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Abstract: RNA-mediated pathways form an important regulatory layer of myriad biological pro-
cesses. In the last decade, the potential of RNA molecules to contribute to the control of agricultural
pests has not been disregarded, specifically via the RNA interference (RNAi) mechanism. In fact,
several proofs-of-concept have been made in this scope. Furthermore, a novel research field regarding
extracellular RNAs and RNA-based intercellular/interorganismal communication is booming. In
this article, we review key discoveries concerning extracellular RNAs in insects, insect RNA-based
cell-to-cell communication, and plant–insect transfer of RNA. In addition, we overview the molecular
mechanisms implicated in this form of communication and discuss future biotechnological prospects,
namely from the insect pest-control perspective.

Keywords: crop protection; extracellular vesicle; exosome; intercellular communication; interk-
ingdom; interspecies; non-coding RNA; pest control; RNA binding protein; RNA delivery; RNA
interference (RNAi); small RNA

1. Introduction: Regulatory RNAs and Insect-Plant Interactions

RNAs exist in a wide variety of structures and sizes, well suited to regulate a multitude
of processes. Regulatory RNAs, also referred to as non-coding RNAs, do not contribute
directly to protein synthesis but function at various control levels to modulate gene expres-
sion. These molecules act both at the transcriptional and post-transcriptional levels, by
mediating chromatin modulation, regulating alternative splicing, inducing suppression of
translation, or directing the degradation of target transcripts [1].

Eukaryotic regulatory RNAs are broadly classified into long (≥200 nt) and small
(≤200 nt). While numerous of the so-called long non-coding RNAs are described to regulate
gene expression at various levels, it has recently been shown that some might, in fact, have
coding functions [1,2]. Nonetheless, long non-coding RNAs and the mechanisms by which
they exert their functions are still poorly characterized and deserve further research efforts.
On the other hand, small RNA (sRNA)-based regulatory mechanisms are well established.
In particular, the discovery of the RNA interference (RNAi) mechanism in animals resulted
in a Nobel Prize and motivated a boom of comprehensive studies unveiling the functional
role of these molecules in post-transcriptional silencing [3–6]. In short, during RNAi, sRNAs
of approximately 18–30 nt are incorporated into an RNA-induced silencing complex (RISC),
which is then directed to a target transcript via Watson–Crick base pairing. Subsequently,
an Argonaute (Ago) protein within RISC acts to inhibit or degrade the target transcript,
resulting in suppressed gene expression [7,8].

Classification of sRNAs relies on their biogenesis mechanisms, size, complementarity
to the target, associated proteins, and main regulatory processes in which they are involved.
Based on these, several sRNAs are recognized among eukaryotes, of which two are common
to plants and animals: microRNAs (miRNAs) and small interfering RNAs (siRNAs).
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In broad terms, miRNAs originate from the processing of endogenous stem-loop RNA
precursors and act to regulate the expression of endogenous genes. In turn, siRNAs
originate from long double-stranded RNA (dsRNA) structures and mainly function in
the protection against viruses and transposons [9–11]. While many other sRNA types are
distinguished, within and beyond the formerly described classes, these are not discussed
in the context of the current review.

Although the mechanisms by which they act are not as extensively investigated as in
eukaryotes, regulatory RNAs are also present in Archaea and Bacteria. In this regard, the
RNA chaperone Hfq is well described to play a central role in several RNA-based regulatory
systems in prokaryotes [12–17]. Furthermore, prokaryotic Ago proteins have been shown to
contribute to some forms of RNA-guided gene regulation [18–20]. In addition, the CRISPR-
Cas (clustered regularly inter-spaced short palindromic repeats and associated genes)
system has attracted a lot of attention due to its exceptional potential for RNA-guided
genome editing. In fact, this mechanism led to the 2020 Nobel Prize in Chemistry [21,22].
While prokaryotic regulatory RNAs differ from their eukaryotic counterparts in several
aspects, such as size range and associated pathways, their contribution to regulatory
mechanisms in multiple processes is also evident [23–25].

While regulatory RNAs and their pathways are mostly investigated at the intracellular
level, discoveries regarding a role of extracellular RNAs in cell-to-cell communication are
now making the scene. Numerous are the examples of interspecies and even interking-
dom RNA-based communication, especially those concerning host–parasite/symbiont
interactions. The study of RNA-based transfer of information promises not only to bring
fundamental insights into a novel layer of regulatory complexity, but also to open doors to
a handful of biotechnological applications [26–28].

