritical CO2 at 25.0 MPa and
333.15 K without reporting changes in oil quality [31]. The main components identified
in our sample were α-zingiberene (22.69%), ar-curcumene (11.63%), β-sesquiphellandren
(10.08%), limonene (7.90%) and β-bisabolene (7.55%) (Figure S3). The results are in good
agreement with the recently published study by Camero et al. [56]. Several other stud-
ies have also confirmed α-zingiberene as the main ingredient of ginger EO from Ghana,
Thailand, Poland, Nigeria, Australia and India [36,57,58], while ar-curcumene has been
identified as the main ingredient of Brazilian and Cuban genotypes [59]. From a pharma-
ceutical point of view, ginger extracts represent a potentially effective preventive agent
against various carcinogenic cells [60].
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Finally, the yield of EO extracted from the galangal rhizome was 0.35%, with no
difference between the results published by Raina et al. [29]. Fifty-three compounds
representing 89.69% of the total oil were tentatively identified by GC-MS/MS and are
listed in Table 1. The main compounds identified were 1,8-cineol (42.71%), α-terpineol
(11.11%), followed by camphene (4.58%), β-pinene (3.85%), α-pinene (3.56%), limonene
(2.76%), 4-terpineol (2.29%), and camphor (2.24%) (Figure S4). The occurrence of 1,8-
cineol as the main component of the rhizome oil of A. galanga in the present study is
consistent with earlier published results [2,28,29]. 1,8-cineol, also known as eucalyptol,
has demonstrated several clinical activities including therapeutic benefits in inflammatory
airway diseases, such as asthma or chronic obstructive pulmonary disease [61], and it also
possesses anti-inflammatory [62] and anti-oxidative [62] properties.

2.2. Total Phenolic Content (TPC) of the Crude Extracts

Figure 2 shows the total phenolic content (TPC), expressed as mg gallic acid equivalent
per gram of dry weight (mg GA g−1 DW) for aq. MeOH (80% MeOH), aq. EtOH (80%
EtOH) and water extracts of the selected Zingiberaceae species. In general, TPC values
varied significantly between the plant samples, ranging from 1.13 mg GA g−1 DW to
63.00 mg GA g−1 DW. On the other hand, no statistically significant difference was generally
found between the extraction efficiency of 80% MeOH and 80% EtOH for TPC. However,
the extraction efficiency of ultrapure water was the lowest in all tests, except for the
cardamom rhizome, where the same-very low TPC values were achieved in all evaluated
solvents. The choice of the appropriate solvent from the point of view of the utilization
of the extraction, but also its impact on the environment, is one of the most important
factors in the selection of an extraction technique. Although some authors have highlighted
methanol as the best solvent for the extraction of bioactive plant constituents [63,64], the use
of so-called GRAS (generally recognized as safe) solvents such as water or aqueous ethanol
solutions is a desirable alternative for the further use of the extracts obtained in the cosmetic,
food and pharmaceutical industries [65,66]. Consequently, from the results presented in
Figure 2, we can generally conclude that 80% EtOH represents a good extraction solvent
for isolation of bioactive components from plant material of Zingiberaceae species.
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were performed in duplicate. For comparison of the mean values, one-way ANOVA followed by
S-N-K post hoc was used. Different superscript letters indicate statistical differences in the extraction
efficiency of the tested solvents (p < 0.05), while asterisks indicate statistical differences in TPC
content between different plants (p < 0.05).
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Comparing the content of bioactive phenolic compounds expressed as TPC among the
studied plants, the lowest TPC value was determined in cardamom rhizome and correlates
well with previously published studies [24,33,38]. The low TPC content in cardamom can
be explained by the fact that the flavonoid diosmin, the most important single phenolic
compound [38], is practically insoluble in water and poorly soluble in polar organic solvents
(e.g., EtOH, MeOH) [67].

In the case of the turmeric rhizome, the TPC of the water extract was 2.80 ± 0.19 mg
GA g−1 DW, while the TPC values measured in the alcoholic extracts were significantly
higher, namely 13.40 ± 0.66 mg GA g−1 DW and 13.93 ± 0.81 mg GA g−1 DW for 80%
MeOH and 80% EtOH, respectively. Again, the results can be explained by the practical in-
solubility in water (<8 µg mL−1) of the main bioactive turmeric compounds (curcuminoids),
and their good solubility in polar organic solvents, like methanol and ethanol [68]. How-
ever, our results for curcuma were somewhat higher compared to the recently published
work of Yang et al. [69]. The disagreement in the results can be explained by differences in
the origin of the samples, as we analyzed curcuma sample from India, while Yang et al.
analyzed a Chinese sample [69].

