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Abstract: The present study was carried out to assess the genotoxicity potential of Ficus deltoidea var.
kunstleri aqueous extract (FDAE) using standard in vitro assays. The DNA damage of V79B cells
was measured using the alkaline comet assay treated at 0.1 mg/mL (IC10) and 0.3 mg/mL (IC25) of
FDAE together with positive and negative controls. For in vitro micronucleus assay, the V79B cells
were treated with FDAE at five different concentrations (5, 2.5, 1.25, 0.625, and 0.3125 mg/mL) with
and without S9 mixture. The bacteria reverse mutation assay of FDAE was performed on Salmonella
typhimurium strains TA98, 100, 1535, 1537, and Escherichia coli strain WP2uvrA using pre-incubation
method in the presence or in the absence of an extrinsic metabolic system (S9 mixture). FDAE at 0.1
and 0.3 mg/mL significantly increased DNA damage in both comet tail and tail moment (p < 0.05).
No significant changes were detected in the number of micronucleated cell when compared to control.
Tested at the doses up to 5000 µg/plate, the FDAE did not increase the number of revertant colonies
for all strains. In conclusion, further investigation needs to be conducted in animal model to confirm
the non-genotoxicity activities of FDAE.
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1. Introduction

Medicinal herbs have been utilized as a complementary and alternative medicine for
many years in which it has gained widespread popularity throughout the world in treating
diseases and improving healthy life in human-beings [1,2]. Herbs, herbal preparations,
herbal materials, or finished herbal products are the herbal medicines that contain active
ingredients [1]. Herbal products are generally not prepared according to the standard
procedures of formulation as well as their evaluation of safety; hence, the herbal toxicity
has become a major concern due to their wide use [3]. Furthermore, overutilization of
natural materials without a proper toxicity data could potentially act as a carcinogen or
mutagen [4]. Therefore, it is crucial to perform the safety assessment of herbal medicines
particularly on their effects on genetic materials which may leads to cell mutation.

Ficus deltoidea (family: Moraceae) or locally known as “Mas Cotek” is one of the most
common plants used in herbal based products development in Malaysia. However, it is
native and widely distributed in other Southeast Asia countries including Thailand and
Indonesia since the past few decades [5]. F. deltoidea is an epiphytic shrub which has been
traditionally used for relieving headache, treating cold, rheumatism, and to strengthening
the uterus after birth [6,7]. Most of the benefits are contributed by the flavonoids found
in the plants. Scientifically, flavonoids have shown various pharmacological properties
such as anti-carcinogenic, anti-mutagenic, anti-inflammatory, anti-viral, and anti-oxidant
activities [8,9], though little is known about their safety and potentially detrimental toxic
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effects which might take place if taken in large doses for a short period or a long period of
time [10]. Notwithstanding the widespread use of F. deltoidea plant in traditional medicine,
limited data on genotoxicity effects particularly on variety kunstleri is available.

To evaluate the genotoxic potential of F. deltoidea aqueous extract (FDAE), in vitro
testing through alkaline comet assay, micronucleus and Salmonella typhimurium/reverse
mutation assay were performed in the present study.

2. Results
2.1. Phytochemical Analysis

The analysis of aqueous extract of F. deltoidea by reverse phase HPLC (RP-HPLC-ESI)
revealed that flavonoids were the major class of phenolics in FDAE. Fifteen flavonoids
were characterized. The obtained based peak chromatogram is illustrated in Figure 1.
The phenolic compounds present in the FDAE are summarized in Table 1, with their
formula, name, absorbance spectrum, calculated m/z, MS fragments, and migration.

Figure 1. HPLC-ESI/MS profile of F. deltoidea aqueous extract (FDAE), analyzed by gradient phase at
365 nm (purple) and florescence detector (red).

Table 1. Tentative identification of phenolic compounds in F. deltoidea extract determined by HPLC-ESI.

