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Abstract: Water is indispensable for the life of any organism on Earth. Consequently, osmotic stress
due to salinity and drought is the greatest threat to crop productivity. Ongoing climate change
includes rising temperatures and less precipitation over large areas of the planet. This is leading
to increased vulnerability to the drought conditions that habitually threaten food security in many
countries. Such a scenario poses a daunting challenge for scientists: the search for innovative
solutions to save water and cultivate under water deficit. A search for formulations including
biostimulants capable of improving tolerance to this stress is a promising specific approach. This
review updates the most recent state of the art in the field.
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1. Introduction

In the next 30 years, world population is expected to increase by 2 billion, reaching
9.7 billion in 2050 [1]. This rate of increase is expected to double during the early 21st
century, recently being 25–70% [2]. That scenario has focused researchers and international
organizations on the need to ensure adequate food production, to feed the growing popula-
tion. A plethora of recent studies have projected situations for the coming years, especially
in economically less developed regions such as the Middle East [3] and Latin America [4,5],
but also in “rich” countries [6]. Climate change is probably the most important factor en-
dangering agricultural production, especially in Mediterranean and African regions. There,
drought periods will almost certainly intensify, yield in more arid zones being intrinsically
linked to water availability [7]. Indeed a decrease in productivity due to environmental
stress can be forecasted for the upcoming years [8]. Discussion or controversy has arisen in
response to this widespread perspective of a need to increased food production to ensure
the world’s food supply [2]. Its opponents in the debate claim this is not necessary because
current global production is sufficient to meet human nutritional needs [9]. Nevertheless,
extreme environmental conditions certainly endanger future food security.

Drought and salinity together reduce global crop production by as much as 50%, and
their impacts are indeed intensified by climate change [10]. These two factors exert osmotic
stress on plants through a drop in soil water potential, due to restricted water availability
or solute concentration, respectively (Figure 1).

They cause similar responses, causing water deficit, nutrient imbalance and oxidative
stress. The plant responds quickly to this assault by closing its stomata to prevent water
loss, which limits gas exchange and consequently photosynthesis and growth [11]. To
counteract this, plants need to adjust osmotic balance, this being the main physiological
adaptation mechanism they use to cope with osmotic stress. They do this by accumulating
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different kinds of solutes, such as amino acids (especially proline), glycine betaine, and
sugars [12]. These osmolytes protect cell structure and function, facilitating water uptake
and retention [13]. Since they induce tolerance against osmotic stress [14–16], they are
called osmoprotectants [17]. Therefore, the study of these osmolytes and other substances
able to induce tolerance [18] is a promising research field. It operates within the search for
environmentally friendly treatments to increase food production under stress. Through
the upcoming “Farm to Fork” strategy, the European commissioners recommend that
EU members work using ecological and sustainable methodologies, reducing fertilizers
and pesticides by 30% and 50%, respectively, by 2030 [19]. In this regard, biostimulants
are defined by EU regulation [20] as: “A product that stimulates plant nutrition processes
independently of the product’s nutrient content, with the sole aim of improving one or more of the
following characteristics of the plant or the plant rhizosphere: (a) nutrient use efficiency; (b) tolerance
to abiotic stress; (c) quality traits; or (d) availability of confined nutrients in the soil or rhizosphere”.
Biostimulants include various kinds of substances, categorized in different ways over the
years [21]. Du Jardin [22] classified them into seven different categories: Humic/Fulvic
acids, Seaweed/Botanical extracts, Protein hydrolysates, Biopolymers, Beneficial minerals,
Beneficial bacteria, and Beneficial fungi. Later on, this system was revised by Bulgari
et al. [23], who added another category including extracts from industrial or food wastes
and grouped nanomaterials and nanoparticles into the category of biopolymers. Recently,
we focused attention on a group of pure organic products cited in the literature as having
the proven ability to improve plant tolerance against abiotic stress [18], regardless of the
previously established classifications of biostimulants.
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Figure 1. Schematic model of osmotic stress.

The global market in biostimulants is expected to reach $4.14 billion by 2025 [24]. In
fact, many companies have already developed formulations to improve productivity under
stress. These usually consist of extracts or hydrolysates from various sources [25,26], mixed
with beneficial compounds acting alone as osmoprotectants [18]. This illustrates how
important it is to consider the synergic effects between several molecules acting together.
Indeed, it should be the best approach to combat osmotic stress, rather than the idea of
finding a “magic bullet” capable of mitigating the insults alone. The aim of this review
was to examine the literature and present a wide range of biostimulant sources (Figure 2)
with a demonstrated capacity to increase tolerance to osmotic stress. We group them
into three main categories: (1) naturally accumulated plant osmoprotectants; (2) natural
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and non-natural plant protectant compounds; and (3) hydrolysed biological extracts and
microorganisms. This particular classification may help researchers that are beginning to
delve into the field of biostimulants.
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Figure 2. Graphical summary of the components listed in the review: in red, naturally accumulated plant osmopro-
tectants; in brown, natural and non-natural plant protectant compounds; and in green, hydrolysed biological extracts
and microorganisms.

2. Naturally Accumulated Plant Osmoprotectants

A number of bacteria, seaweeds and plants are able to accumulate several types
of compounds called compatible solutes or osmoprotectants to face osmotic stress, for
instance amino acids (proline, glutamate, etc.), carbohydrates (trehalose), sugar alcohols
(inositol, mannitol), quarternary ammonium compounds (glycine betaine) [27] and tertiary
sulphonium compounds (e.g., dimethylsulphoniopropionate) [28].