Insects are the largest and most diverse group of animals on Earth. They form an
important component of the ecosystems and affect many aspects of human life. A ma-
jor part of insects’ impact occurs via their interaction with plants; for instance, some
species are important pollinators, while others are agricultural pests and vectors of plant
diseases [8,29,30]. In this scope, insects and their host plants have gone through a long
coevolution and thereby developed several known forms of communication via specific
effector proteins, volatiles, and other chemicals [31,32]. Recently, growing evidence sug-
gests the existence of RNA-based cell-to-cell communication in insects and in plant–insect
interactions. Understanding the mechanisms of intercellular RNA transfer in insects, as
well as of the communication between Animalia and Plantae, promises to contribute to the
development of novel technologies. These are crucial to cope with insect-related challenges,
and valuable examples are RNAi-directed pest control strategies. In this manuscript, we
review the current state of the art concerning RNA-based communication in and between
insects, as well as the RNA transfer between plants and insects. In addition, we discuss the
possible underlying transfer mechanisms and the related biotechnological prospects.

2. Extracellular RNA-Based Communication

The presence of RNA molecules in extracellular environments, mainly of sRNAs,
has been systematically reported. Throughout the past decade, it became evident that
RNA molecules mediate an important layer of communication, even between diverse
and phylogenetically distant organisms [28,33,34]. In plants, the role of mobile RNAs in
intercellular communication has been well-established [35,36]. In animals, extracellular
RNAs are extensively described in mammalian biofluids. These molecules are known to be
secreted followed by functional uptake into recipient cells [37–56]. In invertebrates, the
presence of extracellular RNAs has been demonstrated in arthropods and nematodes, with
a limited number of studies demonstrating functional RNA transfer [57–82]. Below, we
review the current knowledge on extracellular RNAs in insects, establishing the distinct
levels of this communication: intercellular/intraindividual, interindividual, interspecies,
and interkingdom (insect–plant).
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2.1. Intercellular/Intraindividual

In insects, little more than a handful of studies report extracellular RNAs and their
(potential) role in intercellular/intraindividual communication, namely in beetles and
flies: (i) extracellular sRNA populations have been observed in the hemolymph of the
korean rhinoceros beetle, Allomyrina dichotoma [67]; (ii) miRNAs were detected in cell-free
hemolymph of Drosophila melanogaster flies, and some were demonstrated to differentially
accumulate with age [62]; (iii) several sRNA populations have been found in the extra-
cellular medium of the D. melanogaster cell lines S2R+ and D17-c3 [63]; (iv) extracellular
miRNAs have been identified in medium of cultured D. melanogaster cells, namely of S2
and Cl8 cell lines, with indications for differential secretion [65]; (v) in Drosophila flies,
extracellular siRNAs have been shown to contribute to systemic antiviral immunity [64];
(vi) extracellular siRNAs were demonstrated to spread the RNAi signal in red flour beetle,
Tribolium castaneum cultured cells [66]; and (vii) in the Colorado potato beetle, Leptinotarsa
decemlineata, dsRNA has been identified in the extracellular medium of cultured cells
previously treated with dsRNA [68]. These findings are summarized in Table 1.

Table 1. Summary of the reported studies demonstrating extracellular RNAs and their functional
transfer in insects. Plasma refers to cell-free hemolymph. * Indicates that functionality was reported.

Insect Sample RNA Reference

In
te

rc
el

lu
la

r
/

In
tr

ai
nd

iv
id

ua
l

Korean rhinoceros beetle,
Allomyrina dichotoma plasma sRNAs [67]

Fruit fly,
D. melanogaster plasma miRNAs [62]

Fruit fly,
D. melanogaster

medium of cultured cells
(S2R+ and D17-c3) sRNAs [63]

Fruit fly,
D. melanogaster

medium of cultured cells
(S2 and Cl8 cell lines) miRNAs [65]

Fruit fly,
D. melanogaster plasma siRNAs * [64]

Red flour beetle,
T. castaneum

medium of cultured cells
(TcA cell line)

siRNAs *,
miRNAs and other

sRNAs
[66]

Colorado potato beetle,
L. decemlineata

medium of cultured cells
(Lepd-SL1 cell line) dsRNA [68]

In
te

ri
nd

iv
id

ua
l Honey bee,

A. mellifera nurse bee secretions miRNAs * [70]

Honey bee,
A. mellifera

hemolymph,
worker and royal jellies

dsRNA *, ssRNA
and sRNAs [71,72]

Florida carpenter ant,
C. floridanus trophallactic fluid miRNAs [73]

In
te

rs
pe

ci
es

Mosquito,
Aedes aegypti and Aedes

albopictus
saliva miRNAs * [60]

Mosquito,
Anopheles coluzzii saliva miRNAs and other

sRNAs [61]

Parasitic wasp,
C. vestalis

host body
(Diamondback moth,

P. xylostella)
miRNAs * [74]

2.2. Interindividual

Besides serving cell-to-cell communication within single organisms, RNA molecules
have the potential to mediate interactions between individuals. This is particularly studied
in insects, where interindividual RNA-based communication has been shown in social
species. The first finding regards the honey bee, Apis mellifera, where caste determination
has been shown to be influenced by miRNAs in nurse bee secretions [70]. More recently,
a transmissible RNA pathway across generations, via the hemolymph and followed by
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secretion in the jellies, has been demonstrated [71,72]. In addition, miRNAs have been
identified in the trophallactic fluid of the Florida carpenter ant, Camponotus floridanus,
contributing to the concept of interindividual RNA transfer in social insects [73]. Table 1
resumes these reports.