Peak tR λmax Compound [M-H]− (m/z) MS2 Fragments Ions (m/z)

1 16.2 280 (+)-Catechin 289 245, 179
2 23.5 280 (−)-Epicatechin 289 245, 205, 179
3 25.9 350 Luteolin-6-8-C-diglucoside (Lucenin-2) 609 489, 519, 399
4 29.4 340 Apigenin-6, 8-C-diglucoside (Vicenin-2) 593 473, 503, 353
5 30.5 345 Unidentified 517 385, 205, 222

6 32.8 335 Apigenin-6-C-ara-8-C-glucoside
(Isoschaftoside) 563 473, 443, 503

7 33.7 335 Apigenin-6-C-glu-8-C-arabinoside
(Schaftoside) 563 473, 503, 443

8 34.3 345 Luteolin 6-C-glucoside (Isoorientin) 447 327, 357, 369
9 34.8 325 Unidentified 565 444, 474, 443

10 35.7 335 Luteolin-8-C-diglucoside (Orientin) 447 327, 429, 357
11 37.8 335 Apigenin -8-C-glucoside (Vitexin) 431 311, 341, 283
12 38.6 335 Apigenin-6-C-pent-8-C-glucoside 563 443, 473, 353
13 39.5 335 Apigenin-6-C-pentosyl-8-C-pentoside 533 443, 473, 515
14 40.3 335 Apigenin-6-C-pentosyl-8-C-pentoside 533 443, 473, 515
15 41.3 345 Apigenin 6-C-glucoside (Isovitexin) 431 311, 341, 413
16 43.3 335 Unidentified 535 443, 474, 516
17 45.4 335 Chrysin-6-8-C-diglucoside 577 457, 487, 353
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2.2. MTS Cytotoxicity Assay

The potency of cell growth inhibition for FDAE on V79B cells was assayed. The
cytotoxicity effect of the extract was measured after 24 h of exposure to a serial range of
concentrations using MTS assay. The growth inhibitory effects were expressed as IC10
and IC25 (Figure 2). The toxic effect of FDAE exhibited in a dose-dependent manner
and at a concentration of 5 mg/mL extract, the cell viability was 3.3 ± 4.1% relative to
untreated controls. The growth inhibitory effect for IC10 and IC25 value were 0.1 and
0.3 mg/mL, respectively.

Figure 2. Cytotoxic effect of FDAE was demonstrated following 24 ± 2 h treatment on V79B cells.
Data are expressed as percentage of viability compared to negative control (without any treatment).
IC10: concentration of Test Item that produce 10% inhibition of cell viability. IC25: concentration of
Test Item that produce 25% inhibition of cell viability. IC50: concentration of Test Item that produce
50% inhibition of cell viability.

2.3. Alkaline Comet Assay

The DNA percentage in the comet tail and tail moment were used to measure the
potential DNA damage caused by FDAE. The extract induced DNA damage by a significant
increase in both % of DNA in tail and tail moment (p < 0.05) at concentrations of 0.1 mg/mL
and 0.3 mg/mL, respectively, as shown in Figure 3.

2.4. In Vitro Micronucleus Assay

In the dose finding test, there were no precipitation of FDAE for all concentration
observed in plates after treatment period. The FDAE was not cytotoxic at up to the highest
concentration (5 mg/mL) in the presence and absence of S9 mixture, thus this dose was
selected as the highest concentration for main experiment. Treatment with FDAE at 1.25,
2.5, and 5 mg/mL did not show a concentration-related increase in the percentage of
micronucleated cells in both the absence and presence of metabolic activation compared to
negative control. Figure 4 shows the percentage of micronucleated cells.

