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Abstract: Upon sensing developmental or environmental cues, epigenetic regulators transform the
chromatin landscape of a network of genes to modulate their expression and dictate adequate cellular
and organismal responses. Knowledge of the specific biological processes and genomic loci controlled
by each epigenetic regulator will greatly advance our understanding of epigenetic regulation in
plants. To facilitate hypothesis generation and testing in this domain, we present EpiNet, an extensive
gene regulatory network (GRN) featuring epigenetic regulators. EpiNet was enabled by (i) curated
knowledge of epigenetic regulators involved in DNA methylation, histone modification, chromatin
remodeling, and siRNA pathways; and (ii) a machine-learning network inference approach powered
by a wealth of public transcriptome datasets. We applied GENIE3, a machine-learning network
inference approach, to mine public Arabidopsis transcriptomes and construct tissue-specific GRNs
with both epigenetic regulators and transcription factors as predictors. The resultant GRNs, named
EpiNet, can now be intersected with individual transcriptomic studies on biological processes of
interest to identify the most influential epigenetic regulators, as well as predicted gene targets of the
epigenetic regulators. We demonstrate the validity of this approach using case studies of shoot and
root apical meristem development.

Keywords: epigenetic regulator; machine learning; gene regulatory network; shoot apical meristem;
root apical meristem

1. Introduction

In eukaryotes, gene regulation occurs in the context of chromatin and nucleosomes,
which is influenced by epigenetic modifications that pack genomic DNA and poise genes
for activation or repression [1]. Broadly, epigenetic modifications include DNA methyla-
tion (which involves the siRNA silencing pathway), histone modification, and chromatin
remodeling. Epigenetic states are dynamically modified by numerous epigenetic regulators
that are encoded by specific gene families. For example, histone methylation, a form of
histone modification, is added to specific amino acid residues on histone tails through
the function of a group of enzymes called histone methyltransferases (HMTs) [2] and
removed by the opposing action of another group of enzymes named histone demethylases
(HDMs) [3]. Similarly, histone acetylation is maintained by the concerted actions of histone
acetyltransferases (HAT) and histone deacetylases (HDAC) [3]. Epigenetic regulators can
transform the chromatin landscape of a corresponding suite of genes to modulate their
expression and dictate adequate cellular and organismal responses to developmental sig-
nals or environmental cues. Indeed, experimental evidence accumulated in the past 20
years established that epigenetic regulators and chromatin modifications play essential
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roles in modulating gene expression in response to developmental and environmental sig-
nals [3–8]. For example, SDG8, a H3K36 (lysine 36 of histone subunit 3) methyltransferase,
was shown to specifically target hundreds of genes involved in defense, carbon metabolism,
and reproductive development to modify their associated histones and gene expression
levels [9], and it is required for proper responses to various environmental [10–12] and
developmental signals [13]. To date, key epigenetic regulators have been identified for
many, but not all, developmental and environmental processes [10,14–19]. Meanwhile,
ongoing efforts to detect target genes of epigenetic regulators will continue to expand our
knowledge of the specificity of epigenetic regulators [9,20]. A knowledge base to link each
epigenetic regulator with specific biological processes and genome-wide targets is needed
to move toward a genome-wide, systems-level understanding of epigenetic regulation.

Gene regulatory network (GRN) inference is a powerful method to predict regulatory
relationships between regulators, genes, and biological processes. GRNs have been used
to predict the regulatory relationships between transcription factors (TFs) and their target
genes, and the TFs that control the most target genes in a GRN are identified as potential
key regulators involved in the corresponding biological process [21,22]. Therefore, just
as GRN inference has been used to infer transcriptional regulators [21,22], theoretically, it
could be used to identify key epigenetic regulators of a given biological process—a notion
which has not been tested, to the best of our knowledge. In eukaryotes, complex interplay
between TFs and epigenetic regulators controls the coordinated expression of thousands
of genes [23]. However, common approaches for gene network inference often use only
TFs as regulators [24–27] and overlook the important layer of epigenetic regulation. In
recent years, there has been an exponential accumulation of epigenomics data (e.g., in
ENCODE [28]), which has led to emerging efforts to incorporate epigenetic states of genes
(e.g., histone methylation status) into network models [29–31]. However, these models
have not included the epigenetic regulators that cause these state changes in the resulting
network models.

To facilitate the generation of knowledge on the specific function and targets of epi-
genetic regulators, we developed a bioinformatic pipeline built around GENIE3 [32] to
mine large transcriptome datasets and construct tissue-specific GRNs with both epige-
netic regulators and transcription factors as predictors or regulators of gene expression.
Of the numerous GRN inference tools available [21], the random forest-based machine
learning approach of GENIE3 was shown to be the best-performing tool to infer regula-
tory relationships from large transcriptome datasets [33]. The inferred GRNs can then be
intersected with an individual transcriptomic study to identify the most influential epige-
netic regulators for the biological processes of interest. Using meristematic development
as a case study, we identified key epigenetic regulators that control a network of genes
important for developmental processes in meristematic tissues of the shoot apical meristem
(SAM) and root apical meristem (RAM), separately. Finally, our network predictions were
broadly validated by published experimental data. The work presented here was based on
Arabidopsis thaliana transcriptomic data, due to the abundance of this type of data in the
public realm, but the described approaches could be applied to other plant systems. This
bioinformatics pipeline can be applied to any biological process of interest to greatly speed
up hypothesis generation and testing of the roles of epigenetic regulation in controlling
plant developmental and environmental responses.

2. Results
2.1. Constructing Gene Regulatory Networks (GRNs) with Epigenetic Regulators

To probe the influence of epigenetic regulators in controlling GRNs, we first generated
a list of known epigenetic regulators in model plant Arabidopsis thaliana. We chose to work
with Arabidopsis because of the rich collection of knowledge on epigenetic regulators
and a wealth of transcriptomic datasets is available for this model plant species. An
extensive literature review was performed, and a list of 286 epigenetic regulators was
manually curated based on 186 publications (see Table S1 for the complete list of genes and
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corresponding references). This includes 174 genes encoding epigenetic regulators involved
in histone modification, 62 genes in DNA methylation, 30 in chromatin remodeling, and 20
involved in siRNA biogenesis (see Supplemental Results for description of these genes).

Next, we inferred organ-specific gene regulatory networks (GRNs) to determine regu-
latory relationships between a regulatory gene, i.e., an epigenetic regulator or transcription
factor (TF), and its target genes. In detail, 1000 Arabidopsis transcriptomes from shoots
and 778 transcriptomes from roots were retrieved from publicly available transcriptome
data in SRA (short read archive, NCBI) (Figure 1A). Next, we ran GENIE3 [32], a machine
learning algorithm that predicts gene regulatory networks from expression data [32], to
infer the GRN for shoots and roots, separately (Figure 1A). Importantly, when running
GENIE3, both transcription factors (1717 genes based on AtTFDB [34]) and epigenetic
regulators (286 genes curated by this study, Table S1) were used as predictors, whose
transcript abundances are used to predict the abundance of other transcripts (Figure 1A).
Namely, both TFs and epigenetic regulators are allowed to influence the expression level
of genes in the inferred network. The resultant GRNs contain nodes, which are genes
including both predictors (TFs or epigenetic regulators) and regulated genes, and edges,
where each edge represents a regulatory relationship between a predictor and a regulated
gene. Each edge has a weight assigned by GENIE3, as a measurement of the confidence
of the prediction [32]. All the edges in resultant shoot and root GRNs were ranked by
weight (largest to smallest), separately, and the top 10% of edges were retrieved to generate
higher confidence GRNs, referred to as EpiNet hereafter (Figure 1A). The shoot EpiNet
includes 31,514 nodes and 6,286,230 edges, while the root EpiNet includes 33,134 nodes
and 6,609,470 edges (Supplemental Data 1 and 2). In summary, by taking advantage of
well-annotated epigenetic regulators and a wealth of transcriptome data in Arabidopsis,
we have generated, with an unbiased approach, GRNs for shoots and roots. These GRNs
were trimmed in an unbiased manner (retaining the top 10% of edges) to control their false
positive rate [22,35,36]. Importantly, in these GRNs, in addition to TFs that are commonly
used as predictors, epigenetic regulators are also included as predictors and thus contribute
toward the regulation of a specific set of downstream target genes in the network.
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Figure 1. Workflow showing the analysis steps of this study: (A) 1000 transcriptomes from Arabidopsis shoots and 778
transcriptomes from Arabidopsis roots were downloaded from NCBI’s SRA (short read archive) database. GENIE3 was
applied to construct gene regulatory networks from these transcriptomes for shoots and roots, separately, using both
transcription factors (TFs) and epigenetic regulators (EpiRegulators) as predictors of gene expression levels. The resultant
gene regulatory networks are named EpiNet, for shoots and roots, separately. (B) EpiNet was intersected with differentially
expressed genes (DEGs) identified from individual transcriptomic studies to generate subnetworks relevant to the question
of interest—for example, shoot apical meristem (SAM) and root apical meristem (RAM) development. The epigenetic
regulators involved in controlling the subnetwork can then be ranked based on their influence on the genes in the
subnetwork, to identify the most essential epigenetic regulators for the biological process of interest. For each epigenetic
regulator, the in silico predicted targets can be identified in the EpiNet.
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2.2. Case Study: Identifying Influential Epigenetic Regulators in Meristematic Development