2.3. Interspecies

Functional RNA transfer between different species is also currently described in
animals. This is broadly termed interspecies RNA-based communication, and the so-far
described examples mainly refer to host–parasite interactions [74,75,77]. A fascinating
example is reported in insects and concerns the parasitic wasp Cotesia vestalis and its host
Plutella xylostella, the diamondback moth. Specifically, the developing wasp larva has the
capacity to release teratocyte cells into the host body. These cells then secrete extracellular
vesicles (EVs) containing the miRNA Cve-miR-281. On another front, the wasp larva
also releases the associated C. vestalis bracovirus, which expresses the Cve-miR-novel22
miRNA in the host. Remarkably, both miRNAs influence the host’s ecdysone cascade
to delay its development, hereby granting the parasite additional time to develop [74].
In addition, sRNAs have been identified in saliva of mosquitos and other blood-feeding
arthropods, allowing speculation about functions of these molecules in modulating host
response [59–61,82]. In line with this, parasitic nematodes were shown to secrete sRNA
molecules, which, in some cases, have been proven to regulate host biology [77–80]. The
reports on (potential) interspecies RNA-based communication in insects are briefed in
Table 1. Noteworthy, interspecies RNA communication is also reported within Plantae. The
studied examples mainly regard parasitic plants from the genus Cuscuta and their hosts,
where bidirectional RNA transfer has been demonstrated [83–90]. Furthermore, Cuscuta
miRNAs have been reported to target Arabidopsis genes [91]. In addition, unidirectional
movement of small RNAs from shoots to roots in a soybean–common bean (Glycine max-
Phaseolus vulgaris) grafting system has been recently demonstrated [92].

2.4. Interkingdom

There are known cases of RNA transfer crossing the three domains of life and sev-
eral examples of interkingdom RNA-based communication between plants or insects and
their microorganisms. Within Eukarya, functional RNA transfer has been reported be-
tween plants (Plantae) or insects (Animalia) and their fungal (Fungi) or protist (Protista)
pathogens [28,93–97]. In this scope, the currently available knowledge points towards the
existence of functional RNA transfer systems between insects and plants, as addressed in
the following sections.

2.4.1. Insect to Plant RNA-Based Communication

Until now, very little is known regarding RNA transfer from insects to plants, with
only three reported studies. The first indication for a possible insect–plant functional RNA
transfer was obtained in the green peach aphid, Myzus persicae. In this study, reduced
aphid fecundity was observed when the insect fed on Arabidopsis mutants for the miRNA
pathway. This led to speculation that processing of aphid miRNAs by the plant might
mediate aphid infestation [98]. Later, sRNAs from the phloem-feeding whitefly Bemisia
tabaci have been identified both in tissue and phloem of the tomato plant [99]. Interestingly,
more recently, M. persicae aphids were demonstrated to transfer the Ya transcript to their
host plants, where it moves to distal leaves. This transcript was identified as a long non-
coding RNA virulence factor, with functional studies demonstrating that it promotes aphid
fecundity [100].

2.4.2. Plant to Insect RNA-Based Communication

The presence and functionality of dietary RNAs in animals have been a matter of de-
bate over the last decade [101–106]. Nevertheless, in insects, increasing functional evidence
points towards the natural existence of some insect–plant RNA-based communication
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levels. Several studies identify plant-derived RNAs in herbivorous insects, and some
even report functionality. The presence of Cucumis melo miRNAs has been shown in the
cotton–melon aphid, Aphis gossypii, demonstrating that plant miRNAs are stable in the
insect body [107]. In the silkworm, Bombyx mori, mulberry miRNAs were identified in both
hemolymph and tissues [108]. Later, sorghum miRNAs were identified in the greenbug,
Schizaphis graminum, and yellow sugarcane miRNAs in the yellow sugarcane aphid, Sipha
flava. In silico target prediction indicated the involvement of these miRNAs in processes
important for aphid fecundity, suggesting a role in decreasing aphid infestation [109]. An-
other study identified miRNAs of Brassica oleracea in the gut of M. persicae, the green peach
aphid. The predicted miRNA targets in the insect were mainly carbohydrate transport
and metabolism, RNA processing and modification, and nuclear structure genes [110].
Plant-derived miRNAs were also shown to be present in the hemolymph of P. xylostella,
the diamondback moth. Importantly, two of the most abundant identified plant miRNAs
were validated to target P. xylostella hemocyanin domain containing genes, that are known
to play important roles in the hemolymph of arthropods. Moreover, other highly abundant
plant miRNA was demonstrated to influence the pupal development and egg-hatching
rate [111,112]. Remarkably, plant miRNAs found in honeybee larval food contribute to
caste determination. Specifically, plant miRNAs are enriched in beebread in comparison
with royal jelly, some of which were demonstrated to prevent larval differentiation into
queens and to induce development into worker bees. Feeding miR162a to larvae resulted
in worker bee phenotypes, with similar results in D. melanogaster larvae [113]. This miRNA
targets A. mellifera TOR, a key player in cast development [113,114]. Table 2 summarizes
the studies reviewed in this section.