2.5. Salmonella typhimurium/Microsome Assay

A preliminary test was carried out in all tester strains and neither reductions of the
number of the revertants or alterations of the auxotrophic bacterial grown were apparent
up to the highest dose tested (5000 µg/plate). No dose-dependent increase in revertant
colonies or bacterial toxicity were observed in the dose finding test at concentrations
of FDAE up to 5000 µg/plate in the presence or absence of metabolic activation. The
main experiment was performed in a similar manner at concentrations ranging from
313 to 5000 µg/plate. Data are summarized in Tables 2 and 3. No bacterial toxicity was
observed at any dose tested. The positive controls for each strain resulted in the expected
increase in the number of revertant colonies.
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Figure 3. The DNA damage induction in V79B cells measured by alkaline comet assay after cells
were treated either with FDAE or positive control (Ethyl methanesulfonate) for 2 h. DNA damage is
expressed as (a): % DNA in tail and (b): tail moment. Data was expressed as mean ± SEM. * is where
p value is < 0.05 as compared to negative control.
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Figure 4. Percentage of micronucleated cells induced by different concentrations of FDAE or positive
controls treated on V79B cells for 3 h with (a) and without (b) the presence of S9 metabolic activation.
Data was expressed as mean ± SEM.

Table 2. Mutagenicity testing of FDAE in the Salmonella typhimurium/microsome assay without S9
metabolic activation on TA100, TA1535, TA98, TA1537, and WP2uvrA tester strains.

Dose (µg/Plate)

Number of Revertants (Mean ± SD)

Base-Pair Substitution Type Frameshift Type

TA100 TA1535 WP2uvrA TA98 TA1537

0 136 ± 10 13 ± 2 57 ± 5 21 ± 4 8 ± 2
313 145 ± 12 14 ± 1 53 ± 3 21 ± 1 9 ± 2
625 135 ± 5 10 ± 2 58 ± 4 20 ± 3 9 ± 2
1250 130 ± 8 11 ± 3 48 ± 4 19 ± 1 11 ± 2
2500 134 ± 11 10 ± 1 55 ± 2 23 ± 4 10 ± 2
5000 166 ± 7 12 ± 1 53 ± 3 25 ± 2 11 ± 3

Positive control 627 ± 6 558 ± 6 180 ± 7 539 ± 4 608 ± 4
Values are mean ± SD of 3 plates. Dose 0-negative control: 100 µL pure water; Positive control: for TA100
and TA1535, NaN3 (0.5 µg/plate); WP2uvrA, MMC (1 µg/plate); TA98, 2-NF (1 µg/plate) and TA1537, ICR-191
(1 µg/plate).
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Table 3. Mutagenicity testing of FDAE in the Salmonella typhimurium/microsome assay with S9
metabolic activation on TA100, TA1535, TA98, TA1537 and WP2uvrA tester strains.

Dose (µg/Plate)

Number of Revertants (Mean ± SD)

Base-Pair Substitution Type Frameshift Type

TA100 TA1535 WP2uvrA TA98 TA1537

0 162 ± 6 17 ± 3 60 ± 4 24 ± 4 10 ± 1
313 151 ± 10 15 ± 2 63 ± 4 30 ± 4 11 ± 2
625 145 ± 12 14 ± 2 63 ± 2 28 ± 2 12 ± 2

1250 158 ± 5 15 ± 2 53 ± 4 32 ± 3 10 ± 2
2500 142 ± 3 14 ± 1 57 ± 5 28 ± 2 12 ± 2
5000 149 ± 6 14 ± 3 62 ± 8 29 ± 2 11 ± 1

Positive control 519 ± 4 165 ± 4 192 ± 4 232 ± 6 183 ± 3
Values are mean ± SD of 3 plates. Dose 0-negative control: 100 µL pure water; Positive control: 2AA for all
tester strains, TA100 (1 µg/plate); TA1535 (2 µg/plate); WP2uvrA (10 µg/plate); TA98 (0.5 µg/plate) and TA1537
(2 µg/plate).