In the case of the ginger rhizome, the highest TPC value (9.63 ± 0.05 mg GA g−1

DW) was found in the methanolic extract, while water resulted in the lowest TPC content
(6.42 ± 0.33 mg GA g−1 DW). Similar results were observed in the study by Hester et al. [70].

Finally, the galangal extracts showed the highest TPC values without a statistically
significant difference in the content between the 80% EtOH (63.00 ± 1.06 mg GA g−1 DW)
and 80% MeOH (59.52 ± 4.75 mg GA g−1 DW). As previously reported, in addition to
the volatile compounds identified in EO, the galangal rhizome is a rich source of various
flavonoids, including kaempferol, apigenin, luteolin, quercetin, and isorhamnetin [37].
Our results for TPC (for the samples originating from China) are comparable to the results
reported by Lu et al. [39].

2.3. Antioxidant Properties of Crude Extracts and Essential Oils of Zingiberaceae Species

In this study, two different in vitro tests, ferric reducing antioxidant capacity (FRAP)
and ABTS radical scavenging activity, were also performed to evaluate the antioxidant
properties of crude extracts and essential oils of selected plant material.

2.3.1. FRAP Assay

FRAP assay of the crude extracts and essential oils was evaluated and the final results
were expressed as mg Fe2+ per gram of dry weight (mg Fe2+ g−1 DW) and mg Fe2+ per
milliliter of essential oils (mg Fe2+ mL−1 EO), respectively.

In the case of crude extracts (Figure 3), alcoholic extracts have the highest antioxidant
capacity, although for cardamom and galangal no statistically significant difference was
found between the solvents tested. These results are in good agreement with the results
published by Lu et al., who evaluated the antioxidant capacity of the 15 commonly used
species from China [39].

As shown in Figure 3, the highest values (between 75.39 ± 10.57 mg Fe2+ g−1 DW
and 92.02 ± 4.09 mg Fe2+ g−1 DW) were found for galangal. A similar trend was ob-
served in the study by Köse et al., who evaluated the antioxidant activity of galangal
extracts obtained with water, ethanol and water/ethanol mixture [37]. On the other hand,
the lowest FRAP values were observed for cardamom fruits. Finally, no statistically signifi-
cant difference was found between the reduction capacity of turmeric and ginger crude
extracts (Figure 3). The highest FRAP value for turmeric was observed for ethanolic ex-
tract (20.82 ± 0.42 mg Fe2+ g−1 DW), which was comparable to the results published
by Yang et al. [69]. In the case of the ginger rhizome, the same values were determined
for ethanolic (20.73 ± 0.70 mg Fe2+ g−1 DW) and methanolic (20.82 ± 0.42 mg Fe2+ g−1

DW) extracts, while water was inferior as the extraction solvent with a FRAP value of
11.58 ± 1.26 mg Fe2+ g−1 DW.
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A different superscript letters (a, b) indicate a statistical difference in the extraction efficiencies of
the solvents tested (p < 0.05), while asterisks indicate statistical differences in antioxidant activity
between different plants (p < 0.05).

The reducing power of the EOs (Figure 4) was again the lowest for the cardamom
sample, while the highest FRAP value was obtained for the EO from turmeric. In con-
trast to the crude extracts, the EO from galangal showed weaker ferric reducing power.
Ginger and galangal oils showed similar antioxidant activities as the study published by
Avci et al. [71]. These results can probably be explained by differences in the chemical
composition within the EOs studied. Namely, ginger EO and especially turmeric EO
are rich in sesquiterpenes, whereas the dominant volatile compounds in cardamom and
galangal were monoterpenes. Turmerones (especially ar-turmerone and β-turmerone) are
the main compounds believed to be responsible for the antioxidant properties of turmeric
EO [72]. For example, in the study of Gounder and Lingamallu, which demonstrated
high antioxidant activity of turmeric EO, a significant correlation was found between the
reduction of FRAP and the decrease of turmerone content [49]. A similar trend was also
observed in the study published by Avanço et al. [16].