Table 2. Summary of the reported studies indicating natural RNA transfer from plant to insects.
* Indicates that functionality was reported.

Plant Insect Sample RNA Reference

C. melo Cotton-melon aphid,
A. gossypii whole insect miRNAs [107]

Morus notabilis Silkworm,
B. mori

hemolymph,
fat body, and

silk gland
miRNAs [108]

Sorghum bicolor Greenbug,
S. graminum whole insect miRNAs [109]

Hordeum vulgare Yellow sugarcane aphid,
S. flava whole insect miRNAs [109]

B. oleracea Green peach aphid,
M. persicae gut miRNAs [110]

Arabidopsis thaliana Diamondback moth,
P. xylostella hemolymph miRNAs * [111]

Brassica campestris Honey bee,
A. mellifera

beebread and
royal jelly miRNAs * [113]

2.4.3. Engineered Plant-to-Insect RNA Transfer

Adding to the previously described observations, it is relevant that plant–insect func-
tional transfer of RNA can be engineered to occur. In short, host plants can be genetically
modified to express specific RNA molecules targeting key insect genes. When the insect
feeds on the plant, these RNA molecules enter the insect body, are taken up by recipient
cells, and induce gene silencing by RNAi. In the context of insect pest control, there are sev-
eral examples of transgenic plants designed to induce RNAi in insects, a process commonly
designated as host-induced gene silencing. The first successful studies on achieving resis-
tance to a pest–insect via transgenic plants expressing dsRNA date to 2007 [115,116]. Since
then, multiple proofs of this concept have been reported [117–131]. Often, long dsRNA
molecules are expressed. However, in planta expression of insect miRNAs has been sug-
gested to be a good option as well [132–135]. In addition, a plant-expressed insect miRNA
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precursor was shown to be more effective than expressing the miRNA itself [136]. The au-
thors suggested this was due to the fact that insect miRNA precursors are not processed by
the plant, since they lack Drosha, an important nuclear processing enzyme of insect miRNA
biogenesis [136]. In addition, expression of RNAi-inducing molecules in the chloroplast
instead of in the cellular cytoplasm, via modification of the chloroplast genome, revealed to
be quite promising [126,137–139]. Since no RNAi-processing machinery is present in this
organelle, higher accumulation of the RNA molecules in the plant is obtained, resulting in
a more effective RNAi response in the insect [126,137–139]. Nevertheless, this approach is
not always effective, suggesting that, in some cases, RNA molecules from the chloroplast
are not transferred to the insects [140]. Since recently, the first RNAi-based pest-resistant
plant has been available on the market. It is named SmartStax Pro® and was developed by
Monsanto and Dow Agrosciences [141]. This illustrates the economical relevance of this
field and emphasizes the need for understanding the natural mechanisms of plant–insect
RNA transfer, possibly contributing to the development of efficient pesticides based on
exogenous RNA.

3. Mechanisms of RNA Transfer

Transfer of information via extracellular RNAs has been seen to occur in insects. In
addition, bidirectional plant–insect RNA transfer has been reported and, in some cases,
the RNA signal was shown to be functional. This was demonstrated both in the context of
specific (possibly coevolved) plant–insect interactions, as well as of genetically engineered
plants, to exert RNA-based insect pest control (see Section 2). Nevertheless, little is known
regarding the mechanisms by which mobile RNAs spread in insects, or between plant and
insect cells. To date, three main routes for cell-to-cell RNA based communication have
been proposed, namely via transfer of naked RNA, RNA bound to RNA-binding proteins
(RBPs), and RNA-containing extracellular vesicles (EVs).