2.1. Amino Acids: Their Involvement in Osmotic Adjustment

Amino acids are probably the group of compounds most used in biostimulation,
offering a solid correlation with improvements in coping with osmotic stress [29,30]. Com-
mercially, the normal way to achieve this is to use protein hydrolysates from a diverse range
of sources. For an interesting review focused on commercial biostimulant formulation, see
Madende and Hayes [24]. We wish to point out several amino acids that interact within
osmotic adjustment in plants and can clearly induce tolerance.

Proline is probably one of the most studied amino acids acting against stress. It is
accumulated in eubacteria, protozoa and plants, and is reported to aid in facing drought
and salt stress by balancing the adverse osmotic potential that prevents water uptake [31].
Proline biosynthesis thus assists plants in the acclimation process. Two such pathways are
described in plants: ornithine or glutamate. The glutamate pathway seems to be controlled
by osmotic stress [32]. Specifically, it begins with pyrroline-5-carboxylate synthetase (P5CS)
that uses ATP and NADPH to reduce initial glutamate into glutamate-semialdehyde, which
converts spontaneously to pyrroline-5-carboxylate [33]. P5C is reduced to proline by the
action of P5C reductase (P5CR), using NADPH and H+ [33]. In most plant species, P5CS is
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encoded by two genes, P5CS1 and P5CS2, while P5CR is encoded by only one [33]. Proline
metabolism is particularly interesting owing to the intracellular localization of P5CS in
chloroplast and cytoplasm. Proline biosynthesis requires using high amounts of NADPH
and ATP. In chloroplasts, it is thought to contribute to maintaining a low NADPH:NADP+

ratio, thus sustaining electron flow in the photosynthetic chain, stabilizing redox balance,
and finally reducing photoinhibition and consequent damage to the photosynthetic appara-
tus [34]. The osmotic stress degradation pathway is down-regulated, ensuring free proline
accumulation. After stress, proline is catabolized in mitochondria, supporting oxidative
respiration with energy to resume growth after stress. Indeed, complete oxidation of
proline would yield 30 ATP molecules (Figure 3). Therefore, proline reserves are valuable
not only in osmotic adjustment during acclimation, but also to facilitate recuperation after
stress [35].
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Figure 3. Importance of amino acid anabolism under stress (continuous arrows) to keep the
NADPH:NADP+ ratio low in the photosynthetic chain, preventing photoinhibition. Amino-acid
catabolism (dashed arrows) provides energy for plant growth to resume.

Osmotic stress induces genes involved in proline biosynthesis, which leads to proline
accumulation. This was demonstrated by Székely et al. [36], who knocked out p5cs1 in
Arabidopsis plants to produce a salt-sensitive mutant. Exogenous application of proline can
improve tolerance to salt stress through regulation of the endogenous proline metabolism.
For instance, foliar application of proline to maize resulted in decreased P5CS activity and
an increase in PDH under salt stress [32]. In accordance with the attributes to be expected
from its metabolism, proline treatment is capable of alleviating lowered photosynthetic
activity and enhancing water relations under salt stress in Olea europaea L. cv Chemlali [37].
Moreover, it can stabilize mitochondrial electron transport complex II, membranes, proteins
and enzymes such as RUBISCO [38]. In Sorghum bicolor [39], it was also shown how this
proline treatment increases growth under stress conditions. Finally, as a further example of
ongoing research, Abdelaal et al. [40] illustrated how proline can increase production under
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salt stress. Indeed, altogether the weight of evidence demonstrates the osmoprotectant
effect of exogenous proline treatment.

Glutamate is a central molecule in amino acid metabolism in higher plants. In this
regard, the α-amino group of glutamate is directly involved in assimilation and dis-
similation of ammonia and is transferred to all other amino acids, since it is the pre-
cursor of γ-aminobutyric acid (GABA), arginine, and proline. It should also be noted
that glutamate is the precursor for chlorophyll synthesis in the developing leaves [41].
Plants can synthesize glutamate by various pathways, principally via the glutamine
synthetase/glutamine-α-oxoglutarate transaminase cycle in the chloroplast. Otherwise
in non-photosynthetic tissues, they can proceed via glutamate dehydrogenase in the
mitochondria or cytoplasm. Finally, plants can also produce glutamate by the alterna-
tive pathways pro/pyrroline 5-carboxylate cycle and transamination [42]. Glutamine
synthetase/glutamine-α-oxoglutarate transaminase is the key cycle for assimilation of
ammonium in plant cells. However, in tobacco plants under salt stress, its activity did not
change significantly, but glutamate dehydrogenase activity increased. This is a stage in the
glutamate synthesis pathway under stress, where it acts as a proline precursor [43]. These
results were partially supported by Wang et al. [44]; since at low salinity the authors found
that glutamine synthetase was the preferred active enzyme increasing photorespiration,
while at high salt concentration it was glutamate dehydrogenase.

Glutamate treatment is rapidly converted to other amino acids, such as glutamine,
GABA or proline in rice roots [45]. Under salinity stress, treatment with glutamate acts as
a precursor of proline to cope with salinity stress [46]. In fact, foliar treatment of Brassica
napus L. under drought stress with glutamate can increase P5CS expression [47], leading to
proline accumulation and better osmotic adjustment.