2.3.2. ABTS Assay

In addition, ABTS assay was performed, where the ability of the crude extracts and
EOs to scavenging the ABTS•+ was expressed as mg trolox equivalent per gram of dry
weight (mg TE g−1 DW) or mg trolox equivalent per milliliter of essential oil (mg TE mL−1

EO), respectively.
In the case of the crude extracts, it can generally be concluded that galangal possesses

the highest ABTS•+ scavenging activity, while no significant differences were found be-
tween the other three plants (Figure 5). By comparison, Köse at al. showed that galangal
has marked antioxidant, anticholinergic, reducing, radical scavenging, and metal bind-
ing activity [37].
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In the case of cardamom rhizome, similar, very low results (ranging from 4.10 mg TE
g−1 DW to 4.57 mg TE g−1 DW) were observed for all solvents tested (Figure 5). These re-
sults are in good agreement with results reported by Przygodzka et al. who classified
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cardamom in the group of species with low antioxidant activity [33]. Przygodzka et al.
have also confirmed a statistically significant correlation between the TPC of the crude
ethanolic extracts and the antioxidant ability of the studied plant material [33].

In contrast, no differences were found between 80% EtOH and 80% MeOH for turmeric,
ginger and galangal, while water extracts showed the lowest values. Compared to the
results published by Yang et al., for ABTS values for 80% EtOH turmeric extract, the re-
sults obtained in our study were slightly higher [69]. However, the study by Yang et al.,
confirmed a positive statistically significant difference in the extraction efficiency of UAE
over the conventionally used solid/liquid extraction [69]. In general, our results are in
good agreement with the results of Sana et al. [73], who investigated the effect of extraction
parameters and extraction solvents on the antioxidant activity of turmeric.

Finally, in this study, the TPC values of the crude extracts of Zingiberaceae species
obtained with the tested solvents (80% EtOH, 80% MeOH and water) were highly positively
correlated with the AA values determined by ABTS and FRAP assays. The highest positive
correlation (0.01 significant level) was observed for the water extracts with the correlation
coefficients of r = 0.999 and 0.998 between TPC and ABTS and between TPC and FRAP,
respectively. In the case of alcoholic extract, TPC was positively correlated with ABTS at the
significant level of 0.05 (r = 0.985 and r = 0.988 for 80% EtOH and 80% MeOH, respectively),
while the higher correlation (0.01 significant level) was found between TPC and FRAP
values (r = 0.995 for ethanolic extracts and r = 0.994 for methanolic extracts).

A statistically significant difference was found in the EOs among all the species
studied (Figure 6). Compared to the crude extracts, the EOs generally showed weaker
ABTS•+ scavenging activity. The highest ABTS value expressed as trolox equivalents
(4.14 mg TE mL−1 EO) was observed for turmeric EO, followed by galangal, ginger, and
finally cardamom EO.
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3. Materials and Methods
3.1. Chemicals and Plant Material

Folin Ciocalteu’s reagent (FCR), anhydrous Na2CO3, FeSO4·7H2O, acetic acid (99.8%)
and gallic acid standard (99%) were supplied by Merck (Darmstadt, Germany). 2,4,6-tris(2-
pyridyl)-s-triazine (TPTZ reagent, ≥99%), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic
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acid) diammonium salt (ABTS reagent), (±)-6-hydroxy-2,5,7,8-tetramethylchromane-2-
carboxylic acid (trolox, 97%), potassium persulfate (K2S2O8), FeCl3·6H2O, sodium acetate
(CH3COONa), anhydrous sodium sulfate (Na2SO4) and n-hexane (97%) were from Sigma
Aldrich (St. Louis, MO, USA). HPLC-grade methanol (MeOH) and ethanol (EtOH, 96%)
were supplied by Honeywell (Frankfurter, Germany), while ultrapure water was treated in
the laboratory on a daily basis.

Dried plant material of selected Zingiberaceae species (cardamom, turmeric, ginger
and galangal) was generously provided by the specialized market “Natural loti” Rakek,
Slovenia. In accordance with the supplier specification, the plant material was dried in
drying chambers at a controlled temperature (30 ◦C), with constant air circulation and
while maintaining optimum humidity conditions. Prior to distribution, the dried material
was stored in dry, airy, and cool areas, packed in tightly sealed containers to preserve
flavor, color, and aroma and prevent access to moisture. The laboratory samples were
ground in the electric blender (Profi Cook PC-KSW1021) for 1 min at room temperature,
homogenized, and kept in a dark location before analysis. Information on the analyzed
plant material is presented in Table 2.

Table 2. Information of the analyzed plant material.