3. Discussion

Despite the keen interest of traditional herbal medicine being used to treat various
diseases, the toxicity and genotoxicity information of these herbal preparations are still
lacking. Majority believes that products originated from natural sources are safe and they
should devoid of toxicity. Therefore, an assessment of genotoxicity of leaves of F. deltoidea
aqueous extract is required to ensure the safety of the F. deltoidea. In the current work,
the mutagenic, and/or genotoxic of FDAE were studied with various assays.

Polyphenol-rich plants are often attributed with their potent antioxidant activities
which are beneficial to human health. Flavonoids are phenolics found in the vegetables
and plant-derived products such as flowers, fruits, roots bark, stems, grains, wine, and
tea [11]. Knowledge on the flavonoids content of plant-based foods is paramount for better
understanding in their role in plant physiology as well as human health. Identification of
these compounds will determine their therapeutic value.

Our finding showed that flavonoids and phenolic compounds were identified in
FDAE as reported in the previous study [12]. This study revealed FDAE consist of catechin
and epicatechin, which are powerful antioxidant together with the presence of vitexin
and apigenin, which have been demonstrated to have antioxidant with antigenotoxicity
properties [13,14].

The presence of phenolic and flavonoid compounds has received a great attention
on their free radical scavenging activities as a cellular defense mechanism to suppress the
toxicity and genotoxicity of various mutagens in life organism. However, besides their
beneficial effects, various studies have been reported about the cellular toxicity effects of
flavonoids as a result of their pro-oxidant activities [15]. The cytotoxicity effects of FDAE
were measured in V79B cell line by the MTS assay. Results of the present study clearly
showed that the FDAE reduced the cell viability at up to the highest concentration in dose
dependent manner. Similar cytotoxicity activity was observed in the methanolic extracts of
F. deltoidea against human leukemic HL-60 cell lines as the cellular DNA fragmentation was
revealed through microscopic evaluation on dead cells [16]. The presence of polyphenolic
compounds in FDAE could influence cell function by modulating cell signaling, altering
proliferation and inducing cytotoxicity in cells and requires further investigations.

The genotoxicity effect of FDAE was further evaluated at gene level based on DNA
fragmentation from alkaline comet assay. This assay uses single-cell nucleus electrophoresis
which can detect primary DNA damage expressed as single or double strand breaks [17].
It is based on the quantification of denatured DNA fragments that have migrated out
from the cell nucleus during electrophoresis. The positive results obtained from this study
indicated that FDAE could induce a direct genotoxic activity to produce DNA-lesions in
V78B cells. The mechanisms by which FDAE may interact with DNA are difficult to predict.
One possible cause contributing to the positive response observed in this assay could be
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the pro-oxidant activity of catechins found in the extract. It has been demonstrated that
polyphenols, including catechins, can act as antioxidants and also as pro-oxidants under
certain conditions [18], which induced oxidative damage in vitro studies [19–21]. Moreover,
other findings showed that EGCG (epigallocatechin gallate), a predominant component of
catechin preparations, induced chromosomal damage in WIL2-NS cells at 100 µmol/L [22].
However, whether polyphenols can act as pro-oxidants or antioxidants is likely dependent
upon the relative redox-potentials of the in vitro culture conditions. A report by Ogura
et al. (2008) [23] indicated that the pro-oxidant activity of catechins in in vitro culture was
generated from the ample supply of dissolved oxygen. Other possible mechanism of action
that cause DNA damage could be also due to the generation of reactive oxygen species [24]
or the inhibition of scavenging enzymes against reactive oxygen species including catalase,
superoxide dismutase and glutathione peroxidase [25] which require further investigations
to confirm these activities.