γ-aminobutyric acid (GABA) is a widely distributed non-proteinogenic amino acid
and a significant component of the free amino acid pool in bacteria, fungi, plants and
animals. Under stress, GABA production increases, quickly reaching higher concentra-
tions than other amino acids involved in protein synthesis [48]. Its biosynthesis begins
from glutamate by action of glutamate decarboxylase, and accumulation leads to H+ or
Ca2+/calmodulin, which activates the enzyme to yield GABA (Figure 3). The amino acid
can be exported to the mitochondria and, after several enzymatic steps, transformed to suc-
cinate, the main energy source for the tricarboxylic acid cycle [49,50]. This route is known as
the GABA shunt and links primary and secondary carbon and nitrogen metabolisms [42,51].
Interestingly, Shelp et al. [52] found that GABA transaminase activity (the first enzyme
involved in the shunt) was inhibited under stress conditions. This suggests that GABA
accumulation would be useful for the provision of anaplerotic succinate for the Krebs
cycle, while awaiting the end of the stress. These data are supported by trials with GABA-
deficient mutants her1 and gaba-t/pop2-1, in which no GABA-derived succinate was found
in roots after salt stress ended [53,54].

The involvement of GABA in osmotic regulation was shown by using the mutant line
gad1/2 in Arabidopsis. In response to water deficit, its leaves had lower relative water
content (RWC), higher abaxial and adaxial stomatal conductance, and wider stomatal
opening, compared to the wild type [55]. In addition, GABA treatments are able to increase
tolerance of osmotic stress in rice [56], improving ionic and redox balance to reach better
osmotic adjustment by accumulation of organic osmolytes such as proline, sugar and starch.

Arginine is an interesting amino acid in plant metabolism, since it has the highest
nitrogen/carbon ratio of the 21 proteinogenic amino acids, and is apparently a precursor
of NO and also a well-documented precursor of polyamines. Synthesis in chloroplasts
via ornithine is apparently the only operational pathway to provide arginine in plants,
although in fact arginine biosynthesis is poorly studied in plants [57]. One of the products
of arginine hydrolysis is ornithine, by means of ornithine δ-aminotransferase, which is
hypothesized to play an important role in osmotic adjustment under stress. However,
ornithine δ-aminotransferase activity has been correlated with proline accumulation in
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salt-stressed plants [58]. Overexpression of this enzyme in rice resulted in higher proline
levels and activated antioxidant defence, thus enhancing stress tolerance [59].

In particular, arginine treatment improves antioxidant defences in plants; indeed,
Nasibi et al. [60] researched into a foliar application that enhanced the detoxification
response, lowering H2O2 content under water stress. External treatment can also increase
proline accumulation in mung bean under salinity stress, protecting its growth [61].

2.2. Carbohydrate Sugars

Carbohydrates are crucial molecules for living organisms. Chemically they are alde-
hydes and ketones with several hydroxyl groups and varying degrees of polymerization
(monosaccharides, disaccharides, oligosaccharides and polysaccharides), containing atoms
of carbon, hydrogen, and oxygen [62]. They exert structural, signalling, carrying and
storage functions. The part they play in the plant’s response to stress has been associated
with their high potential for polymerization. Due to their solubility, some of them: sugars
such as hexose and fructans (and also sugar-alcohols like mannitol and sorbitol—see below)
can act as compatible solutes, contributing to osmotic balance and membrane and protein
stabilization under osmotic stress conditions [62,63]. These substances clearly act as osmo-
protectants [64], since a number of studies have demonstrated that accumulation of reduced
forms of sugars has an osmoprotective function against drought and salt stress [65].

Starches are also emerging as key substances in mediating plant responses to abiotic
stresses, such as water deficit and high salinity. They consist of two types of molecules:
linear and helical amylose and the branched amylopectin. Depending on the plant, starch
generally contains 20 to 25% amylose and 75 to 80% amylopectin by weight. Under chal-
lenging environmental conditions, plants generally remobilize starch to provide energy
and carbon at times when photosynthesis becomes limited. It is therefore used for many
plant species as an acclimation strategy in harsh environments [66]. Fructans are con-
sidered short-term storage carbohydrates and have been associated with stress tolerance
mechanisms for many years [67]. This is especially the case with freezing tolerance, since
desiccation is a key component in some research focused on studying the possibility to
alleviate drought stress using fructans. On this topic, Su et al. [68] showed how the 1-
fructosyl-transferase gene from a fructan-accumulating plant increases tolerance against
osmotic stress induced by PEG in tobacco plants. These fructans may indirectly contribute
to osmotic adjustment by releasing hexose sugars [67]. Raffinose family oligosaccharides
are characterized as compatible solutes involved in stress tolerance, and are accumulated
under drought stress [69]. However, despite their osmoprotective action, we have not
found reports of these compounds used as biostimulants.

Soluble sugars such as sucrose, glucose and fructose are important not only as nu-
trients but play other roles in metabolism, growth and stress responses [70]. Their accu-
mulation as osmolytes serves to help plants face the negative effects of osmotic stress [71].
As an example, treatment with glucose enhances salinity tolerance in wheat seedlings by
preventing water loss through proline accumulation and maintaining ionic balance [72].
It was earlier shown that soluble sugar accumulation enhances proline content and thus
helps the plant to counteract the osmotic insult of salt stress [73].

Trehalose is a promising carbohydrate for use as a biostimulant. It is a non-reducing
disaccharide consisting of two glucose units (α-D-glucopyranosyl-1,1-α-D-glucopyranoside)
and is widely spread in a variety of organisms: bacteria, yeast, fungi, lower and higher
plants, as well as insects and other invertebrates [74]. Its biosynthesis in plants occurs in
two steps: trehalose-6-phosphate synthase generates trehalose-6-phosphate from uridine
diphosphate UDP-glucose and glucose-6-phosphate, followed by dephosphorylation to
trehalose by trehalose-6-phosphate phosphatase [75]. Some work using genetic engineering
provides evidence that an enhanced metabolism can positively regulate osmotic stress
tolerance. As an example, Ge et al. [76] showed how over-expression of OsTPP1 caused
higher tolerance to salt stress in rice. See Fernandez et al. [77] for an extensive review of
the action of trehalose in stressed plants. Trehalose can be used as a treatment to enhance
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tolerance against salt stress in strawberry [78], protecting plants from oxidative damage
caused by salt and conserving the photochemical function. Moreover, trehalose treatment
is capable of enhancing osmoregulation in wheat.

