Supplementary data

Both Allene Oxide Synthases genes are Involved in the Biosynthesis of Herbivore-Induced Jasmonic Acid and Herbivore Resistance in rice

Jiamei Zeng ${ }^{1,+}$, Tongfang Zhang ${ }^{1,2, \dagger}$, Jiayi Huangfu ${ }^{1}$, Ran Li 1 and Yonggen Lou ${ }^{1, *}$
1 State Key Laboratory of Rice Biology \& Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; tsengchiamei@zju.edu.cn (J.Z.); luckyfjy@163.com (J. H.); rli05@zju.edu.cn (R. L.)
2 College of Food Science, Southwest University, Chongqing 400715, China; zhangtf@swu.edu.cn (T. Z.)
* Correspondence: yglou@zju.edu.cn; Tel.: 0086-571-88982622
\dagger These authors contributed equally to this work.

Table S1. Volatile compounds emitted from non-manipulated and SSB-infested plants (24 h) of as-aos1, as-aos2 and wild-type plants.

Table S2. Primers and probes used in this study.
Figure S1. The nucleotide and deduced amino acid sequence of OsAOS1 and OsAOS2.
Figure S2. Alignment of the nucleotide and amino acid sequence of OsAOS1 and OsAOS2.
Figure S3. Expression levels of OsAOS1 and OsAOS2 in rice plants that were treated with SA.
Figure S4. The transformation vector used to generate as-aos1 and as-aos2 lines.
Figure S5. DNA gel-blot analysis of as-aos1 and as-aos2 lines.
Figure S6. Expression levels of OsAOS1 and OsAOS2 in as-aos1, as-aos2 and wild-type plants that were infested by SSB.

Figure S7. Expression levels of OsAOS1 and OsAOS2 in as-aos1, as-aos2 and WT plants that were infested by SSB.

Figure S8. Growth phenotypes of as-aos1, as-aos2 and WT plants at one-week-old seedling stage, tillering stage and heading stage.

Figure S9. The setup used for herbivore bioassays.

MDPI
Table S1. Volatile compounds emitted from non-manipulated and SSB-infested plants (24 h) of as-aos1, as-aos2 and wild-type lines. Data represent mean amount (\% of internal standard peak area, \pm SE) of five replications. Letters in the same row indicate significant differences among treatments ($P<0.05$, Tukey's HSD post-hoc test).