In contrast, data from the Salmonella typhimurium/microsome assay provides no
evidence of mutagenic potential as no increase of the number of revertant colonies when
tested up to the highest dose (5000 µg/plate) over the negative control, either in the
presence and the absence of extrinsic metabolic activation, S9. Standard mutagens (2-AA,
NaN3, MMC, 2-NF and ICR-191), however, exhibited significant amplified number of
revertant colonies in all strains. Similar finding was observed in TA98 and TA100 when
tested with standardized methanolic extract of F. deltoidea [26]. Negative response was
also observed in the study on green tea extract that rich with catechin compound at the
highest concentration (5000 µg/plate). These data demonstrate no evidence of potential
gene mutagenic effect under the conditions used in this test for FDAE.

To determine whether FDAE causes numerical and structural chromosome changes,
an in vitro micronucleus test using V79B cells was conducted. In the present study, no
significant increase in the number of micronuclei in any tested dose of FDAE compared
with the negative control. These results are also consistent with the study findings of
Ogura et al. (2008) [23] which assessed the potential genotoxic effect of a catechin rich tea
preparation on ICR mice and Sprague Dawley rats using a bone marrow micronucleus
assay. These results have shown that FDAE was not mutagenic in both the absence and
presence of metabolic activation towards V79B cells.

4. Materials and Methods
4.1. Plant Materials and Extract Preparation

F. deltoidea dried leaves were purchased locally from Pahang, Malaysia. Leaves were
dried in oven (Memmert, Germany) at 45 ◦C for 2 days and ground to a powdered form
prior to extraction with water by boiling it for 1 h before assign through filter paper
(Whatman, No.1). Filtrates collected were sprayed dried (Buchi, Switzerland) to form
a powder that was further used in the experiments. The powdered aqueous extract
of F. deltoidea (FDAE) were then analyzed by HPLC with absorbance, fluorescence and
mass spectrometric detection to determine the major constituents. The HPLC system
employed consisted of Surveyor gradient (Thermo Scientific, CA, USA), comprising of a
pumping system, auto sampler, and degasser coupled with photodiode array absorbance
(PDA) detector scanning from 200 to 700 nm controlled by Xcalibur software version 1.3.
Separation was carried out using MAX-RP 4 µm, 250 mm × 4.6 mm C12 reverse phase
column (Phenomenex, Torrance, CA, USA) maintained at 40 ◦C and eluted at a flow rate
of 1.0 mL/min with 60 min gradient from 15 to 50% methanol in water containing 0.1%
formic acid. After passing through the flow cell of the photodiode array and fluorescence
detectors, the column eluate was split and 20% directed to an LCQ Duo mass spectrometer
(Thermo-Finnigan) with an electrospray interface operating in full scan data dependent
MS/MS mode from 150 to 1000 amu. (+)-Catechin and (−)-epicatechin were identified by
fluorescence (FL) detector (Jasco FP-920) at the wavelengths (λ EX/ λ EM) 280/315 nm.
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4.2. MTS Cytotoxicity Assay
4.2.1. Cell Culture

V79B cell is a fibroblast-like morphology cell line originated from Chinese hamster
lung. It was obtained from RIKEN Cell Bank, Japan (Resource No: RBRC-RCB2337).
Cells were thawed and subcultured in Dulbecco’s Modified Eagle Medium (DMEM) sup-
plemented with 10% Fetal Bovine Serum and 1% antibiotic/antimycotic solution and
incubated in a humidified CO2 incubator at 37 ± 2 ◦C. Cells were washed with phosphate
buffer solution and harvested by trypsinization using trypsin-EDTA 0.05% (w/v). The cells
suspension was then centrifuged at 1000 rpm for 3 min. The pellet was re-suspended in the
culture medium and the cells were counted using the CountessTM Automated Cell Counter.