Next, we tested whether the EpiNet is able to provide informative predictions to
understand the role of epigenetic regulators in specific biological processes. As a case study,
we focused on the developmental processes of the shoot apical meristem (SAM) and root
apical meristem (RAM). Plant meristems are the main area of primary growth and are made
up of a collection of undifferentiated pluripotent stem cells, the number and positioning of
which are under tight control. The SAM is the source of aboveground post-embryogenesis
growth, including reproductive tissues, as it is converted to an inflorescence meristem
during floral transition. The stem cells of the SAM are in the center of the meristem in an
area termed the central zone (CZ). Surrounding these regions of slowly dividing cells is
the peripheral zone (PZ) that gives rise to differentiated tissues. Below the CZ is the rib
meristem (RM) zone that develops into stem tissue. Similarly, the RAM is the source of
post-embryogenic root growth. The roots can be divided into the differentiated zone, the
elongation zone, and the meristematic zone (which contains the RAM stem cells localized
in the quiescent center (QC)). In general, meristem development has been well studied,
and many transcription factors have been reported to perform important functions in main-
taining meristematic tissues, including WUSCHEL and KNOTTED1-LIKE HOMEOBOX
(KNOX) genes in SAM and WUSCHEL-LIKE HOMEOBOX 5 (WOX5), SCARECROW, SPAT-
ULA, and PLETHORA in RAM (see [37–40] for recent reviews). By contrast, less is known
about the roles of epigenetic regulators in SAM and RAM development [41,42]. Overall,
SAM and RAM development provide a good model to test the efficacy of our approach.

2.2.1. Creating Subnetworks Related to SAM and RAM Development Based on
Representative Transcriptomic Studies

The EpiNet was generated without any focus on any particular biological processes
and therefore contains transcriptional and epigenetic regulatory information for the whole
genome. To generate subnetworks relevant to SAM or RAM development, we first searched
for published transcriptomic studies that identified genes involved in SAM or RAM de-
velopment. We focused on two transcriptomic studies of SAM, Yadav et al. [43] and Tian
et al. [44]. In these two studies, cell-layer-specific transcriptomic profiling was performed;
therefore, these studies likely have high sensitivity and identified a wide range of genes
related to SAM development and function. In Yadav et al. [43], a mutant named apetala1-1;
cauliflower1-1 (ap1-1; cal1-1) was used because it produces multiple SAMs [45]. Different cell
layers within the SAMs were labeled by expressing fluorescent proteins under the control of
promoters known to drive gene expression specifically in those cell layers. For example, the
CLV3 promoter was used to label the central zone (CZ), the FILAMENTOUSFLOWER (FIL)
promoter was used to label the peripheral zone (PZ), especially the flower organ primordia,
and the WUSCHEL (WUS) promoter labeled the rib meristem (RM). Microarray assays were
performed to compare the transcriptomes between the three labeled cell layers with fluo-
rescent protein-negative SAM protoplasts as control. This study led to the identification of
2515 differentially expressed genes (DEGs) that are significantly upregulated in at least one
of the three cell layers. Similarly, Tian et al. [44] also reported zone-specific transcriptomes
from SAM through a different profiling method—translating ribosome affinity purification
followed by sequencing (TRAP-Seq). In Tian et al. [44], transgenic plants were created in
which the large subunit ribosomal protein L18 was fused with N-terminal His and FLAG
tags, driven by zone-specific promoters such as pCLV3, pUFO, and pWUS (for CZ, PZ, and
RM/organizing center (OC), respectively). From the transgenic seedlings, polysomes were
immunoprecipitated using antibodies specific for the His or FLAG affinity tags, and the
co-precipitated mRNA was then profiled by deep RNA-sequencing. This study identified
2013 genes that are expressed specifically in the CZ, PZ, and RM/OC zones in SAM.

For both studies, the list of identified DEGs was used to query the shoot EpiNet to
generate a SAM subnetwork that contains: (i) epigenetic regulators and TFs that are inferred
to affect the expression levels of the DEGs identified in Yadav et al. [43] or Tian et al. [44];
(ii) the DEGs that are regulated by the regulators in (i); and (iii) the regulatory relationships



Plants 2021, 10, 364 5 of 15

between (i) and (ii) (Figure 1B). Note that the regulators themselves are not required to be
differentially expressed. From Yadav et al. [43], the resulting SAM subnetwork contains
482,082 edges and 4463 nodes, including 1673 TF regulators and 275 epigenetic regulators
(Supplemental Data 3). From Tian et al. [44], the generated SAM subnetwork contains
358,047 edges and 3937 nodes, including 1650 TF regulators and 274 epigenetic regulators
(Supplemental Data 4).

To generate the RAM subnetwork, we used RAM-specific DEGs reported in Nawy
et al. [46]. In Nawy et al. [46], the AGAMOUS-LIKE 42 (AGL42) promoter, which is known
to drive quiescent center (QC)-specific expression, was fused to GFP in order to label root
cells in the QC. Fluorescent cells from root protoplasts were then sorted, and RNA was
extracted and profiled using microarray. The global gene expression profile in the QC
cells was compared to that in surrounding tissues, generating a list of 290 QC-specific
expressed genes. This list of DEGs was used to query the root EpiNet, generating a RAM
subnetwork with 67,533 edges and 2174 nodes, including 1612 TF regulators and 272
epigenetic regulators (Figure 1B; Supplemental Data 5).

2.2.2. The Predicted Top TFs and Epigenetic Regulators Have Reported Roles in Meristem
Development

To identify the most influential epigenetic regulators of SAM and RAM subnetworks,
the regulators in each subnetwork were further ranked by their weight sum, which rep-
resents their net influence on the genes in the subnetwork (see Methods for details). The
top ranked regulators with the greatest weight sums are predicted to regulate the largest
number of genes in the subnetwork and/or have the highest confidence. We anticipate
that some of the most influential regulators of apical meristem development, or indeed
any well studied biological process, would have been already identified by traditional
genetic approaches. Therefore, we first examined the top ranked regulators, including
both TF regulators and epigenetic regulators, to determine whether known regulators of
meristematic development are among the top predicted regulators in the SAM or RAM
subnetworks. If ranked highly in the predicted list, such known regulators would support
the efficacy of our network inference approach.

We first examined the top 25 regulators identified in the two SAM subnetworks.
Interestingly, the top 25 regulators identified based on Yadav et al. (Table S2) or Tian et al.
(Table S3) share a 64% overlap (Figure 2A), even though the two lists of DEGs identified
from Yadav et al. and Tian et al. only have a much smaller overlap (Figure 2B; an overlap
of 362 genes, which represents 14.4% and 18.0% of the input DEG lists from Yadav et al.
and Tian et al., respectively). Indeed, the regulators of the two SAM subnetworks share
high similarity: the ranks (Figure 2C) and the weight sums (Figure 2D) of regulators are
highly correlated between the two SAM subnetworks (R2 = 0.9212 for ranks and 0.8875
for weight sums). By contrast, the ranks of regulators are less correlated between the
RAM subnetwork and the SAM subnetwork identified based on Yadav et al. (Figure 2E,
R2 = 0.1451) or Tian et al. (Figure 2F, R2 = 0.1292).

To integrate the ranking of regulators from the analyses of Yadav et al. (Table S2)
or Tian et al. (Table S3), a cumulative rank that summarizes the two lists of top 25 reg-
ulators was generated using a Rank Sum method (Table S4). In the integrated ranking,
the top regulator is HOMOLOGY DEPENDENT GENE SILENCING 1 (HOG1), encoding a
S-adenosyl-L-homocysteine hydrolase required for DNA methylation [47]. To the best of
our knowledge, a role for HOG1 in meristematic development has not been reported. How-
ever, among the remaining top regulators, many regulators have been previously reported
to be involved in regulating meristem development. For example, CONSTANS-LIKE 5
(COL5), ranked second, is a member of the CONSTANS transcription factors family [48]
and its overexpression was shown to induce flowering [49]. Our analysis thus suggests
that COL5 possibly controls the SAM gene network to facilitate the transition of SAM to
inflorescence meristem when environmental and/or developmental signals permit. In
addition, two members of the KNOTTED-LIKE HOMEOBOX (KNOX) transcription factor
family, KNOTTED-LIKE FROM ARABIDOPSIS THALIANA 1 (KNAT1) and KNAT4, are
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ranked fourth and seventh, respectively (Table S4). KNAT1 is primarily expressed in and
around the SAM [50], and overexpression of KNAT1 results in lobed leaves with ectopic
meristems [51]. KNAT4 is reported to suppress meristematic capacity redundantly with
other members of the KNOX family, KNAT3 and KNAT5 [52]. Further, CYCLING DOF
FACTOR 3 (CDF3), belonging to the DNA-binding with one finger (DOF)-type transcrip-
tion factor family, is ranked sixth among the top regulators. CDF3 was shown to repress
floral transition [53] and therefore might play a role in regulating the transition of SAM
to inflorescent meristem. In addition to identifying previously known TFs involved in
meristematic regulation, one epigenetic regulator with reported roles in regulating SAM
development was also among the top regulator list (Table S4): SPLAYED (SYD; AT2G28290).
SYD is a member of the SWI/SNF2 family of chromatin remodelers and has been shown to
be required for meristem development, and syd mutants displayed premature termination
of the floral meristem [42].
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By contrast, the correlation of regulator ranks between the RAM subnetwork (generated from Nawy et al.) with either the
SAM subnetwork generated using Yadav et al. (E) or Tian et al. (F) is much weaker (R2 = 0.1292 and 0.1451, respectively).