No.	Chemical	WT	as1-5	as2-20	WT+SSB	as1-5+SSB	as2-20+SSB
1	2-heptanone	$3.52 \pm 0.82 \mathrm{~b}$	$1.07 \pm 0.05 \mathrm{~b}$	$2.64 \pm 1.85 \mathrm{~b}$	$41.39 \pm 7.63 \mathrm{a}$	36.59 $\pm 12.05 \mathrm{a}$	19.8 $\pm 7.37 \mathrm{ab}$
2	2-heptanol	$2.68 \pm 0.14 \mathrm{c}$	$2.83 \pm 0.94 \mathrm{c}$	$1.81 \pm 0.96 \mathrm{c}$	$34.06 \pm 4.65 \mathrm{a}$	$15.75 \pm 4.01 \mathrm{~b}$	$12.76 \pm 4.58 \mathrm{~b}$
3	α-thujene	$0.63 \pm 0.25 \mathrm{bc}$	$0.40 \pm 0.19 \mathrm{c}$	$0.55 \pm 0.36 \mathrm{c}$	$3.06 \pm 0.45 \mathrm{a}$	$0.81 \pm 0.33 \mathrm{bc}$	$0.86 \pm 0.4 \mathrm{bc}$
4	α-pinene	$0.71 \pm 0.33 \mathrm{a}$	$0.18 \pm 0.1 \mathrm{a}$	$0.66 \pm 0.49 \mathrm{a}$	$0.45 \pm 0.23 \mathrm{a}$	$0.79 \pm 0.34 \mathrm{a}$	$0.58 \pm 0.24 \mathrm{a}$
5	myrcene	$5.53 \pm 1.42 \mathrm{a}$	$4.03 \pm 0.68 \mathrm{a}$	$3.12 \pm 1.17 \mathrm{a}$	$4.03 \pm 0.42 \mathrm{a}$	$5.23 \pm 0.58 \mathrm{a}$	$4.44 \pm 0.88 \mathrm{a}$
6	(+)-limonene	$8.74 \pm 1.1 \mathrm{c}$	$9.57 \pm 6.17 \mathrm{bc}$	$6.09 \pm 3.41 \mathrm{c}$	$21.39 \pm 3.83 \mathrm{a}$	$22.74 \pm 3.52 \mathrm{a}$	$10.89 \pm 0.58 \mathrm{bc}$
7	(E)-linalool oxide	$0.95 \pm 0.19 \mathrm{~b}$	$1.78 \pm 1.56 \mathrm{ab}$	$0.86 \pm 0.12 \mathrm{~b}$	$7.29 \pm 1.75 \mathrm{a}$	$4.76 \pm 1.76 \mathrm{ab}$	$3.63 \pm 1.25 \mathrm{ab}$
8	linalool	$12.93 \pm 6.8 \mathrm{bc}$	$4.28 \pm 0.12 \mathrm{c}$	$7.47 \pm 1.15 \mathrm{bc}$	$87.45 \pm 14.05 a$	$61.99 \pm 23.6 \mathrm{ab}$	$28.72 \pm 6.28 \mathrm{bc}$
9	methyl salicylate	1.68 ± 0.79 a	$0.89 \pm 0.14 \mathrm{a}$	$1.11 \pm 0.19 \mathrm{a}$	2 $\pm 1.03 \mathrm{a}$	$2.39 \pm 0.8 \mathrm{a}$	$2.49 \pm 1.24 \mathrm{a}$
10	unknown 1	$3.08 \pm 1.08 \mathrm{a}$	$1.56 \pm 0.12 \mathrm{a}$	$5.03 \pm 2.07 \mathrm{a}$	$1.21 \pm 0.33 \mathrm{a}$	$0.95 \pm 0.24 \mathrm{a}$	$0.45 \pm 0.05 \mathrm{a}$
11	unknown 2	$0.77 \pm 0.54 \mathrm{a}$	$0.69 \pm 0.01 \mathrm{a}$	$1.35 \pm 0.49 \mathrm{a}$	$2.22 \pm 0.56 \mathrm{a}$	$4.16 \pm 2.36 \mathrm{a}$	$2.89 \pm 1.47 \mathrm{a}$
12	α-copaene	$4.62 \pm 1.65 \mathrm{~b}$	$3.79 \pm 1.56 \mathrm{~b}$	$2.94 \pm 1.48 \mathrm{~b}$	$11.11 \pm 2.44 \mathrm{a}$	$4.66 \pm 1.19 \mathrm{~b}$	$4.87 \pm 1.04 \mathrm{~b}$