2.3. Sugar Alcohols

Also known as polyols, sugar alcohols can be structurally cyclic like myo-inositol or
have a linear structure such as mannitol or sorbitol [79]. Usually water soluble, polyols
are derived from the reduction of aldoses or their phosphate esters [65]. In particular,
sorbitol, a sugar alcohol with six carbons, is widely distributed in plants. It is a major
photosynthetic product in apple trees, where foliar treatments suppress its synthesis and
alter the stress expression profile. This suggests that sorbitol therefore plays an important
part in responses to abiotic and biotic stresses in apple trees [80]. Other sorbitol treatments
to elicit stress reactions remain out of the scope of this review.

Inositols are synthesized from D-glucose, involving three enzymatic steps. Hexok-
inase converts glucose into glucose-6P and then Ins(3)P1 synthase produces Ins(3)P1,
which is the first step in myo-inositol (MI) biosynthesis. Finally, phosphate loss due the
action of MI monophosphates releases free MI. This constitutes the pathway for MI biosyn-
thesis in cyanobacteria, algae, fungi, plants, and animals and is central to their cellular
metabolism [81]. Plants accumulate many kinds of inositol during abiotic stress periods
caused by drought and high salinity stresses [82]. In this context, manipulation of inositol
metabolic pathways can increase salt tolerance in rice [83]. Myo-inositol treatment helps to
maintain cell turgor, enhancing water status in Capsicum anuum [84].

Mannitol has a wide presence in plants and fungi, with importance in the toler-
ance response against osmotic stress [85]. It is biosynthesized in the plant cell cytoplasm
from fructose-6P, which is transformed by phosphomannose isomerase into mannose 6-
phosphate, then mannose-6-phosphate reductase transforms it into mannitol 1-phosphate.
Finally, mannitol-1-phosphate phosphatase removes the phosphate to yield mannitol [85].
Abebe et al. [86] introduced the ectopimannitol-1-phosphate dehydrogenase from Es-
cherichia coli, which enabled mannitol accumulation in wheat calluses (a plant that does not
accumulate mannitol). It increased tolerance to osmotic stress and oxidative impacts by
preventing water loss. This effect can be elicited using an external treatment of mannitol in
wheat [87], and in maize where it can enhance proline metabolism under drought stress,
improving water relations [88].

2.4. Quaternary Ammonium Compounds

Quaternary ammonium compounds accumulated in plants are glycine betaine, β-
alanine betaine, proline betaine, choline-O-sulphate, hydroxyproline betaine and pipecolate
betaine [28]. These organic compounds are known to also have osmoprotective effects in
plant cells [89]; they are thus an interesting family to consider for biostimulant formulations.

Glycine betaine is accumulated by numerous organisms, such as bacteria, cyanobac-
teria, algae, fungi and animals. It is probably the most common quaternary product that
plants accumulate to cope with osmotic stress [28]. Glycine betaine is synthesized prefer-
entially from choline, which is converted to betaine aldehyde by choline monooxygenase.
Then, it is converted by the action of betaine aldehyde dehydrogenase into glycine in all
glycine betaine-accumulating plant species [28]. Some plants, such as aubergine/eggplant,
potato, Arabidopsis, tomato and many rice cultivars, cannot accumulate detectable amounts
of glycine betaine [90]. Therefore, genes associated with its biosynthesis have been intro-
duced/overexpressed in these non-accumulating plants, e.g., in tomato [91] or potato [92],
demonstrating the fundamental role of glycine betaine in osmoprotection against stress.
Overaccumulation of this osmolyte provides tolerance in wheat against drought, due to
upregulation of the betaine aldehyde dehydrogenase gene [93]. Glycine betaine is able
to induce tolerance to abiotic stress after treatment, for example, in maize, modulating
the ABA response against drought and salt, and preserving yield [94]. A wide number of
species show better performance against drought and salt stress after treatment [16].
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L-proline-betaine (also called stachydrine) is accumulated in non-halophytic Medicago
species [95], although it is less frequently present in halophytes than glycine betaine. Inter-
estingly, some researchers point out that proline betaine accumulation is an evolutionary
response to salinization, deriving from several proline methylation steps [95]. Treatments
applied in Bacillus subtilis cultures increase tolerance against osmotic stress [96] and have
more effective osmoprotectant effects than proline [97]. However, as far as we know,
proline-betaine has not been assayed as a plant treatment to alleviate stress, despite be-
ing a promising compound for study as a biostimulant. Finally, we must highlight that
alanine-betaine acts as a compatible osmolyte in halophytic Plumbaginaceae species; this
constitutes another interesting evolutionary adaptation against combined osmotic and sul-
phate stresses, for example. Its biosynthesis does not require oxygen (in contrast to glycine
betaine), and its use may be advantageous in sulphate-rich salt marsh environments [98].

