Table S1. Significance by two-way ANOVA of the single and combined effects of cryopreservation and genotype on the parameters related to the regeneration capacity of olive embryogenic cultures.

Predictor variable	Regeneration potential	Number of shoots per germinated embryo	Shoot length (mm)	
Line	0.1028	0.0009	0.0000	
Cryopreservation	0.4553	0.5550	0.3789	
Line x cryopreservation	0.4618	0.4141	0.2799	

Table S2. Significance by two-way ANOVA and three-way log-linear analysis of the single and combined effects of cryopreservation and genotype during ex vitro plant establishment.

Predictor variable	Number of axillary shoots per explant	Shoot length (mm)	Rooting percentage	Number of roots per shoot	Root length (mm)	Acclimatization percentage
Line	0.0000	0.4060	0.0004	0.6154	0.1844	0.5333
Cryopreservation	0.6850	0.9160	0.2464	0.0595	0.0575	0.6232
Line x cryopreservation	0.6680	0.0430	0.3215	0.3442	0.2874	1.0000