For RAM development, similarly, we examined the top ranked regulators, including
both TF regulators and epigenetic regulators (Table S5), and identified multiple regula-
tors with known functions in meristematic development. The top regulator in the RAM
network is WHIRLY 2 (WHY2), a member of the WHIRLY transcription factor family of
single-stranded DNA binding proteins required for maintaining mitochondria. To the
best of our knowledge, it is unknown whether WHY2 is involved in regulating RAM
development. The second most influential regulator is SPATULA (SPT). SPT encodes a
basic-helix-loop-helix family (bHLH) transcription factor first shown to be involved in
floral development [54,55]. SPT was also reported as a negative regulator of organ size
in leaves [56], cotyledons [57], and roots [58]. In roots, specifically, spt mutants have an
increased number of cells in the QC and longer roots, suggesting that SPT is a repressor
of cell division in RAM [58]. STERILE APETALA (SAP), ranked fourth, encodes an F-box
protein that regulates proliferation of cells in the meristemoid, temporary stem cells which
give rise to stomata [59,60]. The role of SAP in root meristems is therefore interesting and
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invites further investigation. In addition to the above TF regulators, a few epigenetic regu-
lators with known functions in maintaining meristems have been also identified among the
list of top 25 regulators (Table S5). BRM (AT2G46020), ranked 13th, encodes a SWI2/SNF2
chromatin remodeler [61] with a known role in RAM. brm mutants have smaller, disordered
RAMs as BRM is required for proper maintenance of the QC [61]. Finally, two members
of the plant-specific HD2 family of HDACs, HDT1 and HDT4, were among the top 25
regulators. Multiple members of the HD2 HDACs have been shown to regulate cell number
in the root meristem [62].

Overall, the top TFs and epigenetic regulators identified in the SAM and RAM sub-
networks are enriched with known regulators for meristematic development, including
both TF regulators and epigenetic regulators. Our unbiased approach, with no prior
knowledge of known regulators, thus assigned high ranks to many of the known regula-
tors. These results provide robust support that our approach is capable of identifying the
key regulators of any developmental processes. Therefore, the rest of the highly ranked
but uncharacterized regulators are good candidates for novel regulators of SAM/RAM
development.

2.2.3. Identifying Highly Influential Epigenetic Regulators and Their Predicted Targets in
SAM/RAM GRNs

Since our primary interest is to identify novel epigenetic regulators for specific bi-
ological processes, we generated the lists of top 10 epigenetic regulators in the SAM
(Tables S6 and S7) and the RAM subnetworks (Table S8) (Figure 1B). For SAM, a cumula-
tive rank that summarizes the two ranked lists based on either Yadav et al. (Table S6) or
Tian et al. (Table S7) was generated by Rank Sum (Table S9). These lists provide promising
candidates for novel epigenetic regulators of SAM/RAM development.

To further validate the specificity of our network predictions, the in silico network-
inferred targets of top epigenetic regulators (referred to as “in silico targets” hereinafter)
were retrieved from the EpiNet (Figure 1B; see Methods for details) and compared with
experimentally detected targets of these epigenetic regulators, when available. Since the
experimental data are often derived from whole plants and not constrained to the SAM
and RAM tissues, we compared the experimentally defined targets to the genome-wide
targets in EpiNet. The significance of the overlap is estimated using hypergeometric dis-
tribution (see Methods). Overall, we observed significant overlap between the in silico
targets and experimentally validated targets for many top epigenetic regulators identi-
fied in our study (Table 1). For example, SYD is predicted to regulate 6797 genes in the
shoot EpiNet. A transcriptomic study performed with the Arabidopsis ATH1 Affymetrix
microarray identified 133 genes that are differentially expressed in the syd-2 seedlings
compared to wild-type (WT) plants [63]. Remarkably, 40 out of the 133 genes were pre-
dicted by our network, representing a significant enrichment of experimentally validated
regulatory targets among the in silico targets (enrichment p- value < 0.048 determined by
hypergeometric distribution against microarray background) (Table 1). Similarly, two genes
encoding ubiquitin-conjugating enzymes (UBCs), UBC1 and UBC2, were found among
the top epigenetic regulators of SAM (Table S9). The UBCs are ubiquitin E2 conjugases
that physically interact with two RING E3 ligases, HISTONE MONOUBIQUITATION 1
(HUB1) and HUB2, to monoubiquitinate H2B histones [64]. UBC1 and UBC2 were shown to
regulate flowering time [64], possibly by affecting the transition from SAM to inflorescence
meristem. In EpiNet, UBC1 and UBC2 are predicted to regulate 7239 and 6879 genes in
the leaves, respectively. The in silico targets of UBC2 overlap significantly with genes that
are downregulated in the ubc1/ubc2 double mutants compared to WT in the context of
salt-stress response [65] (32/82, hypergeometric p < 0.004, Table 1). Interestingly, the in
silico targets of UBC1 do not overlap significantly with the experimentally determined
misregulated genes in ubc1/ubc2 (19/82, hypergeometric p = n.s., Table 1), possibly indi-
cating that UBC2 has a more dominant role in salt stress than UBC1. Finally, JUMONJI-C
CONTAINING PROTEIN 30 (JMJ30) has 4610 predicted in silico targets in the shoot network,
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which overlap significantly with genes with altered expression in jmj30/jmj32 seedlings
compared to WT plants [66] (32/74, hypergeometric p < 0.0005, Table 1).

Table 1. Validation of in silico target predictions of epigenetic regulators in shoots and roots. For each epigenetic regulator (1st column),
the in silico targets from EpiNet (2nd column) were compared with experimentally determined targets (3rd column) to determine the
size of overlap (4th column). Hypergeometric testing was used to determine whether the overlap was statistically significant compared
to a random background, and the p-value is reported (5th column). A brief description of the experimental data and the citation is
included in the last column.

Epigenetic
Regulator

No. of In
Silico

Targets

No. of
Experimental

Targets

No. of
Overlapping

Targets

Overlap
p-Value Sources of Experimental Data

Sh
oo

ts

SYD 4936 1 133 40 0.0476 DEGs in syd-2 seedlings [63]

UBC1 7239 82 19 0.7693 Salt stress-induced genes with lower expression in
ubc1/ubc2 [65]

UBC2 6879 82 32 0.0032 Salt stress-induced genes with lower expression in
ubc1/ubc2 [65]

JMJ30 4642 106 32 0.0004 DEGs in jmj30/jmj32 seedlings [66]

R
oo

ts

HDT1 8145
90 38 0.0066 DEGs in meristem zone of hdt1/2 root tips [62]

114 48 0.0027 DEGs in elongation zone of hdt1/2 root tips [62]
42 8 0.9557 DEGs in differentiated zone of hdt1/2 root tips [62]

HDT2 8556
90 34 0.0996 DEGs in meristem zone of hdt1/2 root tips [62]

114 42 0.1041 DEGs in elongation zone of hdt1/2 root tips [62]
42 17 0.1220 DEGs in differentiated zone of hdt1/2 root tips [62]

BRM 4234 1 93 26 0.0436 Downregulated genes in brm-101 seedlings [63]

BRM 5470

4250 925 0.0003 DEGs in brm-1 leaves [67]
5278 1127 0.0008 ChIP-Seq using pBRM::BRM-GFP in brm-1 [68]
7761 1702 <0.0001 ChIP-Seq using pBRM::BRM-GFP in brm-1 [69]
4831 1032 0.0014 ChIP-chip study using BRM antibody [70]

PRMT4A 5130 5504 1082 0.0098 DEGs in prmt4a/prmt4b seedlings [71]
1: in silico targets were filtered based on microarray probes.

In the roots, similarly, we observed significant overlaps between the in silico targets
and experimentally determined targets for top epigenetic regulators. Interestingly, all four
members of the plant-specific HD2 family of HDACs (HDT1, HDT2, HDT3, and HDT4)
were among the top 10 epigenetic regulators of the RAM subnetwork (Table S8). The
regulated genes by HDT1 and HDT2 in roots have been reported in a transcriptomic study
comparing hdt1,2 root tips with WT, specifically in a tissue-specific manner for the meristem
zone, elongation zone, and differentiated zone separately [62]. Interestingly, the 8145 in
silico targets of HDT1 in the root EpiNet significantly overlap with genes differentially
expressed in the meristem and elongation zones, but not the differentiated zone, in hdt1,2
root tips (meristem 38/90, hypergeometric p < 0.007; elongation 47/114, hypergeometric
p < 0.003; differentiated 17/42, hypergeometric p = n.s.; Table 1). There was no significant
overlap between the experimentally determined regulated genes in hdt1,2 root tips with the
8556 in silico targets of HDT2 (Table 1). Another top epigenetic regulator is the chromatin
remodeler BRM, which is predicted to regulate 5470 genes in the root EpiNet. These
in silico targets significantly overlap with downregulated genes in seedlings of brm-101
compared to WT [63] (26/93; hypergeometric p < 0.05 against microarray background,
Table 1), as well as DEGs identified in leaves of brm-1 mutants compared to WT [67]
(925/4250, hypergeometric p < 8 × 10−4, Table 1). More importantly, the in silico targets
of BRM also significantly overlap with direct targets of BRM identified in planta by ChIP-
based genome-wide approaches in three studies: (i) two ChIP-Seq studies using transgenic
lines carrying pBRM::BRM-GFP transgene in the brm-1 mutant background (Li et al. [68]
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1127/5278, hypergeometric p < 0.003, Table 1; Yu et al. [69] 1702/7761, hypergeometric
p < 1.7 × 10−7, Table 1); and (ii) a ChIP-chip study using BRM antibody [70] (1032/4832,
hypergeometric p < 0.004, Table 1). Finally, PRMT4A is predicted to regulate 5130 genes in
the roots and these targets significantly overlap with DEGs identified in the prmt4a/prmt4b
double mutant [71] (1082/5504, hypergeometric p < 0.01, Table 1).