2.5. Tertiary Sulphonium Compounds

These substances are an interesting family of compatible osmolytes, scarcely studied
in comparison to other groups and of course even less as biostimulants. For instance,
the known anti-stress compound dimethylsulphoniopropionate (DMSP) is synthesized in
many algae but only a few plants, notably genus Spartina and in sugarcane [99]. It is also
accumulated in some cyanobacteria and bacteria [100]. The precursor of DMSP is methion-
ine and its involvement in osmoregulation is based on structural similarity with quaternary
ammonium compounds. There are some studies on the osmoregulatory function of DMSP
in algae, and the data presented in Spartina species provide evidence to consider it an
osmoprotectant [99]. Another compound from this family is S-methylmethionine (vitamin
U), produced by all angiosperms. Treating plants with it to enhance cold tolerance has been
studied [101,102], but to date its application against salt or drought stress has not been.

3. Natural and Non-Natural Plant Protectant Compounds

Several treatments are capable of increasing plant tolerance to such stresses, such as
those with polyamines [103], silicon [10], menadione sodium bisulphite [104], and mela-
tonin [105,106]. These compounds are promising options to aid in further understanding
the response mechanism under osmotic stress or also biostimulation processes.

3.1. Polyamines

These are nitrogen-containing aliphatic compounds with low molecular weights.
At the physiological level they are positively charged, regulating pH among cellular
components [107]. These compounds bind electrostatically with great affinity to macro-
molecules, such as proteins, DNA, and RNA [108]. As important examples, putrescine,
spermine, spermidine, and other phytohormones that contain aliphatic amines are found
in bacteria and animals, besides plants [109]. Polyamines (PAs) play a key part in essential
biochemical/physiological processes: development, cell proliferation, signal transduction
and senescence. They are important in gene expression, and respond to stresses in eukary-
otic and prokaryotic cells. Several papers confirm that plants accumulate an enormous
quantity of PAs to face a range of both abiotic and biotic stresses [109,110].

Polyamine syntheses begin with the formation of putrescine, for instance, by direct
decarboxylation of ornithine through the activity of ornithine descarboxylase. However,
putrescine can also be synthesized from arginine by decarboxylation into agmatine by
action of arginine decarboxylase, followed by agmatine iminohydrolase and N-carbamoyl
putrescine aminohydroxylase to produce putrescine [111]. Spermidine is formed from
putrescine by the action of the spermidine synthase, and finally spermine is catalysed
through the intervention of spermine synthase [111].

External polyamine treatments can increase tolerance against osmotic stress:

1. Putrescine is capable of protecting photosynthetic machinery in cucumber under salt
stress [112]. It can also improve gas exchange parameters [113].
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2. Spermidine improves drought tolerance in maize [114] by strengthening antioxidant
defences. Under salt stress it enhances reactive oxygen species (ROS) scavenging to
promote tolerance [115].

3. Spermine increases tolerance to salt stress in tomato by enhancing the chloroplast
antioxidant system [116]. Drought effects can be mitigated by spermine treatment in
maize [117], alleviating photosynthesis inhibition.

4. Farooq et al. [118] researched into treatments applying the three polyamines to rice,
to ameliorate drought stress. Their study showed how the best results in controlling
water loss were obtained by foliar application of spermine. Nevertheless, putrescine
and spermidine had superior results in scavenging ROS radical, with a better enzy-
matic response.

5. Thermospermine is synthesized by thermo-spermine synthase and is less well known
than the other three polyamines. It has not been used as a treatment against stress,
but its potential is worthy of mention because a thermospermine-deficient mutant is
hypersensitive to salt in Arabidopsis thaliana [119].

3.2. Silicon

The physiological roles of silicon in animals have been known for more than a century.
Nevertheless, its specific benefits to plants, particularly under stress, have only recently
been under intensive study. This is mainly due to it being labelled a “non-essential" element
by plant nutritionists [120]. Certainly, Si is not deemed “essential" to vascular plants, since
they can carry on their life cycles in its absence. Some plants are silicon accumulators, such
as rice and sugarcane [121]. Interestingly, other plants defined as non-accumulators have
beneficial effects after silicon treatment. As an example, tomato is not a silicon accumulator;
moreover, it is considered an excluder, but it is clearly established that this metalloid can
increase tolerance against salt stress [122].

Silicon can be applied in several forms:

1. K2SiO3 has been applied in wheat to alleviate drought stress [123], in common bean to
enhance salt stress tolerance [124], and can increase yield under drought stress [125].

2. Na2SiO3 is able to improve salt stress tolerance in barley [126] and in maize growing
under drought stress [127]. However, as far as we know, increased production under
stress was not reported using this silicon compound.

3. SiO2 is applied using micro- or nanoparticles to alleviate the deleterious effects of
drought in rice [128] and salinity in potato. Indeed, it is possible to increase yield
under drought stress using these nanoparticles [129].

4. H4SiO4 can induce drought tolerance, increasing yield and enhancing fruit quality in
watermelon [130].

Silicon aids the plant to cope with osmotic stress in various ways. Two processes
contribute to stress tolerance: (i) mechanical and physical protection due to SiO2 deposits
known as phytoliths; (ii) biochemical responses that trigger metabolic changes [131]. Silicon
can influence water relations in plants submitted to drought, reducing water lost through
cuticular transpiration and stomatal conductance [132]. Interestingly, transpiration rates
decrease with increasing Si content in shoots [133]. Directly counteracting salinity stress, it
can raise Na and Cl uptake [132,134].