4.2.2. Cytotoxicity Determination

Six treatment concentrations of FDAE (5, 2.5, 1.25, 0.625, 0.3125, and 0.15625 mg/mL)
were prepared for the experiment. Culture medium from each well of 96-well plate was
discarded and added with 200 µL extract at different concentrations and culture medium
for negative control. Well without cells were used as blank. The plate was incubated for
24 ± 2 h at 37 ± 2 ◦C with 5 ± 1% CO2 in CO2 incubator. After 24 ± 2 h of incubation,
40 µL of MTS reagents was added into each well. The plate was then incubated for about
1 h at 37 ± 2 ◦C with 5 ± 1% CO2 in CO2 incubator. The plate was read at 492 nm using
the ELISA Microplate reader. A concentration against percentage of cell viability graph
was plotted. Two cytotoxic concentrations (IC10 and IC25) were selected for the Alkaline
Comet assay.

4.3. Genotoxicity Assays
4.3.1. Alkaline Comet Assay

All culture medium from each well of 96 well plates were discarded and washed with
2 mL of PBS. Two mL of FDAE (IC10 and IC25), negative control and positive control were
pipetted into designated well of 6-well plate. The plate was incubated for 2 h at 37 ± 2 ◦C
and 5 ± 1% CO2 in CO2 incubator. After 2 h of incubation, all culture media was discarded.
Cells were washed, trypsinized with 1 mL of Trypsin-EDTA and 2 mL of culture medium
to neutralize the reaction into each well. Cells were re-suspended and 1 mL transferred into
three different microcentrifuge tubes and centrifuged at 2500 rpm at 4 ◦C for 5 min. The
supernatant was discarded and 1 mL of cold PBS was added into each tube and centrifuged
again at 2500 rpm at 4 ◦C for 5 min. The supernatant was discarded, then 80 µL of LMA
(low melting agarose) was mixed with the pallet and re-suspended gently. The mixture
was then pipetted onto the slide with 100 µL solidified NMA (normal melting agarose) and
covered with cover slip. The agarose was allowed to solidify on ice for few minutes. The
cover slip was removed and slides were immersed into lysis buffer solution containing
1% v/v Triton X-100 for 1 h at 2–8 ◦C. The slides were then transferred onto electrophoresis
tank filled with buffer solution and left for 20 min to permit unwinding of DNA. After
20 min, the electrophoresis process was initiated (300 mA and 25 V) for another 20 min.
The slides were transferred and washed with neutralization buffer solution every 5 min for
3 times. Then, 40 µL of ethidium bromide solution was pipette onto slides and covered
with cover slips. The slides were kept overnight at 2–8 ◦C and observed under fluorescence
microscope. Fifty single cells were analyzed for each slide using Tritek CometScore@ free
software. Score for % DNA in tail and tail moment was collected and transferred into
Alkaline Comet Assay Excel Template.

4.3.2. In Vitro Micronucleus Assay

The assay was performed according to OECD 487 in vitro Mammalian Cell Micronu-
cleus [27] with minor modifications. Two mL of V79B cells suspension (5 × 104 cells/mL)
were dispensed into designated well of 6-well plate. Cells were incubated for 24 ± 2 h at
37 ± 2 ◦C and 5% CO2 in incubator. After 24 h, the subconfluency and the morphology of
the cells were verified. V79B cells were washed with 1 mL of PBS. Then, 5 mL of culture
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media containing either 1.25, 2.5, and 5 mg/mL FDAE, and negative control or positive
control (colchicine-without S9 activation and cyclophosphamide monohydrate-with S9
activation, respectively) were added into each well. The plates were incubated at 37 ± 2 ◦C
and 5% CO2 for 3 h. After 3 h of treatment period, treatment culture media was discarded
and cells were washed twice using PBS. Then, 5 mL of normal culture media was added
into each well and plate was incubated at 37 ± 2 ◦C and 5 ± 1% CO2 for 21 h. After
incubation, the culture media was replaced with 2 mL of PBS-EDTA. The cells were re-
suspended to get single cells. The cells suspension was then centrifuged at 1500 rpm. The
cells pellet were re-suspended with 2 mL of KCl hypotonic solution and the cell again
were centrifuged at 1500 rpm for 5 min. The cells pellet was fixed using Carnoy’s fixative
solution. 10 µL cells were drop and mounted on pre-warmed frosted slides. The cells
were stained using 10 µL of 20 µg/mL acridine orange and observed under fluorescence
microscope at 20–40× magnification. The images of 2000 cells were captured and scored.