Overall, we observed significant overlaps between the in silico network-inferred targets
and experimentally validated targets, for the top epigenetic regulators identified in our
study. These results further support the predictive power of the EpiNet approach. In
summary, our study presented an unbiased gene regulatory network with epigenetic
regulators incorporated as potential regulators, as well as a bioinformatics pipeline that
allows for the identification and prioritization of influential epigenetic regulators for any
specific biological process given that a DEG list is available for said biological process.

3. Discussion

Epigenetic regulators, working in concert with transcription factors to modify the
expression levels of genes, have an emergent role in controlling gene networks underlying
developmental and/or environmental responses. However, compared to transcription
factors, the regulatory role of epigenetic modifiers is often overlooked in gene network
inference. To integrate epigenomic data into networks, recent efforts have incorporated
histone modification patterns as attributes of genes in a regulatory network [29,30]. Histone
modifications have also been used as prior knowledge to improve predictive network
models in yeast [31] However, these studies have overlooked the causal influence of
epigenetic regulators on the expression levels of their genomic targets. Epigenetic regulators
modify the expression level of their genomic targets, which has been shown in published
studies in yeast and human [72,73] and in plants [9,74]. Specifically, epigenetic regulators
could function as an “on” or “off” switch for a gene locus, e.g., via altering chromatin
availability or modulating the abundance or quality of transcripts for actively transcribed
genes. Epigenetic regulators could be recruited to these target gene loci by interacting
with TFs [75] or other cis-motif-binding proteins [76]. Therefore, in our study, epigenetic
regulators are allowed the same “predictor” status as TF regulators in gene network
modeling. Including epigenetic regulators in gene network models will likely enhance the
ability to predict network states under untested conditions.

The input data for our network inference were curated to only include gene expression
values from either the shoots or the roots but in each case included a wide range of
experimental conditions and stimuli. Therefore, the GRN inference is likely to pick up
regulatory interactions that are broadly occurring in that organ and are not limited to a
biological process of interest. No prior information was provided on the relative importance
of regulators or the strength of known regulations to our approach, thus making it unbiased.
As a result, it is able to predict known and unknown regulators of any biological process
occurring in that organ. In our case study, the appropriate selection of a well-defined
target set of genes, e.g., the genes involved in SAM/RAM maintenance and development,
allows for the identification of TF and epigenetic regulators even when the underlying
transcriptome data were not specifically chosen from meristematic tissues. Thus, the
EpiNet approach was able to predict a GRN reasonably well in an untested, or at least
underrepresented, condition of apical meristem maintenance.

In our study, we used DEGs generated from two different studies of SAM development,
Yadav et al. [43] and Tian et al. [44], to create two SAM subnetworks. The two lists of
DEGs only have a modest overlap, <20%, possibly reflecting the different experimental
conditions (genotypes, biochemical methods for transcriptomic profiling, etc.) and/or
informatics pipelines between the two studies (Figure 2B). Surprisingly, from the two
reasonably different lists of DEGs, we identified highly similar regulators, evidenced by
the 64% overlap of top 25 regulators (Figure 2A). Moreover, we observed a high correlation
of ranks of regulators between the two subnetworks (Figure 2C). This cannot be explained
merely by a dominant contribution from the overlapped 362 DEGs on the ranking of the
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regulators (Figure 2B), as in each case, the “unique” DEGs contribute to 85% and 82% of
the total weight of edges of the subnetworks from Yadav et al. and Tian et al., respectively.
Similarly, one might argue that a hub regulator in the whole EpiNet will likely remain a
hub in any subnetwork, thus leading to the similar ranking of regulators between the two
SAM subnetworks, but this does not appear to be the explanation here because the ranking
of regulators in RAM is quite different (Figure 2E,F). Our observation likely suggests that
although the identification of DEGs in a particular transcriptomic study could be sensitive
to the specific experimental condition and biochemical/informatics protocols applied, the
identification of the upstream epigenetic regulators, by contrast, is more robust.

Our analysis has generated insights into the epigenetic regulators underlying the
complex developmental processes of the SAM and RAM. For example, all four members
of the plant-specific HD2 family of HDACs (HDT1, 2, 3, and 4) were among the top 10
epigenetic regulators in the RAM subnetwork (Table S8). Similarly, in the SAM subnetwork,
HDT1 and HDT2 are among the top epigenetic regulators (Table S9). This family of
HDACs is unique in that it is plant-specific [77,78], and they are preferentially expressed in
inflorescence tissues and relevant to environmental stresses [62,77,79,80]. HDT1 and HDT2
have been shown to regulate cell number in the root meristem [62]. Now, our analysis
suggests that this family of HDACs is involved in regulating both SAM and RAM, possibly
to alter the histone acetylation status of genes involved in meristematic development in
response to environmental changes, potentially serving as an underlying mechanism of
developmental plasticity to environmental changes in plants.

To validate our network prediction, we compared predicted in silico targets and ex-
perimentally detected targets, mostly determined through transcriptomic assays (Table 1).
For multiple epigenetic regulators, we observed a significant overlap between the two
types of target genes (in silico predicted vs. experimentally detected), suggesting that
the computational predictions are comparable to the in planta scenarios. For a limited
number of epigenetic regulators (e.g., BRM), their targets have also been identified by
ChIP-based approaches. These ChIP-Seq and ChIP-chip studies have not been used in the
construction of the EpiNet, which was built based on transcriptome data. Therefore, the
significant overlaps between the in silico targets and the experimental targets identified by
ChIP provide completely independent proof that the in silico predicted targets are likely
enriched with bona fide targets. In addition, the overlaps of genes in some comparisons
were likely underestimated, due to the limitation of experimental conditions. For exam-
ple, transcriptomic profiling in Arabidopsis was often performed with whole seedlings;
therefore, the transcriptomes are likely dominated by gene expression profiles from the
shoots, with minimal representation from the roots. Therefore, the comparison of DEGs
from such studies with the predicted targets in root EpiNet likely contains many false
negatives. To reduce the false negative rate, future functional genomics studies should be
performed in the roots to determine the specific gene targets of the epigenetic regulator
in the roots. Indeed, the difference between the predicted targets and the experimentally
validated targets could be caused by multiple reasons: (i) EpiNet predicts a full range
of targets across multiple developmental stages and growth conditions, since the GRNs
are based on hundreds to thousands of transcriptomic studies performed under various
conditions. By contrast, the experimentally validated targets are limited to the specific
developmental stages and growth conditions assayed in those particular experiments;
(ii) the experimentally determined targets are sometimes limited by the platform used,
e.g., microarray; (iii) the number of experimentally determined targets is also affected by
the specific statistical cutoff used in the study; and (iv) additionally, GRN inference itself
tolerates a modest to high false positive rate in order to improve recall (i.e., number of true
positives identified) [22,33]. Nonetheless, our EpiNet approach demonstrates the strength
of GRN-based, data-driven approaches in identifying functions of epigenetic regulators.

Overall, we expect that the EpiNet database and pipeline presented in this study
could be utilized by the plant community in a couple of ways: (i) the EpiNet can be in-
tersected with DEGs generated through any transcriptomic study relevant to any specific
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biological process of interest, to identify the epigenetic regulators that are most impor-
tant for this process, in order to speed up hypothesis generation and testing; (ii) since
experimental determination of genome-wide targets of epigenetic regulators is time- and
resource-consuming, as a preliminary study, any epigenetic regulator of interest could be
queried in the EpiNet databases to identify the predicted targets for shoots and roots, sepa-
rately. We used SAM and RAM development as examples, and the described approaches
can be expanded to study other processes. Our EpiNet was built with transcriptome data
from Arabidopsis to take advantage of the extensive collection of transcriptomes generated
for this model plant, as training GRNs generally benefits from a large input dataset of tran-
scriptomes. For other plant systems with >1000 transcriptomes available, the approaches
reported in this study could be applied to generate a species-specific EpiNet. Otherwise, the
Arabidopsis EpiNet could still be queried through ortholog mapping. Overall, knowledge
of how different epigenetic regulators regulate specific developmental or environmental
processes will greatly expand our understanding of gene regulation in plants.