3.3. Vitamin K3 (Menadione Sodium Bisulphite)

This vitamin is erroneously thought to have only a synthetic origin, whereas it can
be isolated from fungi, cryptogams and phanerogams, although its functions are still
unclear [135]. Our research group has studied in depth the anti-stress properties of a
water-soluble derivative called menadione sodium bisulphite (MSB). Besides its capacity to
induce resistance against many plant pathogens and pests [136,137], this molecule increases
tolerance to seed treatment against salt stress in Arabidopsis [138], by root treatment [139],
or foliar application [140]. Treatment under salt stress triggers a slight oxidative burst that
elicits plant defences that lead to a faster relative growth rate, with enhanced water status
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and gas exchange parameters [139]. Interestingly, treatment demethylated the promotor
of the P5CS gene in Arabidopsis, causing an earlier response in proline metabolism and
better osmotic adjustment [141]. Furthermore, MSB also enhanced scavenger responses and
prevented toxic Na+ levels by the expression of regulating proteins, thus improving ionic
homeostasis under salt stress [139]. Beyond the clearly demonstrated greater tolerance to
salt stress, foliar treatment with MSB also slightly improved drought stress response during
the first steps of stress exposure in broccoli [142]. Additionally, MSB has been shown to
induce tolerance against heavy metals such as cadmium [143] and chromium [144].

3.4. Melatonin

A compound almost universally present in animals, melatonin is also in plants, where
it is distributed in various organs, such as leaves, stems, roots, fruits and seeds [145].
In a wide range of plant species, melatonin biosynthesis begins with tryptophan being
transformed to tryptamine by tryptophan decarboxylase, then tryptamine 5-hydroxylase
catalyses the conversion of tryptamine to serotonin. Serotonin is converted to N-acetyl-
serotonin by serotonin/arylalkylamine N-acetyltransferase, and finally into melatonin
by N-acetyl-serotonin /hydroxyindole O-methyltransferase [146]. Melatonin is involved
in numerous plant metabolic processes (for an extensive review, see Back [147]) and has
a prolific bibliography, particularly due its involvement in enhanced plant tolerance to
abiotic stress.

Under unfavourable environmental conditions, plants accumulate melatonin [148].
In this regard, overexpression of the genes involved in melatonin biosynthesis enhances
drought tolerance [149], confirming its implication in plant defences against osmotic
stress. Exogenous treatment with melatonin also induces resistance against salt stress
in maize, ameliorating oxidative stress and adjusting ion balance [150]. Similarly, the
effect of exogenous melatonin on the antioxidant system can increase drought tolerance
in kiwi-fruit seedlings [151]. In addition, the treatment impedes water loss in stressed
plants. Interestingly, 2-hydroxymelatonin is more common in plants, the average ratio
being approximately 368:1, but the compound predominantly used as a biostimulant is
melatonin. Despite this, some authors have demonstrated the former’s less studied capacity
to induce tolerance to drought stress [152].

4. Extracts from Natural Sources and Microorganisms

In biostimulant formulation, manufacturers normally use complex mixtures from a range
of sources. In addition to the compounds described above, in this review, we must include
seaweed extracts, microorganism-based biostimulants and humic and fulvic substances.

4.1. Seaweed Extracts

In recent decades, after a notable boom in 1947 in the United Kingdom [153], the use
of macroalgal extracts as a source of biostimulants for agriculture has again been on the rise
commercially, in the form of plant-growth-promoting factors to enhance salinity, drought
and heat tolerance. These preparations act on several biochemical pathways to improve
stress resistance. Among these, they induce ROS-scavenging enzymes, membrane stability
and an increase in osmoprotectant compounds such as Pro and glycine-betaine [153].

Red, green, and brown seaweeds amount to 10% of the sea’s biomass productivity.
Currently, a wide number of companies process and market their extracts for agriculture
as biostimulants, which leads to reduced consumption of mineral amendments with their
heavy carbon footprint [154]. The most commonly used extraction methods are mechanical
disruption, alkalis or acids, and pulverization [153], but other novel techniques could lead
to further final biostimulants. It is therefore necessary to evaluate not only the source but
also the methodology, to provide a consistent biostimulant effect on crops [155]. Even
though the growth-promoting effects of such extracts are reported for a range of crops, the
mechanisms underpinning their influence are still not known. The complex chemistry of
macroalgae makes it hard to establish exactly which are the active components [156]. In
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fact, algae have a plethora of osmoprotectant compounds that are able to increase tolerance
against stress, such as: ions like Ca2+, amino acids, betaines, carbohydrates, flavonoids,
phenolic acids, phytohormones, polyols, and tertiary sulphonium [157]. We need to point
out that seaweed extracts are an excellent source of phytohormones [158] and that water
stress reduces cytokine levels and increases ABA biosynthesis in plant tissues. Cytokinins
are in fact key phytohormones that not only regulate plant growth and development but
also mediate plant tolerance to drought stress [159]. Seaweed extracts thus act positively on
chlorophyll synthesis, keeping cytokinin concentrations high and hindering ABA synthesis.

The algal extracts most used as biostimulants are the following:

1. Ascophyllum nodosum has a demonstrated effect as biostimulant (see Shukla et al. [160],
for a complete review), being able to enhance tolerance against drought stress, for ex-
ample, in tomato [161] and avocado plants exposed to salt stress [162]. Under salinity,
extracts containing this seaweed can improve water relations to cause better growth
and fruit quality in tomato; although yield improvements are not yet reported [163].
Treatments with A. nodosum extracts provide drought stress tolerance to treated plants
by reducing stomatal conductance and cellular electrolyte leakage in water-stressed
plants over time, and maintaining a high leaf turgor and stem angle [164].

2. Ecklonia maxima is another macroalga used in biostimulant formulation; research was
largely focused on phytohormone-like activities [165], but its effects on stress are less
studied. In the literature, however, formulates based on this source are capable of
inducing salt tolerance, enhancing gas-exchange parameters and increasing yield in
zucchini squash (courgette) [166].