3.1. Naked RNA

In plants, naked RNAs, i.e., not protected by RNA binding proteins or encapsulated
in EVs, can be transferred over short and long distances [36,142–144]. Short range transfer
of naked sRNAs in plants occurs via the plasmodesmata, by the space between the plasma
membrane and the desmotubule, and by the desmotubule itself, which connects the
endoplasmic reticulum of the two adjacent cells [144–147]. Similarly, in fungi, naked sRNA
can move from cell-to-cell within short distances through the septal pore [144]. In mammals,
transfer between adjacent cells can be mediated by gap junctions. In this respect, siRNA-
and miRNA-mediated transfer via gap junctions has been described [148–157]. To our
knowledge, the transfer of RNA molecules via gap junctions has not been investigated in
other groups of animals. However, in the nematode Caenorhabditis elegans, transmembrane
systemic RNA interference defective (SID) proteins act as channels for intercellular RNA
movement [158–161]. In insects, short range transport of dsRNA and RISC components
through nanotube-like structures was suggested between Drosophila cells [162]. However,
whether these structures might effectively transfer (naked) RNAs between adjacent insect
cells remains to be demonstrated. Taken together, these studies suggest that similar
structures might function for short range RNA transfer in plants, fungi and animals.

In both plants and fungi, apoplastic movement of naked sRNA can also occur. In this
case, naked sRNAs are secreted from the plasma membrane and move throughout the
cell wall to extracellular spaces, where they can then enter both neighboring or distant
cells [144–147].

Plants also transfer naked sRNAs via the phloem, using the vascular system to spread
these molecules throughout the plant to distant cells [144,146,147]. In addition, it is note-
worthy that several reports indicate the transfer of naked sRNA between plants and
fungi [96,163–165], indicating bidirectional interkingdom RNAi between plants and fungi.
Specialized infection structures of fungi and parasitic plants, termed haustoria, may act as a
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gateway for sRNA transfer between host and pathogen at the plant–plant and plant–fungi
levels [91].

In human plasma, naked extracellular RNAs are rapidly degraded [166]. Similarly,
naked RNA molecules are rapidly degraded in insect biofluids [8,167–171]. Nevertheless,
it is by now clear that stable RNA molecules circulate in animal extracellular fluids (see
Section 2). Together, these facts contribute to the idea that mobile RNAs in animal biofluids
require protection form degradation in order to be functionally transferred.

3.2. RNA Associated with RNA Binding Proteins (RBPs)

In plants, RBPs are established to mediate short- and long-range RNA transport. The
Cucurbita maxima Phloem Small RNA-Binding Protein 1 can bind sRNAs, transferring them
between cells, both via the plasmodesmata and the phloem [172,173]. Furthermore, other
RBPs have been identified in the phloem of different plants [174–176]. Interestingly, Ago
proteins have also been suggested to be implicated in sRNA transfer in plants [177,178].
In addition, recently, a conserved family of sRNA-binding proteins–Small RNA-Binding
Protein 1 family—that function in intercellular transfer of sRNAs has been identified in the
phloem of several plants [179].

In 2008, Mitchell and colleagues demonstrated that extracellular sRNAs present in
human plasma are protected from degradation due to their association with certain en-
tities [166]. In line with this, most mammalian plasma miRNAs are associated with Ago
proteins [180–182]. Interestingly, Neuropilin-1 has been reported to be a receptor for
miRNA–Ago complexes [183]. Nevertheless, due to the remarkable extracellular stabil-
ity reported for some Ago proteins, it is often suggested that extracellular RNA–Ago
complexes are by-products of cell death [180,181,184]. In the nematode Heligmosomoides
bakeri, secondary siRNAs are loaded into an extracellular Ago protein, and this complex
is subsequently secreted in EVs, suggesting a role of this Ago protein in mediating the
selective sorting of sRNAs in EVs in this species [79]. In the fruit fly, extracellular miR-
NAs have been shown to be stably present in the hemolymph, and an in vitro study with
Drosophila-derived cell lines verified the presence of extracellular miRNAs associated with
an Ago protein [62,65], suggesting that Ago proteins might also confer sRNA stability in
insects (Figure 1).

Besides Ago proteins, the association of sRNAs to lipoproteins has been demonstrated
as well. Lipoproteins have been shown to be associated with miRNAs, and high-density
lipoproteins (HDLs) can functionally transfer miRNAs to recipient cells [185]. Furthermore,
miRNA-delivery mediated by HDL was shown to be dependent on scavenger receptor
class B type I [185]. Since then, other reports have emphasized the role of HDLs in
intercellular RNA transfer, as well as the potential use of these lipoproteins as therapeutic-
delivery vehicles [185–191]. Interestingly, insect and other arthropod lipoproteins were
demonstrated to adhere to dsRNA, suggesting a potential role of these proteins in mediating
RNA-based communication in this phylum [169,192,193] (Figure 1).