4. Materials and Methods
4.1. Construction of Tissue-Specific Gene Regulatory Networks Including Epigenetic Regulators

The shoot and root RNA-Seq datasets from Arabidopsis thaliana were obtained from
NCBI SRA. The root set included 778 individual RNA-Seq runs and 1000 individual RNA-
Seq runs were retained for the shoot. In both cases, the expression level of all genes across
all runs was used to infer a gene regulatory network using the R implementation of the
GENIE3 algorithm [32] with the parameters K = all and nCores = 24 and using R version
3.5.1. The computation was performed on a Linux server with 24 cores (Sky lake CPUs @
2.60Hz), 384 GB RAM. Each inference job took multiple (~7–10) days to complete. The set
of regulators included the known 1717 TFs in Arabidopsis (AtTFDB [34]) as well as 286
epigenetic regulators described above. In the generated network, the weight of the edge
is a measure of the confidence in that regulatory edge relative to all the inferred edges in
the network [32]. From the ranked list of predictor->target weighted edges provided by
GENIE3, edges with the top 10% of weights were retained for further analysis, referred to
as EpiNet. The top 10% of predicted network is an arbitrary threshold chosen to reduce the
low confidence and, often, false positive edges common to network prediction.

4.2. Creating Subnetworks of SAM and RAM Development and Identifying the Top Regulators

Genes specifically expressed in the RAM (Nawy et al. [46]) or SAM (Yadav et al. [43]
and Tian et al. [44]) were used to filter the EpiNet generated by GENIE3. Each edge of
EpiNet (i.e., each line of the GENIE3 output) includes a Regulatory Gene (i.e., regulator or
predictor), a Target Gene, and a Weight. To generate SAM- or RAM-specific subnetworks,
the shoot or root EpiNet was filtered to only include edges where the Target Gene was in
the experimentally determined DEG list. Next, an in-house python script was run to sum
the weight of all edges in the subnetwork for every regulator to generate a weight sum.
Regulatory genes were then ranked by weight sum from highest to lowest. To determine
the top 10 predicted epigenetic regulators, the list of epigenetic regulators (Table S1) was
used to filter the rank of Regulatory Genes.

4.3. Assessing the Significance of the Overlap between In Silico Predicted Targets and
Experimentally Validated Targets of Influential Epigenetic Regulators

To determine the in silico targets of an epigenetic regulator, an in-house python script
was used to select all edges in the shoot or root EpiNet, where the Regulatory Gene is
the epigenetic regulator of interest. The collection of the Target Genes from these selected
edges then constitutes the in silico targets of the epigenetic regulator. The significance of
overlap between in silico and experimental targets was determined using hypergeometric
distribution in R statistical programming software (phyper; lower.tail = FALSE for overrep-
resentation). Unless otherwise mentioned, the total number of genes in Arabidopsis was
used as background. When experimental data were from a microarray experiment, in silico
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targets were filtered to only include genes presented on the microarray, and the number of
probes was used as background.

5. Conclusions

We present EpiNet, a bioinformatics resource for inferring organ-specific regulatory
relationships between epigenetic regulators and their targets. EpiNet could be used to
identify important epigenetic regulators of a specific biological process, as well as regula-
tory targets of these epigenetic regulators, thus facilitating generation of hypotheses on
epigenetic regulation. EpiNet utilizes the well-annotated genome and wealth of available
transcriptome studies from Arabidopsis, but this approach could be used in other plants
with sufficient transcriptome data.
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S4: SAM subnetwork based on DEGs from Tian et al.; Supplementary data S5: RAM subnetwork
based on DEGs from Nawy et al.; Supplementary Table S1: List of epigenetic regulators used in this
study and references; Supplementary Table S2: Top 25 regulators in the SAM subnetwork generated
from Yadav et al. 2009; Supplementary Table S3: Top 25 regulators in the SAM subnetwork generated
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subnetworks generated from Yadav et al. and Tian et al.

Author Contributions: Conceptualization, K.V. and Y.L.; Data curation, R.M.M., R.J. and R.R.; Formal
analysis, R.M.M. and S.R.V.K.; Funding acquisition, K.V. and Y.L.; Methodology, R.J., S.R.V.K., K.V.
and Y.L.; Project administration, Y.L.; Supervision, K.V. and Y.L.; Validation, R.M.M.; Visualization,
R.M.M. and Y.L.; Writing—original draft, R.M.M., R.J., K.V. and Y.L.; Writing—review and editing,
R.M.M., R.J., R.R., K.V. and Y.L. All authors have read and agreed to the published version of the
manuscript.

Funding: This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Biological and Environmental Research (BER), under Award Number DE-SC0020399.
This research is also supported by USDA National Institute of Food and Agriculture Hatch project
numbers 1013620 to Y.L.

Data Availability Statement: Data supporting reported results can be found in supplemental mate-
rials listed above.

Acknowledgments: We thank Somaiah Balekuttira for his technical assistance in data collection and
programming.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Felsenfeld, G. A Brief History of Epigenetics. Cold Spring Harb. Perspect. Biol. 2014, 6, a018200. [CrossRef]
2. Alvarez-Venegas, R.; Avramova, Z. SET-Domain Proteins of the Su(Var)3-9, E(z) and Trithorax Families. Gene 2002, 285, 25–37.

[CrossRef]
3. Yuan, L.; Liu, X.; Luo, M.; Yang, S.; Wu, K. Involvement of Histone Modifications in Plant Abiotic Stress Responses. J. Integr. Plant

Biol. 2013, 55, 892–901. [CrossRef]
4. Brusslan, J.A.; Alvarez-Canterbury, A.M.R.; Nair, N.U.; Rice, J.C.; Hitchler, M.J.; Pellegrini, M. Genome-Wide Evaluation of

Histone Methylation Changes Associated with Leaf Senescence in Arabidopsis. PLoS ONE 2012, 7, e33151. [CrossRef]
5. Maze, I.; Covington, H.E.; Dietz, D.M.; LaPlant, Q.; Renthal, W.; Russo, S.J.; Mechanic, M.; Mouzon, E.; Neve, R.L.; Haggarty, S.J.;

et al. Essential Role of the Histone Methyltransferase G9a in Cocaine-Induced Plasticity. Science 2010, 327, 213–216. [CrossRef]
[PubMed]

https://www.mdpi.com/2223-7747/10/2/364/s1
https://www.mdpi.com/2223-7747/10/2/364/s1
http://doi.org/10.1101/cshperspect.a018200
http://doi.org/10.1016/S0378-1119(02)00401-8
http://doi.org/10.1111/jipb.12060
http://doi.org/10.1371/journal.pone.0033151
http://doi.org/10.1126/science.1179438
http://www.ncbi.nlm.nih.gov/pubmed/20056891


Plants 2021, 10, 364 13 of 15

6. Nimura, K.; Ura, K.; Kaneda, Y. Histone Methyltransferases: Regulation of Transcription and Contribution to Human Disease.
J. Mol. Med. 2010, 88, 1213–1220. [CrossRef]

7. Van Dijk, K.; Ding, Y.; Malkaram, S.; Riethoven, J.-J.; Liu, R.; Yang, J.; Laczko, P.; Chen, H.; Xia, Y.; Ladunga, I. Dynamic Changes
in Genome-Wide Histone H3 Lysine 4 Methylation Patterns in Response to Dehydration Stress in Arabidopsis Thaliana. BMC
Plant Biol. 2010, 10, 238. [CrossRef] [PubMed]

8. Trollope, A.F.; Gutièrrez-Mecinas, M.; Mifsud, K.R.; Collins, A.; Saunderson, E.A.; Reul, J.M.H.M. Stress, Epigenetic Control of
Gene Expression and Memory Formation. Exp. Neurol. 2012, 233, 3–11. [CrossRef]

9. Li, Y.; Mukherjee, I.; Thum, K.E.; Tanurdzic, M.; Katari, M.S.; Obertello, M.; Edwards, M.B.; McCombie, W.R.; Martienssen, R.A.;
Coruzzi, G.M. The Histone Methyltransferase SDG8 Mediates the Epigenetic Modification of Light and Carbon Responsive Genes
in Plants. Genome Biol. 2015, 16, 79. [CrossRef]

10. Berr, A.; Ménard, R.; Heitz, T.; Shen, W.-H. Chromatin Modification and Remodelling: A Regulatory Landscape for the Control of
Arabidopsis Defence Responses upon Pathogen Attack: Chromatin Regulation of Plant Defence. Cell. Microbiol. 2012, 14, 829–839.
[CrossRef]

11. Li, Y.; Brooks, M.; Yeoh-Wang, J.; McCoy, R.M.; Rock, T.M.; Pasquino, A.; Moon, C.I.; Patrick, R.M.; Tanurdzic, M.; Ruffel, S.; et al.
SDG8-Mediated Histone Methylation and RNA Processing Function in the Response to Nitrate Signaling. Plant Physiol. 2020, 182,
215–227. [CrossRef] [PubMed]

12. Lee, S.; Fu, F.; Xu, S.; Lee, S.Y.; Yun, D.-J.; Mengiste, T. Global Regulation of Plant Immunity by Histone Lysine Methyl Transferases.
Plant Cell 2016, 28, 1640–1661. [CrossRef]

13. Soppe, W.J.; Bentsink, L.; Koornneef, M. The Early-Flowering Mutant Efs Is Involved in the Autonomous Promotion Pathway of
Arabidopsis Thaliana. Development 1999, 126, 4763–4770.