Other species are claimed by Sharma et al. [154], as source biostimulants. Mattner
et al. [167] demonstrated how the use of a mixture with Durviella and A. nodosum can
increase yield in strawberry without imposed stress. An extract from Macrocystis pyrifera
enhanced growth in Lactuca sativa seedlings [168] and other interesting species without
specific biostimulant uses reported in the literature which include: Durvillea antarctica, Fucus
serratus, Himanthalia elongata, Laminaria digitata, Laminaria hyperborea, and Sargassum spp.

In recent years, biostimulants based on microscopic algae have taken on special im-
portance, with many species acting as biostimulants: Chlorella vulgaris, Chlorella ellipsoida,
Chlorella infusionum, Acutodesmus dimorphus, Scenedesmus platensis, Scenedesmus quadricauda,
Dunaliella salina, Spirulina maxima and Calothrix elenkinii (see Ronga et al. [169] for an ex-
tensive review). Biostimulants using microalgae present several challenges to solve, due
precisely to their novelty. Clearly, the great variability of microalgal strains yet unexploited
by the biostimulant industry, and lack of knowledge regarding their biomolecular mecha-
nisms, may still cause rejection by professionals and hamper their regular utilization in
agricultural practices [170].

4.2. Microorganisms

It is widely accepted that plants can maintain stabilizing relationships with bacteria
that help them survive numerous stressful conditions [171]. In this context, numerous
researchers have attempted to isolate microorganisms from varied ecosystems with envi-
ronmental constraints, such as saline, alkaline, acidic, and arid soils [172]. Microorganisms
that grow in adverse environments have had to develop numerous strategies to survive,
for example, changes in cell wall composition and high concentrations of soluble solutes.
Consequently, these microorganisms are excellent sources of biostimulants [172] and such
microbe-induced tolerance is being used against biotic and abiotic stress and enhanced soil
fertility [173]. Some genera used as biostimulants are as follows:

1. Rhizobium has been described as helping plants to acclimate to abiotic stress [174].
Symbiosis with Rhizobium is reported to influence salt and drought responses in
Medicago trunculata [175].

2. Trichoderma is described by Zaidi et al. [176] as a potential source for abiotic stress bio-
control; indeed, exogenous treatment can induce tolerance against salt in wheat [177]
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and cucumber [178]. It has a capacity to induce tolerance against drought in maize [179]
and rice [180].

3. Bradyrhizobium can alleviate salt stress, promoting symbiosis in soybean [181]. In peanut,
it helps to alleviate the negative effects of water restriction [182].

4. Azotobacter isolated from semi-arid regions is capable of alleviating drought stress
after inoculation in maize [183]. It is described by Viscardi et al. [184] as a possible
way to increase tolerance against abiotic stress.

5. Azospirillum can improve salt tolerance in chickpea, increasing the biosynthesis of
compatible osmolytes and enhancing the antioxidant machinery [185]. Utilization of
this genus was reviewed by Vacheron et al. [186].

6. Pseudomonas induces drought tolerance in mung bean [187] and salt tolerance in
cotton plants [188].

7. Bacillus improves drought stress tolerance in maize, promoting better oxidative and
water balance [189]. It is noteworthy that Li et al. [190] studied the transcriptome
profile of salt tolerance conferred by a Bacillus microorganism.

Treatment with microorganisms may be a useful way to cope with new upcoming
situations imposed by climate change [191].

4.3. Humic and Fulvic Acid Extracts

These make up more than 60% of soil organic matter and are the major component
of organic fertilizers, produced by the biodegradation of organic matter, resulting in a
mixture of acids containing phenolate and carboxyl groups. Fulvic acids are humic acids
with a higher oxygen content and lower molecular weight [172]. One hypothesis about the
mechanism of action of supplementation with these biostimulants in soils with poor organic
carbon is that it helps improve microorganism stabilization and chemical characterization
of the soil [192]. These authors also found that it is not economically feasible to apply
them to arid soils. In addition, published data show that humic and fulvic treatments can
modify the plants’ primary and secondary metabolism against abiotic stress, enhancing
water uptake and antioxidant behaviour under stress [193]. The application of both types
of acids is widely reported in the literature as an external treatment to increase tolerance
against osmotic stress (see Ali et al. [128,194] for an extensive review):

1. Humic acids are able to enhance maize plants’ salt response [195], increasing proline
accumulation and strengthening the enzymatic antioxidant system. In Lima bean [196]
it can ameliorate negative effects exerted by drought, by increasing photosynthetic
activity and accumulating sugars and proline in leaves and thus a higher relative
water content in these organs.

2. Fulvic acid treatment enhances water relations in citrus through higher proline accu-
mulation in leaves and protection from chlorophyll degradation by salt stress [197] In
rapeseed it can protect the photosynthetic machinery and aid the membrane to resist
peroxidation [198].

Use of humic substances as a biostimulant for plant growth is a promising eco-friendly
approach, in accordance with the concept of circular economy. It focuses on a progressive
conversion to resources whose consumption can itself alleviate anthropic impacts and pres-
sure, and the impending consequences of climate change [194]. Finally, there is interesting
research where the authors try to isolate humic substance structures and associate them
with their activity in plants [199,200], laying the basis for a better understanding of this
structurally complex type of biostimulants.

