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Abstract: Plant growth and development is adversely affected by different kind of stresses. One of
the major abiotic stresses, salinity, causes complex changes in plants by influencing the interactions
of genes. The modulated genetic regulation perturbs metabolic balance, which may alter plant’s
physiology and eventually causing yield losses. To improve agricultural output, researchers have
concentrated on identification, characterization and selection of salt tolerant varieties and genotypes,
although, most of these varieties are less adopted for commercial production. Nowadays, phenotyp-
ing plants through Machine learning (deep learning) approaches that analyze the images of plant
leaves to predict biotic and abiotic damage on plant leaves have increased. Here, we review salinity
stress related markers on molecular, physiological and morphological levels for crops such as maize,
rice, ryegrass, tomato, salicornia, wheat and model plant, Arabidopsis. The combined analysis of data
from stress markers on different levels together with image data are important for understanding the
impact of salt stress on plants.

Keywords: salinity stress; stress tolerance; morphological markers; physiological markers; chloro-
phyll; antioxidant; molecular markers

1. Introduction

Growth and development of plants are affected by various stresses. Salinity is one of
the major abiotic stress which adversely affects the overall growth and yield of crops [1–3].
It is estimated that >1 billion ha of the world land is salinized [4] and continued salinization
of the ever-decreasing agricultural land further exacerbates food insecurity as human
population surges. Some of the major world crops such as maize, wheat, rice, tomato and
sunflower are reviewed here where, salinity resulted in the reduction of the yield [2,5–8].
The compromised performance causing poor yield could be due to the reduction in photo-
synthesis efficiency, chlorophyll, total protein, biomass, stomata closure and increasing the
oxidative stress [9].

To improve productivity in salt-affected soils, selection and adoption of plant vari-
eties with high salt tolerance has always been a preferred choice [10,11]. This selection is
based on morphological, physiological and molecular markers. Among morphological
markers, root or shoot morphology, visible early senescence, biomass of grains is some of
the important parameters that are considered. Physiological and biochemical markers ex-
amine chlorophyll content, accumulation of proline, sucrose, stress protectants, membrane
stability and hormones content [9,12]. These physiological markers, especially hormonal,
polyamine and proline changes in plants are important to increase salt tolerance of plants.
For example, such can be boosted by exogenous treatments with hormones, glycine betaine,
proline, polyamines, paclobutrazol, nanoparticles [13]. The molecular markers include salt
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stress tolerant genes, transcription factors, metabolic pathway related genes [9,12]. These
molecular markers have led to significant progress in genetic engineering of plants with
salt tolerance [9]. Altogether, all stress markers in plants help in identification of specific
genes involved in salt tolerance [9].

The advent of information technology (IT), especially different smart data analysis
techniques which are being applied in other fields, are also directed towards the improve-
ment of agriculture. These used techniques are known as machine learning—a subset of
artificial intelligence. Machine learning algorithms build a model based on data samples,
called “training data,” developed in order to make predictions or decisions without being
explicitly programmed to do so [14]. Deep learning is a machine learning method based
on artificial neural networks with multiple hidden layers and representation learning [15].
Deep learning architectures have been applied to various fields including agriculture,
bioinformatics, drug design, medical image analysis, among others, where they predict
results with a given data set and have produced comparable results and, in some cases,
surpassing performance of human experts [15–17]. Deep learning algorithms such as Con-
volutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term
Memory (LSTM) are frequently applied for prediction and/or detection, quantification
of biotic stresses in plant leaves [17,18]. They are used for screening stress tolerant or
sensitive genotypes by using the morphological characteristics of plants through recorded
images [19]. Few of these studies are related to abiotic stress, for example drought [20–22]
and salinity [19]. This evaluation and prediction of stress impact on plants by deep learning
approaches give additional agricultural solutions to prevent the risk of yield losses through
abiotic or biotic stresses. Thus, they have a big potential in developing smart greenhouse
or field production. However, this approach primarily records morphological markers
as it only analyzes the image-type data. This limits the applicability of IT in rigorous
salinity studies and necessitates the knowledge of additional markers that can explain the
mechanism at molecular level. Different salinity stress markers in plants at physiological,
metabolic, protein and molecular levels result in near-conclusive understanding of the
salinity effects, challenges and solutions. Therefore, this review focuses on elaborating
advances in salinity stress markers that lead to recognition of salt stress in plants at mor-
phological, physiological and molecular level, as well as on early detection methods and
salinity stress symptoms that are commonly used in the plant biology research community.