Additionally to lipoproteins and Ago proteins, other animal proteins have been
suggested to bind RNA in the extracellular environments. Particularly, mammalian Nucle-
ophosmin1 was demonstrated to bind miRNAs and protect them from nuclease degrada-
tion [194]. In insects, more specifically in honeybees, a secreted RBP named Major Royal
Jelly Protein 3 (MRJP-3) binds to RNA in jelly, protecting it from degradation and enhancing
its uptake [72] (Figure 1).
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Figure 1. Summary of the known mechanisms involved in the presence of extracellular RNAs and
their functional transfer in insects. (A) D. melanogaster—miRNAs were identified in immunopre-
cipitates of extracellular Ago proteins and in EVs from the culture medium of D. melanogaster cells,
namely the Cl8 and the S2 cell lines [65]. In addition, miRNAs and other sRNA populations were
identified in EVs from the culture medium of the D. melanogaster S2R+ and D17-c3 cell lines [63]. (B) D.
melanogaster—EVs from D. melanogaster hemocytes contain secondary viral siRNAs, synthesized
from viral DNA. These EVs circulate in the hemolymph and functionally spread these viral siRNAs,
thereby inducing systemic antiviral immunity [64]. (C), T. castaneum—dsRNA-derived siRNAs are
found in EVs from the culture medium of T. castaneum TcA cells. These siRNA-containing EVs trigger
RNAi in recipient cells. miRNAs and other sRNAs were also identified in these EVs [66]. (D) L.
decemlineata—dsRNA was identified in EVs from the culture medium of L. decemlineata Lepd-SL1
cells, previously treated with dsRNA [68]. (E) S. gregaria—upon microinjection in the hemocoel,
dsRNA binds to lipophorins in the hemolymph [169,192]. (F) A. mellifera—Major Royal Jelly Protein
3 (MRJP-3) binds to dsRNA in the jelly, protecting it from degradation and enhancing its uptake.
MRJP-3 also binds single-stranded RNA and several populations of sRNAs in the jellies [71,72]. In
parallel, ingested dsRNA was shown to spread in the hemolymph and to be secreted in worker
and royal jellies, via which it passes to larvae, triggering target silencing [71]. (G) C. vestalis/P.
xylostella—Larva of the parasitic wasp C. vestalis secretes teratocyte cells into its host, P. xylostella.
These teratocytes secrete miRNA-containing EVs that enter host’ cells, where the miRNAs induce a
delay in host development [74].
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3.3. RNA-Containing Extracellular Vecicles (EVs)

EVs form a heterogeneous group consisting of exosomes, microvesicles and apoptotic
bodies. Although long viewed as part of cellular waste disposal pathways, it is by now
clear that EVs can functionally transfer their content (RNA, DNA, lipid, and protein) to
recipient cells [195].

Despite previous debate regarding plant cell wall preventing formation and function of
EVs, recent evidence shows that EVs are also produced by these organisms [97,165,196–198].
In addition, plant EVs have been shown to contain RNA [197,199–201], and selective sRNA
loading in EVs has been observed [202]. Moreover, the transfer of sRNAs within EVs
from plantae to fungi has been recently demonstrated [97]. Interestingly, specific RBPs,
including Ago proteins, have been suggested to facilitate the packaging of RNAs into EVs
in plants [178,203].

In 2007, a first study demonstrating that EVs mediate intercellular communication
in mammalian cell lines, by transferring functional RNA from donor to recipient cells,
was reported [37,38]. Since then, a myriad of reports indicate EV-mediated intercellular
communication in mammals [39–56,204–209]. Currently, increasing evidence points to-
wards the ubiquitous presence of RNA-containing EVs in animals, as suggested by studies
in the nematodes C. elegans [57,58,69,76], Heligmosomoides polygyrus, Litomosoides sigmod-
ontis [77], Brugia malayi [78], H. bakeri, and Trichuris muris [80]; in the ticks Ixodes Ricinus
and Haemaphysalis longicornis [59,82]; as well as in the red swamp crayfish, Procambarus
clarkia [81]. Also in insects, several reports from recent years suggest the involvement of
EVs in a common mechanism for functional RNA transfer between cells. RNA-containing
EVs have been reported in the fruit fly, namely in the hemolymph [62,64] and in cultured
cells [63,65]; as well as in beetles, specifically in the hemolymph of A. dichotoma [67] and
in cell lines of T. castaneum [66] and L. decemlineata [68]. Moreover, EV-specific miRNA
profiles have been shown in Drosophila [62,65]. Noteworthy, functional transfer of RNA
within EVs was demonstrated in three studies. First, hemocyte-derived EVs containing
secondary viral siRNAs confer systemic RNAi antiviral immunity in D. melanogaster [64].
Second, in T. castaneum cell culture, siRNA-containing EVs spread an RNAi-based silencing
signal to recipient cells [66]. Third, EVs of the parasitic wasp C. vestalis deliver miRNAs
to its host P. xylostella, which target its ecdysone cascade, resulting in a developmental
delay [74]. Likewise, the parasitoid wasp Leptopilina boulardi injects vesicles in its host
Drosophila. Although transfer of RNA has not been investigated in this case, these EVs—
venosomes—were shown to interfere with the hosts’ defense [210]. Moreover, EVs present
in bee pollen, honey, and royal jelly were shown to function in the antibacterial properties
of these products [211]. Together, these studies suggest that EVs function in transport of
molecules in and between insects, including their RNA cargo (Figure 1).