5. Biostimulants’ Field Applications

The European Biostimulant Industry Council also reported that more than 6.2 million
hectares in the EU have already been treated with biostimulants. Developments in this
field are definitely focused on looking for new compounds or mixes that can be applied
to increase and economize crop production by reducing costs. Yakhin et al. [21] provide
interesting information about one of the most famous biostimulants on the market.
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Biostimulants can be administered in the field by foliar or fert-irrigation, for example,
amino acids are normally applied as protein hydrolysates. This kind of product may pro-
ceed from animal or plant sources. They are quickly gaining popularity in the industry and
with farmers, because they contain a large number and quantity of bioactive compounds
and have proven efficacy in enhancing crop performance, even under stress conditions [26].
Biostimulants based on amino acids are suitable for foliar application, increasing yield
and grain quality after two treatments with these commercial formulations [201]. Foliar
treatments are also able to increase yield under saline growth conditions [202] or growth
under water deficit conditions [203,204]. Amino acid formulations can also be applied by
fertirrigation to enhance fruit quality [205], improving yield under water restriction [206].
In an interesting review, Moreno-Hernandez et al. [207] summarize commercial biostimu-
lants prepared from protein hydrolysates in a table showing their application method and
crop responses. Basie et al. [208] review how biostimulants from different sources have
been applied to fruit trees, grapevines and berry crops against abiotic stress, including
drought and salinity. In an interesting field experiment, Kocira et al. [209] used foliar
treatments of seaweed- or amino-acid-based biostimulants. Both increased yield, but the
profits using seaweed extracts are higher in comparison to amino acids: EUR 752.57·ha−1

to EUR 119.67·ha−1, respectively (Figure 4).
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6. The Future of Osmoprotection
6.1. What Chemical Modifications Can Be Learned from Nature and Applied to Single Molecules?

Plants are incredibly resilient organisms that have to live their whole life cycle in
the place that a seed or other propagule was deposited. Due to their sessile nature in
the environment, we provide a few examples that demonstrate which plants have similar
strategies but with different final results. One group of compounds that probably best
represents this concept are the non-proteinogenic amino acids, used by plants as a response
to different kinds of stress [210]. Beyond GABA accumulation under osmotic stress (see
above), a plethora of non-proteinogenic amino acids are synthesized by plants. As an
example of this, after studying the metabolic response against osmotic stress in tolerant and
sensitive varieties, one of the most abundant compounds in roots of the tolerant variety
was found to be β-alanine [211]. It acts as a precursor of β-alanine betaine, which acts as
osmoprotectant in some halophytic plants [212].

Another interesting response is osmoprotection in watermelon; besides the usual
accumulation under stress of proline, watermelon complements this by accumulating
citrulline. Under stress, the latter represents 21–25% of the total amino-acids in watermelon
stem and leaves [213]. These particular responses offer opportunities to use modern omic
technologies. Stress-tolerant or sensitive varieties can be compared using metabolomic
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tools to detect and evaluate the differences arising from the interactive coevolution of
plants with their environments [214]. In this way, the search continues for new compounds
to further the advance into various fields of biostimulation [215].

6.2. New Strategies to Find New Active Biostimulants

In the literature, there are already plenty of approaches to studying differences in
tolerance of different crop cultivars, but surprisingly we have not found examples of their
use with biostimulants. Here, we discuss some strategies that in our opinion have great
screening potential.

Infra-Red thermography is able to detect excess heat emitted from stressed plants [216].
Applying this, Siddiqui et al. [217] demonstrated how the leaf temperature of plants
submitted to drought stress increases in a high correlation with relative water content and
osmotic potential, and a good correlation with stomatal conductance. Others have used
drought-tolerant maize genotypes or salt-tolerant cereals [214,218]. One of the drawbacks
of this approach has been the need to use a thermal camera, but recently some papers show
how a cheap camera coupled to a smartphone is adequate for infra-red thermography
studies [219].

The infrared approach can be used within a high-throughput phenotyping platform,
such as that described by Kim et al., [218]. This is able to measure plant area, colour,
compactness, seed/cereal water content, and photosynthetic efficiency in real time, using
image technology and DroughtSpotter. The latter is a lysimeter that assesses water use
and transpiration rates based on weight measurements, Phenospex©. Another interesting
phenotyping platform measures root and shoot growth ratio in real time [220], which
is very useful to take into account in plant breeding against osmotic stress because it
normally increases in response to drought [221]. This type of expensive equipment would
seem utopic for the majority of researchers but the European Council offers opportunities
to use such platforms within the European Plant Phenotyping Network. This leads in
interesting directions for new biostimulant development. Rouphael et al. [222] review
High-Throughput Plant Phenotyping systems for developing new biostimulants, providing
interesting alternatives to perform experiments with transfer from laboratory to field.

7. Future Remarks

Plans such as the ‘new green deal’ include a search for field treatments that protect
crops without environmental cost. In fact, biostimulants are a promising bet for inclusion
in the forthcoming new deal. This has to be faced in a multidisciplinary way, because
understanding metabolism under both stress and its alleviation is the key to increased
production. In our opinion, this area needs deeper study focused on production and
agronomy. In Garcia-Garcia et al. [18], we presented a more detailed review focused on
production. After an exhaustive bibliographical search, only 6% of more than 182 papers
about biostimulants take into consideration final yield, which is in the end the main purpose
of biostimulant utilization. Another important problem with biostimulant research is the
exposure to extremely strong stresses, feasible in the laboratory but practically impossible
to find in a commercial plantation. A closer model to agricultural reality was our field trial
using lettuce as a crop; plants were submitted to stress levels that ensured production but
with a considerable impact on it [206]. Although lettuce is a good option for first trials
with a biostimulant, it only permits stress protection to be evaluated in terms of vegetative
growth. Fruit production is more important in commercial crops, so more research in this
latter line is necessary.
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