Common Name Latin Name Plant Part Origin

Cardamom Elettaria cardamomum L. Maton fruits Guatemala
Turmeric Curcuma longa L. rhizome India
Ginger Zingiber officinale Roscoe rhizome Madagascar

Galangal Alpinia officinarum Hance rhizome China

3.2. Hydrodistillation of eEssential Oils from the Selected Species of Zingiberaceae Family

For the extraction of the essential oils (EOs) the classical hydrodistillation in the
Clevenger apparatus was carried out [35]. Here, 100 g of the ground plant material
was weighed and 600 mL ultrapure water was added. The heating temperature of the
calotte was set to 130 ◦C, and the extraction was performed under these conditions for
3 h. The oils collected over anhydrous sodium sulfate were automatically weighed and
analyzed. All extractions were carried out in duplicate.

3.3. GC and GC-MS/MS Analysis of the Essential Oils

For chemical identification and quantification, 1 µL of properly diluted EOs in n-
hexane (1:20, v:v) was analyzed using a gas chromatograph Varian Saturn 2100T coupled
to a MS/MS Saturn 2100 ion trap mass spectrometer. The chromatographic separation
was performed with the capillary column VF-5ms (30 m × 0.25 mm × 0.25 µm). The split
injection mode was used (split ratio 1:20), while He 6.0 was used as carrier gas with a
flow rate of 1 mL min−1. The injector temperature was set to 230 ◦C. The initial oven
temperature was set to 40 ◦C for 4 min, then the temperature was raised to 150 ◦C at a
rate of 5 ◦C per min and held at this temperature for 13 min. In addition, the column
was heated up to 200 ◦C at a rate of 10 ◦C and finally kept at 200 ◦C for the next 15 min.
The total running time was 59 min. The mass spectra were recorded in the SCAN mode
in a range from 50 to 650 m/z using electron ionization energy at 70 eV and the detector
temperature was set to 150 ◦C. The volatile compounds were identified by comparing the
mass spectra of the compounds in plant samples with those available in the NIST library
and the data available in the literature.

3.4. Preparation of Crude Solvent Extracts by Ultrasound-Assisted Extraction (UAE)

For the evaluation of the content of non-volatile bioactive compounds, an UAE extrac-
tion was carried out. For this purpose, 500 mg of ground plant material was weighed into
a 50 mL conical centrifuge tube and 10 mL of selected solvent (80% MeOH or 80% EtOH or
ultrapure H2O) was added. The extractions were performed in an ultrasonic bath (Vevor,
Shanghai, China) under the evaluated temperature (50 ± 1 ◦C) for 30 min. The extracts
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obtained were then centrifuged with a laboratory centrifuge (Eppendorf, 5804R, Hamburg,
Germany) for 10 min at 10,000 rpm and the same extraction protocol was repeated once
again with new 10 mL of the extraction solvent (80% MeOH or 80% EtOH or ultrapure
H2O). The supernatants were combined in a 25 mL volumetric flask and made up to the
mark with a suitable solvent. Before analysis, the extracts were filtered through a 0.45 µm
PTFE filter and properly diluted (usually 1:5, v:v). All extractions and instrumental analysis
were performed in duplicate.

3.5. Determination of Total Phenolic Content (TPC) of Crude Solvent Extracts

The total phenolic content (TPC) for the crude extracts of the selected Zingiberaceae
species was determined by the standard spectrophotometric method first described by
Singleton, with some modifications [74,75]. First, different concentrations (25, 50, 100, 150,
250, and 500 mg/L) of the standard solutions of gallic acid were prepared. After that,
3160 µL of ultrapure water was mixed with 40 µL of properly diluted extracts or gallic
acid standard solutions and 200 µL of a 10% FC reagent. The mixture was left to stand for
6 min and 600 µL of a 20% Na2CO3 solution (w:v) was added. After 2 h of incubation at the
dark place, the absorbances were measured at 765 nm against ultrapure water as a blank.
The concentrations were expressed as mg gallic acid equivalent per gram of dry weight
(mg GA g−1 DW).

3.6. Determination of Antioxidant Activity of Crude Extracts and Essential Oils
3.6.1. ABTS Radical Scavenging Assay

The cationic ABTS•+ radical solution was prepared by mixing equal volumes of a 7 mM
solution of ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt)
and a 2.4 mM solution of potassium persulfate (K2S2O8) and was incubated for 12–16 h in
a dark place at room temperature (RT). Before use, this solution was further diluted with
absolute EtOH to adjust the absorbance to 0.70 ± 0.05 at 734 nm (about 1 mL of ABTS•+

solution corresponds to 55–60 mL of EtOH) [76]. In addition, 3950 µL of the reaction
solution was mixed with 50 µL of standard trolox solutions (in the concentration range of
0.1–1.0 mM) or properly diluted crude extracts or properly diluted essential oils. After a
30 min incubation in the dark at RT, the absorbances at 734 nm were measured against
the blank solution (3950 µL ABTS•+ and 50 µL absolute EtOH). The scavenging effect,
expressed in %, was calculated using the following equation:

Scavenging effect (%) =
(AB − AA)

AB
× 100 (1)

where AB represents the absorbance of the mixture of ABTS•+ and EtOH (blank value),
while AA represents the absorbance of the mixture of ABTS•+ and trolox solution/extract/EO.
The final concentrations were expressed as mg trolox equivalent per gram of dry weight
(mg TE g−1 DW) or mg trolox equivalent per milliliter of essential oil (mg TE mL−1 EO),
respectively.