14. Van der Woude, L.C.; Perrella, G.; Snoek, B.L.; van Hoogdalem, M.; Novák, O.; van Verk, M.C.; van Kooten, H.N.; Zorn,
L.E.; Tonckens, R.; Dongus, J.A.; et al. HISTONE DEACETYLASE 9 Stimulates Auxin-Dependent Thermomorphogenesis in
Arabidopsis Thaliana by Mediating H2A.Z Depletion. Proc. Natl. Acad. Sci. USA 2019, 116, 25343–25354. [CrossRef]

15. Zheng, Y.; Ding, Y.; Sun, X.; Xie, S.; Wang, D.; Liu, X.; Su, L.; Wei, W.; Pan, L.; Zhou, D.-X. Histone Deacetylase HDA9 Negatively
Regulates Salt and Drought Stress Responsiveness in Arabidopsis. J. Exp. Bot. 2016, 67, 1703–1713. [CrossRef]

16. Parida, A.P.; Sharma, A.; Sharma, A.K. AtMBD4: A Methylated DNA Binding Protein Negatively Regulates a Subset of Phosphate
Starvation Genes. J. Biosci. 2019, 44, 14. [CrossRef]

17. Zhu, J.; Jeong, J.C.; Zhu, Y.; Sokolchik, I.; Miyazaki, S.; Zhu, J.-K.; Hasegawa, P.M.; Bohnert, H.J.; Shi, H.; Yun, D.-J.; et al.
Involvement of Arabidopsis HOS15 in Histone Deacetylation and Cold Tolerance. Proc. Natl. Acad. Sci. USA 2008, 105, 4945–4950.
[CrossRef] [PubMed]

18. Asensi-Fabado, M.-A.; Amtmann, A.; Perrella, G. Plant Responses to Abiotic Stress: The Chromatin Context of Transcriptional
Regulation. Biochim. Biophys. Acta BBA Gene Regul. Mech. 2017, 1860, 106–122. [CrossRef]

19. Colville, A.; Alhattab, R.; Hu, M.; Labbé, H.; Xing, T.; Miki, B. Role of HD2 Genes in Seed Germination and Early Seedling Growth
in Arabidopsis. Plant Cell Rep. 2011, 30, 1969. [CrossRef]

20. Xiao, J.; Wagner, D. Polycomb Repression in the Regulation of Growth and Development in Arabidopsis. Curr. Opin. Plant Biol.
2015, 23, 15–24. [CrossRef]

21. Haque, S.; Ahmad, J.S.; Clark, N.M.; Williams, C.M.; Sozzani, R. Computational Prediction of Gene Regulatory Networks in Plant
Growth and Development. Curr. Opin. Plant Biol. 2019, 47, 96–105. [CrossRef]

22. Varala, K.; Marshall-Colón, A.; Cirrone, J.; Brooks, M.D.; Pasquino, A.V.; Léran, S.; Mittal, S.; Rock, T.M.; Edwards, M.B.; Kim, G.J.;
et al. Temporal Transcriptional Logic of Dynamic Regulatory Networks Underlying Nitrogen Signaling and Use in Plants. Proc.
Natl. Acad. Sci. USA 2018, 115, 6494–6499. [CrossRef]

23. Karlebach, G.; Shamir, R. Modelling and Analysis of Gene Regulatory Networks. Nat. Rev. Mol. Cell Biol. 2008, 9, 770–780.
[CrossRef]

24. Bonneau, R.; Reiss, D.J.; Shannon, P.; Facciotti, M.; Hood, L.; Baliga, N.S.; Thorsson, V. The Inferelator: An Algorithm for Learning
Parsimonious Regulatory Networks from Systems-Biology Data Sets de Novo. Genome Biol. 2006, 7, R36. [CrossRef]

25. Krouk, G.; Mirowski, P.; LeCun, Y.; Shasha, D.E.; Coruzzi, G.M. Predictive Network Modeling of the High-Resolution Dynamic
Plant Transcriptome in Response to Nitrate. Genome Biol. 2010, 11, R123. [CrossRef] [PubMed]

26. Nachman, I.; Regev, A.; Friedman, N. Inferring Quantitative Models of Regulatory Networks from Expression Data. Bioinformatics
2004, 20, i248–i256. [CrossRef]

27. Yosef, N.; Shalek, A.K.; Gaublomme, J.T.; Jin, H.; Lee, Y.; Awasthi, A.; Wu, C.; Karwacz, K.; Xiao, S.; Jorgolli, M.; et al. Dynamic
Regulatory Network Controlling TH17 Cell Differentiation. Nature 2013, 496, 461–468. [CrossRef]

28. Weinstock, G.M. ENCODE: More Genomic Empowerment. Genome Res. 2007, 17, 667–668. [CrossRef] [PubMed]
29. Guan, D.; Shao, J.; Deng, Y.; Wang, P.; Zhao, Z.; Liang, Y.; Wang, J.; Yan, B. CMGRN: A Web Server for Constructing Multilevel

Gene Regulatory Networks Using ChIP-Seq and Gene Expression Data. Bioinform. Oxf. Engl. 2014, 30, 1190–1192. [CrossRef]
30. Wang, L.Y.; Wang, P.; Li, M.J.; Qin, J.; Wang, X.; Zhang, M.Q.; Wang, J. EpiRegNet: Constructing Epigenetic Regulatory Network

from High Throughput Gene Expression Data for Humans. Epigenetics 2011, 6, 1505–1512. [CrossRef]
31. Zheng, J.; Chaturvedi, I.; Rajapakse, J.C. Integration of Epigenetic Data in Bayesian Network. In Pattern Recognition in Bioinformat-

ics; Lecture Notes in Computer Science; Loog, M., Wessels, L., Reinders, M.J.T., de Ridder, D., Eds.; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 87–96. ISBN 978-3-642-24854-2.

http://doi.org/10.1007/s00109-010-0668-4
http://doi.org/10.1186/1471-2229-10-238
http://www.ncbi.nlm.nih.gov/pubmed/21050490
http://doi.org/10.1016/j.expneurol.2011.03.022
http://doi.org/10.1186/s13059-015-0640-2
http://doi.org/10.1111/j.1462-5822.2012.01785.x
http://doi.org/10.1104/pp.19.00682
http://www.ncbi.nlm.nih.gov/pubmed/31641075
http://doi.org/10.1105/tpc.16.00012
http://doi.org/10.1073/pnas.1911694116
http://doi.org/10.1093/jxb/erv562
http://doi.org/10.1007/s12038-018-9843-5
http://doi.org/10.1073/pnas.0801029105
http://www.ncbi.nlm.nih.gov/pubmed/18356294
http://doi.org/10.1016/j.bbagrm.2016.07.015
http://doi.org/10.1007/s00299-011-1105-z
http://doi.org/10.1016/j.pbi.2014.10.003
http://doi.org/10.1016/j.pbi.2018.10.005
http://doi.org/10.1073/pnas.1721487115
http://doi.org/10.1038/nrm2503
http://doi.org/10.1186/gb-2006-7-5-r36
http://doi.org/10.1186/gb-2010-11-12-r123
http://www.ncbi.nlm.nih.gov/pubmed/21182762
http://doi.org/10.1093/bioinformatics/bth941
http://doi.org/10.1038/nature11981
http://doi.org/10.1101/gr.6534207
http://www.ncbi.nlm.nih.gov/pubmed/17567987
http://doi.org/10.1093/bioinformatics/btt761
http://doi.org/10.4161/epi.6.12.18176


Plants 2021, 10, 364 14 of 15

32. Huynh-Thu, V.A.; Irrthum, A.; Wehenkel, L.; Geurts, P. Inferring Regulatory Networks from Expression Data Using Tree-Based
Methods. PLoS ONE 2010, 5, e12776. [CrossRef]

33. Marbach, D.; Costello, J.C.; Küffner, R.; Vega, N.; Prill, R.J.; Camacho, D.M.; Allison, K.R.; Kellis, M.; Collins, J.J.; Stolovitzky, G.
Wisdom of Crowds for Robust Gene Network Inference. Nat. Methods 2012, 9, 796–804. [CrossRef]

34. Palaniswamy, S.K.; James, S.; Sun, H.; Lamb, R.S.; Davuluri, R.V.; Grotewold, E. AGRIS and AtRegNet. A Platform to Link
Cis-Regulatory Elements and Transcription Factors into Regulatory Networks. Plant Physiol. 2006, 140, 818–829. [CrossRef]
[PubMed]

35. Huang, J.; Zheng, J.; Yuan, H.; McGinnis, K. Distinct Tissue-Specific Transcriptional Regulation Revealed by Gene Regulatory
Networks in Maize. BMC Plant Biol. 2018, 18, 111. [CrossRef] [PubMed]

36. Walley, J.W.; Sartor, R.C.; Shen, Z.; Schmitz, R.J.; Wu, K.J.; Urich, M.A.; Nery, J.R.; Smith, L.G.; Schnable, J.C.; Ecker, J.R.; et al.
Integration of Omics Networks in a Developmental Atlas of Maize. Science 2016, 353, 814–818. [CrossRef] [PubMed]

37. Kitagawa, M.; Jackson, D. Control of Meristem Size. Annu. Rev. Plant Biol. 2019, 70, 269–291. [CrossRef]
38. Fouracre, J.P.; Poethig, R.S. Lonely at the Top? Regulation of Shoot Apical Meristem Activity by Intrinsic and Extrinsic Factors.