4.3.3. Statistical Analysis

SPSS version 16.0 was used for the statistical analysis. Data was analysed using one-
way ANOVA and presented in mean and standard error of the mean. Statistical significance
was considered with p value < 0.05.

4.4. Salmonella typhimurium/Microsome Assay
4.4.1. Bacterial Strains and Metabolic Activation System (S9 Mixture)

Salmonella typhimurium strains and Escherichia coli strain were purchased from the
Molecular Toxicology Incorporated (Moltox), United States. The bacterial strains were
stored as frozen stock cultures at −80 ◦C. The cultures were preserved with Dimethyl
sulfoxide (DMSO) in 1 mL of broth culture. For metabolic activation system, a cofactor-
supplemented post-mitochondrial fraction (S9) was used. The S9 was prepared from the
livers of male Sprague Dawley rats induced with phenobarbital and 5,6-benzoflavone.

4.4.2. Positive Control Mutagen

2-aminoanthracene (2-AA), Mitomycin C (MMC), ICR-191, Benzo(a)pyrene (BP),
Sodium azide (SA) and 2-nitrofluorene (2-NF) were from Sigma-Aldrich, St Louis, MO,
United States.

4.4.3. Mutagenicity Assay

This study was conducted in accordance with Method 471, Bacterial Reverse Mutation
Test (Adopted 21 July 1997), OECD Guideline for testing of chemicals. The Salmonella
typhimurium/microsome assay was performed by the standard pre-incubation method
with and without addition of an extrinsic metabolic activation system (S9 mixture). The
test strains (TA98, TA 100, TA1535, TA1537, and WP2uvrA) were cultured in Nutrient
Broth no. 2 and incubated at 37 ◦C for 6–9 h. Basically, 100 µL of an overnight grown
culture (containing approximately 1–2 × 109 bacterial cells per mL) was added into culture
tubes which contained 100 µL of FDAE (5000, 2500, 1250, 625, 313, and 0 µg) or standard
mutagens (positive control) or sterile distilled water (negative control), and 500 µL of
phosphate buffer (without S9) or 500 µL of S9 mixture. The mixture was incubated for
20 min at 35 ± 2 ◦C with shaking speed at 100 rpm in the shaker water bath. Two mL of
overlay agar was then added into each culture tubes followed by vigorous mixing and
poured on the surface of a minimal agar. The plate was incubated for 48 h at 37 ± 2 ◦C.
All plates were then checked for the presence of the background lawn and compared to
the negative control group plates. Numbers of revertant bacterial colonies were counted
and compared with those in negative and positive control plates. Every experiment was
carried out in triplicate.



Plants 2021, 10, 343 10 of 11

4.4.4. Statistical Analysis

SPSS version 16.0 was used for the statistical analysis. Data was analysed using
one-way ANOVA and presented in mean and standard deviation. Statistical significance
was considered with p value < 0.05.

5. Conclusions

Herbal derived medicinal products have become popular to treat several diseases
despite the scarce information on the toxicity of certain compounds which may detrimental
to human health. In this work, we showed that FDAE was not mutagenic in both in vitro
micronucleus and bacterial reverse mutation assays. We suggested that the anti-mutagenic
activity could be attributed to the presence of flavonoids with good antioxidant and
antigenotoxicity in FDEA. In contrast, DNA damaged was observed when tested using
alkaline comet assay towards V79B cells under the in vitro condition. The cellular activities
of FDAE may be modulated by a variety of interactions between mutagenic and protective
compounds, which may result to a different response pattern. Therefore, further studies
using animal model (in vivo) should be conducted to better characterize the mechanism of
action and to confirm the genotoxicity effects of FDAE under physiological conditions.
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