Two potential RNA selective sorting mechanisms have been proposed in mammals.
First, miRNAs packaged into EVs were demonstrated to contain specific nucleotide mo-
tifs with which specific ribonucleoproteins interact to allow selective sorting [212–219].
Moreover, several membrane proteins involved in EV biogenesis are also involved in
selective miRNA sorting [50,220–222]. Second, certain miRNA post-transcriptional modifi-
cations appear to contribute to their selective sorting, as 3′ end uridylated miRNAs were
found overrepresented in EVs while 3′ end adenylated miRNAs were relatively enriched
intracellularly [223].

EVs are produced by all domains of life and are considered part of an ancient mecha-
nism for RNA export [224,225]. In fact, several reports describe EV-mediated RNA transfer,
within and among animals, plants, fungi and microbes [11,28,33,34,144,197,198,225–227].
Although further detailed research is needed to investigate potential mechanisms of RNA
transfer between insects and plants, the current knowledge indicates EVs as promising can-
didates. Figure 1 summarizes the findings regarding RNA transfer mechanisms in insects.
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4. Biotechnological Prospects

To sustain the currently growing food demand, agricultural pests are one of the
many challenges that are faced. Pest insects destroy 18–20% of the annual global crop
production, which is estimated at $470 billion [228]. The classical approach of combatting
agricultural insect pests is via non-selective conventional insecticides. However, their
limited target species selectivity has serious disadvantages, including a detrimental impact
on environment and human health [229–232]. In fact, these concerns are increasing and
have led to a ban in some commonly used insecticides [233–235]. In addition, some
pest insect populations are already resistant against many of the conventionally used
insecticides [236–241].

RNA-mediated insect gene silencing is a promising tool to contribute to highly specific
pest control strategies. Nevertheless, the effect of RNA is not equally efficient in every
insect, with high levels of variability between different species and even between different
populations of the same species. RNA degradation by gut nucleases and extreme pH
conditions upon ingestion is appointed as a reason for inefficient RNA-based silencing in
several insect species. In addition, inefficient or absent functional RNA uptake systems
in the gut, as well as the lack of an efficient systemic RNAi spreading mechanism from
the gut to the rest of the insect body, are also considered potentially important limiting
factors [8,168,242,243]. RNA might be available for ingestion by the insect via different
approaches, namely via expression by genetically modified plants (see Section 2.4.3) or
by exogenous in planta application. As such, several RNA insect delivery systems have
been proposed, meant to exert RNA protection and mediate intracellular delivery. Well-
known examples are based on nanoparticles, liposomes, RBPs, bacteria and viruses, among
others [8]. In this scope, natural systems of RNA transfer within insects, as well as from
plants to insects, represent key fundamental concepts that might lead the development of
more efficient RNA-based insect gene silencing strategies.

In mammals, both RBPs and EVs have been explored for efficient cellular delivery of
nucleic acids. These approaches are mainly explored in humans, in the context of targeted
drug delivery therapeutics. Interesting examples are mammalian lipoproteins, which are
often proposed for use in human siRNAs delivery [244–249]. In addition, a high percentage
of mammalian extracellular miRNAs are bound to Ago proteins, and pre-assembled siRNA-
Ago complexes, delivered via different carriers, can increase the gene silencing effect in
mice [180–182,250]. Interestingly, insect lipoproteins (i.e., lipophorins) are known to bind
exogenous dsRNA in the hemolymph [169,192], and Ago proteins have been identified
in the extracellular medium of cultured insect cells [65]. Hence, these proteins may be
promising candidates for design of exogenous RNA insect delivery systems, highlighting
the importance of investigating natural RNA transfer mechanisms.

Besides RBPs, many studies appoint EVs as promising human drug-delivery vehi-
cles [206,251,252]. In fact, engineering of EVs to deliver nucleic acid based therapeutics is
already being explored in the market [253,254]. Considering the role of EVs in RNA-based
intercellular, interspecies, and interkingdom communication, such structures might hold
great potential for RNA-based pest management [226]. In addition, since increasing evi-
dence indicates the role of EVs in transferring RNA molecules in insects (see Section 3.3), it
is exciting to consider the development of EV-based RNA-delivery systems to control pests
via exogenous RNA. Although RBP- and EV-based crop protection systems are still to be
explored, these may lead to promising strategies for the future.