Curr. Opin. Plant Biol. 2020, 58, 17–24. [CrossRef]
39. Wang, B.; Smith, S.M.; Li, J. Genetic Regulation of Shoot Architecture. Annu. Rev. Plant Biol. 2018, 69, 437–468. [CrossRef]
40. Drisch, R.C.; Stahl, Y. Function and Regulation of Transcription Factors Involved in Root Apical Meristem and Stem Cell

Maintenance. Front. Plant Sci. 2015, 6, 505. [CrossRef]
41. Wu, M.-F.; Yamaguchi, N.; Xiao, J.; Bargmann, B.; Estelle, M.; Sang, Y.; Wagner, D. Auxin-Regulated Chromatin Switch Directs

Acquisition of Flower Primordium Founder Fate. eLife 2015, 4, e09269. [CrossRef]
42. Wagner, D.; Meyerowitz, E.M. SPLAYED, a Novel SWI/SNF ATPase Homolog, Controls Reproductive Development in Ara-

bidopsis. Curr. Biol. 2002, 12, 85–94. [CrossRef]
43. Yadav, R.K.; Tavakkoli, M.; Xie, M.; Girke, T.; Venugopala, R.G. A High-Resolution Gene Expression Map of the Arabidopsis

Shoot Meristem Stem Cell Niche. Proc. Natl. Acad. Sci. USA 2009, 106, 4941–4946. [CrossRef]
44. Tian, C.; Wang, Y.; Yu, H.; He, J.; Wang, J.; Shi, B.; Du, Q.; Provart, N.J.; Meyerowitz, E.M.; Jiao, Y. A Gene Expression Map of

Shoot Domains Reveals Regulatory Mechanisms. Nat. Commun. 2019, 10, 1–12. [CrossRef]
45. Ferrándiz, C.; Gu, Q.; Martienssen, R.; Yanofsky, M.F. Redundant Regulation of Meristem Identity and Plant Architecture by

FRUITFULL, APETALA1 and CAULIFLOWER. Dev. Camb. Engl. 2000, 127, 725–734.
46. Nawy, T.; Lee, J.Y.; Colinas, J.; Wang, J.Y.; Thongrod, S.C.; Malamy, J.E.; Birnbaum, K.; Benfey, P.N. Transcriptional Profile of the

Arabidopsis Root Quiescent Center. Plant Cell 2005, 17, 1908–1925. [CrossRef]
47. Rocha, P.S.C.F.; Sheikh, M.; Melchiorre, R.; Fagard, M.; Boutet, S.; Loach, R.; Moffatt, B.; Wagner, C.; Vaucheret, H.; Furner, I.

The Arabidopsis HOMOLOGY-DEPENDENT GENE SILENCING1 Gene Codes for an S -Adenosyl-l-Homocysteine Hydrolase
Required for DNA Methylation-Dependent Gene Silencing. Plant Cell 2005, 17, 404–417. [CrossRef] [PubMed]

48. Robson, F.; Costa, M.M.R.; Hepworth, S.R.; Vizir, I.; Pineiro, M.; Reeves, P.H.; Putterill, J.; Coupland, G. Functional Importance
of Conserved Domains in the Flowering-Time Gene CONSTANS Demonstrated by Analysis of Mutant Alleles and Transgenic
Plants: Analysis of CONSTANS. Plant J. 2002, 28, 619–631. [CrossRef] [PubMed]

49. Hassidim, M.; Harir, Y.; Yakir, E.; Kron, I.; Green, R.M. Over-Expression of CONSTANS-LIKE 5 Can Induce Flowering in
Short-Day Grown Arabidopsis. Planta 2009, 230, 481–491. [CrossRef] [PubMed]

50. Lincoln, C.; Long, J.; Yamaguchi, J.; Serikawa, K.; Hake, S. A Knotted1-like Homeobox Gene in Arabidopsis Is Expressed in the
Vegetative Meristem and Dramatically Alters Leaf Morphology When Overexpressed in Transgenic Plants. Plant Cell 1994, 6,
1859–1876. [CrossRef]

51. Chuck, G.; Lincoln, C.; Hake, S. KNAT1 Induces Lobed Leaves with Ectopic Meristems When Overexpressed in Arabidopsis.
Plant Cell 1996, 8, 1277–1289. [CrossRef]

52. Furumizu, C.; Alvarez, J.P.; Sakakibara, K.; Bowman, J.L. Antagonistic Roles for KNOX1 and KNOX2 Genes in Patterning the
Land Plant Body Plan Following an Ancient Gene Duplication. PLoS Genet. 2015, 11, e1004980. [CrossRef]

53. Fornara, F.; Panigrahi, K.C.S.; Gissot, L.; Sauerbrunn, N.; Rühl, M.; Jarillo, J.A.; Coupland, G. Arabidopsis DOF Transcription
Factors Act Redundantly to Reduce CONSTANS Expression and Are Essential for a Photoperiodic Flowering Response. Dev. Cell
2009, 17, 75–86. [CrossRef]

54. Heisler, M.G.; Atkinson, A.; Bylstra, Y.H.; Walsh, R.; Smyth, D.R. SPATULA, a Gene That Controls Development of Carpel Margin
Tissues in Arabidopsis, Encodes a BHLH Protein. Dev. Camb. Engl. 2001, 128, 1089–1098.

55. Alvarez, J.; Smyth, D.R. CRABS CLAW and SPATULA, Two Arabidopsis Genes That Control Carpel Development in Parallel
with AGAMOUS. Dev. Camb. Engl. 1999, 126, 2377–2386.

56. Ichihashi, Y.; Horiguchi, G.; Gleissberg, S.; Tsukaya, H. The BHLH Transcription Factor SPATULA Controls Final Leaf Size in
Arabidopsis Thaliana. Plant Cell Physiol. 2010, 51, 252–261. [CrossRef] [PubMed]

57. Josse, E.-M.; Gan, Y.; Bou-Torrent, J.; Stewart, K.L.; Gilday, A.D.; Jeffree, C.E.; Vaistij, F.E.; Martínez-García, J.F.; Nagy, F.; Graham,
I.A.; et al. A DELLA in Disguise: SPATULA Restrains the Growth of the Developing Arabidopsis Seedling. Plant Cell 2011, 23,
1337–1351. [CrossRef]

58. Makkena, S.; Lamb, R.S. The BHLH Transcription Factor SPATULA Regulates Root Growth by Controlling the Size of the Root
Meristem. BMC Plant Biol. 2013, 13, 1. [CrossRef] [PubMed]

http://doi.org/10.1371/journal.pone.0012776
http://doi.org/10.1038/nmeth.2016
http://doi.org/10.1104/pp.105.072280
http://www.ncbi.nlm.nih.gov/pubmed/16524982
http://doi.org/10.1186/s12870-018-1329-y
http://www.ncbi.nlm.nih.gov/pubmed/29879919
http://doi.org/10.1126/science.aag1125
http://www.ncbi.nlm.nih.gov/pubmed/27540173
http://doi.org/10.1146/annurev-arplant-042817-040549
http://doi.org/10.1016/j.pbi.2020.08.008
http://doi.org/10.1146/annurev-arplant-042817-040422
http://doi.org/10.3389/fpls.2015.00505
http://doi.org/10.7554/eLife.09269
http://doi.org/10.1016/S0960-9822(01)00651-0
http://doi.org/10.1073/pnas.0900843106
http://doi.org/10.1038/s41467-018-08083-z
http://doi.org/10.1105/tpc.105.031724
http://doi.org/10.1105/tpc.104.028332
http://www.ncbi.nlm.nih.gov/pubmed/15659630
http://doi.org/10.1046/j.1365-313x.2001.01163.x
http://www.ncbi.nlm.nih.gov/pubmed/11851908
http://doi.org/10.1007/s00425-009-0958-7
http://www.ncbi.nlm.nih.gov/pubmed/19504268
http://doi.org/10.1105/tpc.6.12.1859
http://doi.org/10.1105/tpc.8.8.1277
http://doi.org/10.1371/journal.pgen.1004980
http://doi.org/10.1016/j.devcel.2009.06.015
http://doi.org/10.1093/pcp/pcp184
http://www.ncbi.nlm.nih.gov/pubmed/20040585
http://doi.org/10.1105/tpc.110.082594
http://doi.org/10.1186/1471-2229-13-1
http://www.ncbi.nlm.nih.gov/pubmed/23280064


Plants 2021, 10, 364 15 of 15

59. Li, N.; Liu, Z.; Wang, Z.; Ru, L.; Gonzalez, N.; Baekelandt, A.; Pauwels, L.; Goossens, A.; Xu, R.; Zhu, Z.; et al. STERILE APETALA
Modulates the Stability of a Repressor Protein Complex to Control Organ Size in Arabidopsis Thaliana. PLoS Genet. 2018, 14,
e1007218. [CrossRef] [PubMed]

60. Wang, Z.; Li, N.; Jiang, S.; Gonzalez, N.; Huang, X.; Wang, Y.; Inzé, D.; Li, Y. SCFSAP Controls Organ Size by Targeting PPD
Proteins for Degradation in Arabidopsis Thaliana. Nat. Commun. 2016, 7, 11192. [CrossRef] [PubMed]