13	n-tetradecane	$0.35 \pm 0.08 \mathrm{~b}$	$0.21 \pm 0.13 \mathrm{~b}$	0.37 ± 0.04 b	33.40a	$1.45 \pm 0.49 \mathrm{~b}$	$1.19 \pm 0.59 \mathrm{~b}$
14	sesquithujene	$2.05 \pm 1.18 \mathrm{a}$	$1.5 \pm 0.35 \mathrm{a}$	$3.58 \pm 1.58 \mathrm{a}$	$3 \pm 0.8 \mathrm{a}$	$2.79 \pm 0.57 \mathrm{a}$	$11.81 \pm 6.66 \mathrm{a}$
15	(-)- α-cedrene	$1.66 \pm 0.56 \mathrm{a}$	$0.94 \pm 0.21 \mathrm{a}$	$2.86 \pm 1.07 \mathrm{a}$	$1.21 \pm 0.25 \mathrm{a}$	$1.3 \pm 0.23 \mathrm{a}$	$9.46 \pm 5.42 \mathrm{a}$
16	(E)- β-caryophyllene	$4.86 \pm 0.87 \mathrm{~b}$	$1.95 \pm 0.16 \mathrm{~b}$	$1.92 \pm 0.52 \mathrm{~b}$	$16.2 \pm 1.16 \mathrm{a}$	$5.72 \pm 1.48 \mathrm{~b}$	$5.9 \pm 1.23 \mathrm{~b}$
17	(E)- α-bergamotene	$2.09 \pm 1.46 \mathrm{ab}$	$2.15 \pm 1.22 \mathrm{ab}$	$0.97 \pm 0.2 \mathrm{~b}$	$9.68 \pm 3.23 \mathrm{ab}$	$10.34 \pm 2.46 \mathrm{a}$	$5.06 \pm 0.99 \mathrm{ab}$
18	sesquisabinene	$2.14 \pm 1.47 \mathrm{a}$	$1.9 \pm 1.09 \mathrm{a}$	$2.99 \pm 1.05 \mathrm{a}$	$8.66 \pm 2.77 \mathrm{a}$	$8.62 \pm 2.02 \mathrm{a}$	5.84 ± 1.83 a
19	(E)- β-farnesene	$1.98 \pm 0.39 \mathrm{a}$	$1.68 \pm 0.16 \mathrm{a}$	$3.17 \pm 1.27 \mathrm{a}$	3.98 ± 1.29 a	$3.57 \pm 0.94 \mathrm{a}$	$4.02 \pm 1.85 \mathrm{a}$
20	ar-curcumene	$3.53 \pm 2.47 \mathrm{a}$	2.62 ± 0.64 a	$3.04 \pm 1.1 \mathrm{a}$	$6.88 \pm 1.75 \mathrm{a}$	$7.41 \pm 1.27 \mathrm{a}$	$12.22 \pm 5.32 \mathrm{a}$
21	Zingiberene	$6.81 \pm 2.47 \mathrm{a}$	$3.77 \pm 1.32 \mathrm{a}$	12.81 7.69 a	$22.54 \pm 7.63 \mathrm{a}$	$19.73 \pm 5.38 \mathrm{a}$	$12.1 \pm 3.42 \mathrm{a}$
22	β-bisabolene	$5.06 \pm 3.49 \mathrm{a}$	$2.86 \pm 0.37 \mathrm{a}$	$5.82 \pm 2.61 \mathrm{a}$	$13.08 \pm 4.08 \mathrm{a}$	$12.27 \pm 2.94 \mathrm{a}$	$20.4 \pm 9.6 \mathrm{a}$
23	β-sesquiphellandren	$5.99 \pm 3.49 \mathrm{a}$	$3.75 \pm 0.75 \mathrm{a}$	$2.79 \pm 0.24 \mathrm{a}$	$18.64 \pm 5.98 \mathrm{a}$	$18.82 \pm 4.38 \mathrm{a}$	11.64 $\pm 2.98 \mathrm{a}$
24	(E)- γ-bisabolene	$2.94 \pm 1.29 \mathrm{a}$	$2.52 \pm 1.87 \mathrm{a}$	$2.25 \pm 1.05 \mathrm{~b}$	$10.4 \pm 3.51 \mathrm{a}$	$7.9 \pm 2.46 \mathrm{a}$	$2.54 \pm 1.99 \mathrm{a}$
Total		85.3 ± 34.33	56.92 ± 19.91	76.2 ± 32.16	363.33 ± 69.82	260.74 ± 75.4	194.56 ± 67.26