To ensure environment-friendly and biosafe insecticides, specificity is a watchword.
The idea of RNA-based pest control strategies is highly popular since high species- and
gene-specificity can be obtained at the level of the nucleic-acid sequence [131,255]. Cur-
rently, it is tempting to speculate that specificity of RNA-based insecticides could be
achieved at additional levels.

First, several factors have been shown to influence the loading of sRNAs into Ago
proteins, such as their sequence and structure [256–264]. In insects, generation of siRNAs
with species-dependent length have been observed [265], and certain sRNA chemical
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modifications seem to vary among species. Specifically, D. melanogaster siRNAs are 2′-O-
methylated, while this is not the case in the lepidopteran species P. xylostella, B. mori, and
Trichoplusia ni [266,267]. In addition, RNAi genes have been shown to be fast evolving, re-
sulting in lower levels of similarity between species (e.g., dicer2 or argonaute2) [268–270]. It
is therefore interesting to conjecture that a second level of specificity could be achieved, de-
termined by a species-specific ability to intracellularly recognize and process the exogenous
RNA molecules. Although research efforts are needed to explore these possibilities, one can
hypothesize that this could be based on the length of sRNA molecules, its chemical modifi-
cations, and/or its complexation with specific (modified) proteins of the RNAi machinery.

Second, exhaustively unravelling mechanisms of RNA transfer within and between a
wide range of organisms can stimulate the design of highly specific RNA delivery vehicles.
It is important to elucidate what EV populations and protein-complexes interact with
RNAs in different species, as well as to determine their composition and structure. It is also
relevant to determine their specificity and, in this regard, an example has recently been
reported in bees. Specifically, the domain of MRJP-3 that provides its RNA binding activity
seems to have emerged in the Apis genus and to only be associated with jelly-secreting
bees [72]. Moreover, efforts should be made to understand uptake mechanisms of these
structures, including the potential involvement of specific ligand–receptor interactions. In
this scope, specialized host–pathogen/symbiont interactions might be particularly useful,
as they would further contribute to refine specificity and efficiency of RNA delivery. Note-
worthily, RNA delivery strategies based on host–pathogen/symbiont systems have already
been proposed, emphasizing the potential of these interactions [271–274]. It is inspiring to
consider that, based on specialized uptake of certain optimized RNA-containing vehicles,
the target species could be solely affected.

In summary, three levels of specificity and efficiency could be aimed at, as determined
by (1) the cellular delivery vehicle, (2) the recognition by the cellular machinery, and (3)
the nucleotide sequence. Importantly, exploring these three levels in distinct contexts of
integrated pest management has potential to delay, or avoid, the development of resistance.
In addition, it is also relevant that the use of highly efficient and specific RNA delivery
methods can contribute to the release of low quantities of the RNA-based insecticide in the
environment, reducing potential toxicity concerns.

5. Conclusions

RNA molecules and their related pathways are classically described at the intracellular
level. Recently, the existence of a novel RNA-based communication layer, via the spread of
extracellular RNAs in biological fluids, became well established and gave rise to a novel
research area that is currently booming in biomedical sciences. Although this research
field remains underexplored in insects, growing evidence indicates that this route of
communication is also functional in these animals. Specifically, extracellular RNAs are
present in insects, are contained within EVs and/or interact with RBPs, and are transferred
to recipient cells to exert their function. Nevertheless, only a limited number of studies
are currently available, which do not cover the dimension and diversity of the class
Insecta, or of the wide range of insect–plant interactions. A wider and deeper fundamental
understanding of the intercellular RNA transfer mechanisms in these organisms is required.
In this scope, there is an urgent need for well described, robust, and reproducible protocols
for isolation of extracellular components, such as EVs and RBPs, from complex biofluids.
In addition, although the advent of deep sequencing technologies has led to an increase of
descriptive studies, these only form a starting point. In fact, functional studies regarding
natural RNA-transfer mechanisms, as well as their potential for bioactive delivery of
exogenous RNA molecules, are required. Noteworthily, it is critical to not only unravel
conserved processes, but also species-specific mechanisms. Thus, besides model organisms,
efforts must also be invested into several pest and beneficial systems. At last, on the long
run, special attention should be given to the development of production/purification
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techniques of selected extracellular components bound to RNAs of interest; as well as to
biosafety assays, namely concerning the specificity of the developed approaches.

Considering the potential of RNA-based insect pest control strategies, understanding
the mechanisms by which RNAs are transferred within insects, as well as between plants
and insects, promises to give leads to the development of effective strategies for exogenous
RNA delivery. This has potential to lead to novel ways to protect crops, to combat insect
pests, and to generate high economic, environmental and social value.
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