61. Yang, S.; Li, C.; Zhao, L.; Gao, S.; Lu, J.; Zhao, M.; Chen, C.-Y.; Liu, X.; Luo, M.; Cui, Y.; et al. The Arabidopsis SWI2/SNF2
Chromatin Remodeling ATPase BRAHMA Targets Directly to PINs and Is Required for Root Stem Cell Niche Maintenance. Plant
Cell 2015, 27, 1670–1680. [CrossRef]

62. Li, H.; Torres-Garcia, J.; Latrasse, D.; Benhamed, M.; Schilderink, S.; Zhou, W.; Kulikova, O.; Hirt, H.; Bisseling, T. Plant-Specific
Histone Deacetylases HDT1/2 Regulate GIBBERELLIN 2-OXIDASE2 Expression to Control Arabidopsis Root Meristem Cell
Number. Plant Cell 2017, 29, 2183–2196. [CrossRef] [PubMed]

63. Bezhani, S.; Winter, C.; Hershman, S.; Wagner, J.D.; Kennedy, J.F.; Chang, S.K.; Pfluger, J.; Su, Y.; Wagner, D. Unique, Shared,
and Redundant Roles for the Arabidopsis SWI/SNF Chromatin Remodeling ATPases Brahma and Splayed. Plant Cell 2007, 19,
403–416. [CrossRef]

64. Cao, Y.; Dai, Y.; Cui, S.; Ma, L. Histone H2B Monoubiquitination in the Chromatin of FLOWERING LOCUS C Regulates Flowering
Time in Arabidopsis. Plant Cell 2008, 20, 2586–2602. [CrossRef] [PubMed]

65. Sun, Y.; Zhao, J.; Li, X.; Li, Y. E2 Conjugases UBC1 and UBC2 Regulate MYB42-mediated SOS Pathway in Response to Salt Stress
in Arabidopsis. New Phytol. 2020, 227, 455–472. [CrossRef] [PubMed]

66. Abscisic Acid-Dependent Histone Demethylation during Postgermination Growth Arrest in Arabidopsis—Wu—2019—Plant,
Cell & Environment—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13547
(accessed on 27 December 2020).

67. Torres, E.S.; Deal, R.B. The Histone Variant H2A.Z and Chromatin Remodeler BRAHMA Act Coordinately and Antagonistically
to Regulate Transcription and Nucleosome Dynamics in Arabidopsis. Plant J. 2019, 99, 144–162. [CrossRef]

68. Li, C.; Gu, L.; Gao, L.; Chen, C.; Wei, C.-Q.; Qiu, Q.; Chien, C.-W.; Wang, S.; Jiang, L.; Ai, L.-F.; et al. Concerted Genomic Targeting
of H3K27 Demethylase REF6 and Chromatin-Remodeling ATPase BRM in Arabidopsis. Nat. Genet. 2016, 48, 687–693. [CrossRef]

69. Yu, Y.; Liang, Z.; Song, X.; Fu, W.; Xu, J.; Lei, Y.; Yuan, L.; Ruan, J.; Chen, C.; Fu, W.; et al. BRAHMA-Interacting Proteins BRIP1
and BRIP2 Are Core Subunits of Arabidopsis SWI/SNF Complexes. Nat. Plants 2020, 6, 996–1007. [CrossRef] [PubMed]

70. Archacki, R.; Yatusevich, R.; Buszewicz, D.; Krzyczmonik, K.; Patryn, J.; Iwanicka-Nowicka, R.; Biecek, P.; Wilczynski, B.;
Koblowska, M.; Jerzmanowski, A.; et al. Arabidopsis SWI/SNF Chromatin Remodeling Complex Binds Both Promoters and
Terminators to Regulate Gene Expression. Nucleic Acids Res. 2017, 45, 3116–3129. [CrossRef]

71. Hernando, C.E.; Sanchez, S.E.; Mancini, E.; Yanovsky, M.J. Genome Wide Comparative Analysis of the Effects of PRMT5 and
PRMT4/CARM1 Arginine Methyltransferases on the Arabidopsis Thaliana Transcriptome. BMC Genom. 2015, 16, 192. [CrossRef]
[PubMed]

72. Bracken, A.P.; Dietrich, N.; Pasini, D.; Hansen, K.H.; Helin, K. Genome-wide Mapping of Polycomb Target Genes Unravels Their
Roles in Cell Fate Transitions. Genes Dev. 2006, 20, 1123–1136. [CrossRef]

73. Robyr, D.; Suka, Y.; Xenarios, I.; Kurdistani, S.K.; Wang, A.; Suka, N.; Grunstein, M. Microarray Deacetylation Maps Determine
Genome-Wide Functions for Yeast Histone Deacetylases. Cell 2002, 4. [CrossRef]

74. Merini, W.; Romero-Campero, F.J.; Gomez-Zambrano, A.; Zhou, Y.; Turck, F.; Calonje, M. The Arabidopsis Polycomb Repressive
Complex 1 (PRC1) Components AtBMI1A, B, and C Impact Gene Networks throughout All Stages of Plant Development. Plant
Physiol. 2017, 173, 627–641. [CrossRef]

75. Weiste, C.; Dröge-Laser, W. The Arabidopsis Transcription Factor BZIP11 Activates Auxin-Mediated Transcription by Recruiting
the Histone Acetylation Machinery. Nat. Commun. 2014, 5, 1–12. [CrossRef]

76. Zhou, Y.; Wang, Y.; Krause, K.; Yang, T.; Dongus, J.A.; Zhang, Y.; Turck, F. Telobox Motifs Recruit CLF/SWN–PRC2 for H3K27me3
Deposition via TRB Factors in Arabidopsis. Nat. Genet. 2018, 50, 638–644. [CrossRef]

77. Luo, M.; Wang, Y.-Y.; Liu, X.; Yang, S.; Lu, Q.; Cui, Y.; Wu, K. HD2C Interacts with HDA6 and Is Involved in ABA and Salt Stress
Response in Arabidopsis. J. Exp. Bot. 2012, 63, 3297–3306. [CrossRef]

78. Pandey, R. Analysis of Histone Acetyltransferase and Histone Deacetylase Families of Arabidopsis Thaliana Suggests Functional
Diversification of Chromatin Modification among Multicellular Eukaryotes. Nucleic Acids Res. 2002, 30, 5036–5055. [CrossRef]

79. Han, Z.; Yu, H.; Zhao, Z.; Hunter, D.; Luo, X.; Duan, J.; Tian, L. AtHD2D Gene Plays a Role in Plant Growth, Development, and
Response to Abiotic Stresses in Arabidopsis Thaliana. Front. Plant Sci. 2016, 7, 310. [CrossRef]

80. Hollender, C.; Liu, Z. Histone Deacetylase Genes in Arabidopsis Development. J. Integr. Plant Biol. 2008, 50, 875–885. [CrossRef]

http://doi.org/10.1371/journal.pgen.1007218
http://www.ncbi.nlm.nih.gov/pubmed/29401459
http://doi.org/10.1038/ncomms11192
http://www.ncbi.nlm.nih.gov/pubmed/27048938
http://doi.org/10.1105/tpc.15.00091
http://doi.org/10.1105/tpc.17.00366
http://www.ncbi.nlm.nih.gov/pubmed/28855334
http://doi.org/10.1105/tpc.106.048272
http://doi.org/10.1105/tpc.108.062760
http://www.ncbi.nlm.nih.gov/pubmed/18849490
http://doi.org/10.1111/nph.16538
http://www.ncbi.nlm.nih.gov/pubmed/32167578
https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13547
http://doi.org/10.1111/tpj.14281
http://doi.org/10.1038/ng.3555
http://doi.org/10.1038/s41477-020-0734-z
http://www.ncbi.nlm.nih.gov/pubmed/32747760
http://doi.org/10.1093/nar/gkw1273
http://doi.org/10.1186/s12864-015-1399-2
http://www.ncbi.nlm.nih.gov/pubmed/25880665
http://doi.org/10.1101/gad.381706
http://doi.org/10.1016/S0092-8674(02)00746-8
http://doi.org/10.1104/pp.16.01259
http://doi.org/10.1038/ncomms4883
http://doi.org/10.1038/s41588-018-0109-9
http://doi.org/10.1093/jxb/ers059
http://doi.org/10.1093/nar/gkf660
http://doi.org/10.3389/fpls.2016.00310
http://doi.org/10.1111/j.1744-7909.2008.00704.x

	Introduction 
	Results 
	Constructing Gene Regulatory Networks (GRNs) with Epigenetic Regulators 
	Case Study: Identifying Influential Epigenetic Regulators in Meristematic Development 
	Creating Subnetworks Related to SAM and RAM Development Based on Representative Transcriptomic Studies 
	The Predicted Top TFs and Epigenetic Regulators Have Reported Roles in Meristem Development 
	Identifying Highly Influential Epigenetic Regulators and Their Predicted Targets in SAM/RAM GRNs 


	Discussion 
	Materials and Methods 
	Construction of Tissue-Specific Gene Regulatory Networks Including Epigenetic Regulators 
	Creating Subnetworks of SAM and RAM Development and Identifying the Top Regulators 
	Assessing the Significance of the Overlap between In Silico Predicted Targets and Experimentally Validated Targets of Influential Epigenetic Regulators 

	Conclusions 
	References