Table S2. Primers and probes used in this study

Gene name	TIGR ID	Description	Forward primer (5'-...-3')	Reverse primer (5'-...-3')	Probe (5'-...-3')
OsAOS1	Os03g55800.1	RT-PCR	GCTAGTAGCTAGCTCGGGGA	CAGTGCAACTCCGTATCCGT	
OsAOS2	Os03g12500.1	RT-PCR	TTTGCCATCGTGGACACACT	GCTATGTACGTGGGGGAAGG	
OsAOS1	Os03g55800.1	QRT-PCR	TGATCACCAAGTGGGTGCTG	CGAGTGGAGGAGCGTGTCC	CTCAGCCCGCTGCTCAGCCTC
OsAOS2	Os03g12500.1	QRT-PCR	TGCCCATGATCATCGAGGAT	TGTAGTCGGAGCTGATGAGGAA	CTCCTCCACACGCTGCCGCTG
OSACT	Os03g50885	QRT-PCR	TGGACAGGTTATCACCATTGGT	CCGCAGCTTCCATTCCTATG	CGTTTCCGCTGCCCTGAGGTCC

(a)

GRATTGACACCATCTGCACACCTGCACCTGCACCTGCACGGCCGTGGCTGTGGRCTTGCAGTTGGAGCTAGTAGCTAGCTCGGGGAGIAGTAGCTAGGTGTAGTTCATCGGATCAAGGGG

(b)

Figure S1. The nucleotide and deduced amino acid sequence of OsAOS1 (a) and OsAOS2 (b). Gray shading indicted P450 family, red frame indicted phosphorylation site.
(a)

OsAOS1-CDS. seq GTGGCGCGCGACCGGCGGGTGGTGGCGCTGCTCGACGCGGCCTCCTTCCCCGTCCHGTTCGACACGIGGCTCGTCGAAAAGACCGACCIOTTCACCGCCA OsAOS2-CDS.seq ATGGCGCGCGACCOCCGCGTGGTGGCGCTCCTCGACGCCAAGAGCTTCCCCGTCCTOTTCGAOGTCGOCAAGGTCGA्रGAAAGCGGGACGIGTTCACCGGC283

OsAOS1-CDS.seq
 694
583 OsAOS1-CDS.seq ACGGGCCDAGCTCATRACCAAGTGGGGCIGTCCAGCTCAGCCCGCIGCTCAGCCTCGGCCICCCCACCOTGGTCGAGGACACGCTCCTCCAOTCGCT $\quad 794$

OsAOS1-CDS.seq

 1094
983
 1194

OsAOS1-CDS.seq OsAOS2-CDS.seq

OsAOS1-CDS.seq OsAOS2-CDS.seq
 1391
1283

OsAOS1-CDS.seq OsAOS2-CDS.seq
 1491
1383

OsAOS1-CDS.seq

(b)

$\begin{array}{lll}\text { OsAOS1.seq } & \text { LGSSVIVTSLKKATF } & 512 \\ \text { OsAOS2.seq } & \text { VITGVIKASTSAVNRT } & 477\end{array}$

Figure S2. Alignment of the nucleotide (a) and amino acid (b) sequence of OsAOS1 and OsAOS2. The blue shading indicates the bases that are identical in the two sequences.

Figure S3. Expression levels of OsAOS1 and OsAOS2 in rice plants that were treated with SA. Mean expression levels (relative to expression levels of OsACT, +SE, $n=5$) of OsAOS1 (a) and OsAOS2 (b) in rice leaf sheaths that were treated by buffer (BUF) or salicylic acid (SA).

Figure S4. The transformation vector used to generate the as-aos1 and as-aos2 lines.

Figure S5. DNA gel-blot analysis of as-aos1 and as-aos2 lines plants. Genomic DNA was digested with XbaI or EcoRI. The blot was hybridized with a probe specific for reporter gene gus. Hybridization was created using the DIG High Prime DNA Labeling and Detection Starter Kit II (Roche). All as-aos lines have a single insertion of the transgene.

Lines

Figure S6. Expression levels of OsAOS1 and OsAOS2 in as-aos1, as-aos2 and wild-type plants that were infested by SSB. (a) Mean transcript levels (relative to expression levels of OsACT, +SE, $n=5$) of OsAOS1 in as-aos1 lines and WT plants that were individually infested by SSB for 1 h . (b) Mean transcript levels (relative to expression levels of OsACT, +SE, $n=5$) of OsAOS2 in as-aos2 lines and WT plants that were individually infested by SSB for 1 h . Asterisks indicate significant differences between treatments and controls (${ }^{*} P<0.05$, Tukey's HSD post-hoc test).

Figure S7. Expression levels of OsAOS1 and OsAOS2 in as-aos1, as-aos2 and WT plants that were infested by SSB. Mean transcript levels (relative to expression levels of OsACT, +SE, $n=5$) of OsAOS1 (\mathbf{a}) or OsAOS2 (b) in as-aos1 (as1-5), as-aos2 (as2-20) and WT plants that were individually infested by SSB for 3 h . Asterisks indicate significant differences in as-aos lines compared with WT plants (${ }^{P} P<0.05$, Tukey's HSD post-hoc test).

Figure S8. Growth phenotypes of as-aos1, as-aos2 and WT plants at one-week-old seedling stage, tillering stage and heading stage

Figure S9. The setup used for herbivore bioassays.