3.6.2. Ferric Reducing Antioxidant Power Test (FRAP Assay)

The antioxidant activity of the crude extracts, expressed as mg Fe2+ ion equivalent
per gram of dry weight (mg Fe2+ g−1 DW) and essential oils, expressed as mg Fe2+ ion
equivalent per milliliter of essential oil (mg Fe2+ mL−1 EO), was determined by a standard
spectrophotometric method with slight modifications [77]. In short, the daily fresh reagent
FRAP was prepared by mixing acetate buffer (pH = 3.60), 10 mM TPTZ solution in 40 mM
HCl, and 20 mM FeCl3 6H2O in the volume ratio 10:1:1 at 37 ◦C [78]. Working solutions
of Fe2+ ions in the concentration range 10–300 mg L−1 were prepared by diluting 20 mM
Fe2+ standard solution with ultrapure water. For the measurements, 4950 µL of the reagent
FRAP was mixed with 50 µL of properly diluted crude extracts/properly diluted essential
oil or Fe2+ working solutions or properly diluted crude extract or properly diluted essential
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oil. After 30 min of incubation at 37 ◦C, the absorbances at 593 nm were measured against
FRAP reagent as a blank value.

3.7. Statistical Analysis

All results were expressed as mean value ± standard deviation. The SPSS software:
IBM SPSS Statistics for Windows, Version 22.0 (Armonk, NY: IBM Corp., published 2013)
was used for the statistical evaluation of the results obtained. For that purpose, a one-way
analysis of variance (ANOVA) at a 95% confidence level and a Student-Newman-Keuls
(S-N-K) post-hoc test were applied. The correlation analysis between TPC and AA of the
crude extracts of the selected spices was performed by calculating Pearson’s correlation
coefficient.

4. Conclusions

Many plant species contain valuable EOs that are useful in many different areas,
mainly because of their strong odor and because they have been shown to have a wide vari-
ety of pharmacological effects. The main constituents of EOs are monoterpenes, which have
a pronounced antiseptic and antibacterial effects. In second place are the sesquiterpenes,
which have anti-inflammatory and analgesic effects. In our study, we successfully iso-
lated the EOs of four plant species belonging to the Zingiberaceae family, namely car-
damom, turmeric, ginger, and galangal, and quantified their major constituents. The results
confirmed that 1,8-cineol (2.01–42.71%), α-terpinyl acetate (0.21–42.65%), limonene (0.15–
7.90%), α-pinene (0.20–3.56%), and β-pinene (0.03–3.85%) were the main monoterpenes
in all the oils studied. Antioxidant assay (ABTS and FRAP) pointed out that turmeric EO
possessed the highest antioxidant capacity, while the lowest value was determined for car-
damom EO. In addition, the antioxidant activity of crude aqueous, ethanolic, and methano-
lic extracts was compared with different antioxidant assays and the results generally
confirmed galangal extracts as those with the strongest antioxidant activity, followed by
turmeric and ginger extracts, while cardamom extracts showed the lowest antioxidant
capacity. Overall, the best extraction of antioxidant components was obtained when ethanol
was used as a solvent followed by extraction with methanol and water. Many papers have
been published on the antioxidant activity of Zingiberaceae species. However, the data show
much inconsistency between the same essences or extracts, so direct comparison of results
is very difficult. The reasons for this variability can be understood by considering all the
factors that influence the chemical composition of the obtained extracts, namely climatic,
seasonal, and geographical conditions, harvest period, parts of the plant used, distillation
or extraction technique and antioxidant activity assay applied, among others. Anyhow,
our results confirmed that plant species belonging to the family Zingiberaceae can serve as a
good natural source of antioxidant components and natural EOs that can be widely used
in modern pharmaceutical, food, nutraceutical, and cosmetic industries.
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essential oil, Figure S4: Typical GC-MS/MS chromatogram of galangal (Alpinia officinarum Hance)
essential oil.
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