2. Detection of Salinity Stress
2.1. Morphological Markers

Salt concentrations in soils vary from one place to another and that affects the growth
of plants depending on the concentration [12]. Generally, NaCl salt is commonly used for
salt stress studies [12] and in this review we focused on NaCl induced stress signs in plants.
The stress effects on morphology are manifested by different means such as dry or fresh
total biomass, plant height and through other morphological markers [23–25]. Generally,
an increase of salt content in the growing environment increases the impact of salt stress
on plant growth (Figure 1). This response varies from plant to plant [12]. In Arabidopsis,
wheat, maize, rice and rye grass, the decrease of total plant biomass was observed at
100–150 mM NaCl levels, while in tomato and sunflower, the weight decreased on 50 mM
NaCl application (Figure 1). Studies on salinity effect on trees are scarce, even though they
too are affected by salinity, in citrus and acacia, a 100 mM NaCl caused biomass changes
(decrease of 13% and 15%, respectively) at early stages of growth [26–28], however, palm
was less susceptible as it experienced growth changes (biomass did not decrease) at severe
salt stress levels [29]. Despite the differences observed in biomasses in response to salinity
levels, the growth of all these plants were significantly repressed by 200–300 mM salt
(NaCl) treatment [30–36]. Conversely, these salt concentrations did not affect the growth of
halophyte plants such as salicornia (Figure 1). However, above 400 mM NaCl, the yield of
a salicornia is also decreased [37–40].
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Figure 1. Effect of salinity level on relative biomass changes in crop plants. The relative dry weight compared to control was
used as a growth parameter. The irrigation of soil by saline water (NaCl) from 0–300 mM was used salt application. Sources
of the data were: A. thaliana: [25,32,41,42], wheat: (Triticum aestivum) [30,36,43,44], rice (Oryza sativa): [31,33], maize (Zea
mays): [24,34,45–47], tomato: (Solanum lycopersicum): [35,48,49], sunflower: (T Helianthus annutis): [50–52], ryegrass (Lolium
perenne): [53], salicornia: [37–39].

Salinity stress also affects germination rate of seeds and thus germination is also an
informative marker for salinity stress. Since germination is among the foremost morpho-
logical processes, it is a useful indicator of stress as compared to biomass as stress can
be known as early as 2–14 days depending on a plant species. The germination rate of
Arabidopsis, sunflower and tomato declined by 71%, 62% and 35%, respectively at 100 mM
NaCl (Figure 2). The germination percentage of wheat, maize and rice declined signifi-
cantly at higher salinity level (200 mM) compared to biomass changes (Figures 1 and 2).
At 400 mM NaCl, salinity stress is critical and most crops do not germinate, although
below this concentration, some plants such as wheat can have 3% germination rate with a
retarded growth (Figures 1 and 2). Thus, the growth markers in plants are sensitive to salt
stress at 100–400 mM NaCl.
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Figure 2. Changes in germination rate of crop plants at different levels of salt stress. Germination rate after 7 days
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(T Helianthus annutis) [50,66], salicornia [39,67].
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In addition to total plant biomass changes, the weight of shoot, root and leaves are fre-
quently used for evaluation of salt stress [12]. The length of roots and shoots, root architec-
ture and the number of secondary branches on them, diameter of shoot, the tiller numbers,
leaves number are used as growth parameters in salinity [23,26,34,35,42,44,45,47,68,69].
Generation rate of young leaves is also used for analysis of salinity impact [12,32]. Besides
the growth parameters, the flowering time may show the effect of salt stress on the re-
productive stage of plants. In Arabidopsis, wheat, barley, maize and rice the flowering is
delayed under salinity stress [70–77].

2.2. Physiological Markers

Measurement of Na+ or Cl− ions concentration in the leaves and roots reflect salin-
ity stress in plants (Table 1). Measurement of potassium ion (K+) content and/or ratio
of K+/Na+ are also frequently used (Table 1). In addition, ratios of other ions such as
Na+/Ca2+, Ca2+/Mg2+ and Cl−/NO3

− are usually evaluated as they influence nutrient
uptake [12]. Increase of other salts in the soil in addition to available 50–100 mM NaCl
alters the intracellular concentration of salt (Na+ and Cl−) in Arabidopsis, wheat, rice and
maize [23,24,32,68,78].

Salinity stress decreases photosynthesis process [12]. This is evident by monitoring
stomatal conductance, chlorophyll fluorescence and chlorophyll contents [12,79]. The
decrease in chlorophyll content was observed under 50 mM–250 mM salt application in
major crop plants (Table 1). The osmotic parameters of plant changes rapidly in response
to salt stress [12]. This is usually expressed by evaluating the changes in turgor pressure,
osmotic pressure, RWC and water potential [33,37,39,78]. For example, water potential in
Arabidopsis decreases upon treatment with 100 mM NaCl (Table 1). Another way of evalu-
ating osmotic changes occurring during salinity stress is the measurement of osmolytes
such as sucrose, proline, glycine-betaine. These osmolytes are stress protectors and their
accumulation in plants experiencing salinity stress is an adaptive mechanism [12]. Sucrose
and proline normally increase in salinity levels of 75–200 mM, however, this varies among
plants; for example, in Arabidopsis, wheat and rice it is at 75–200 mM NaCl application,
while in maize it is at 100 mM [32–34,80–82].

Table 1. Range of changes of the physiological parameters depend on time and concentration of NaCl application.

Physiological
Parameters

Salt Sensitive Plants Less Salt Sensitive Plants Halophyte
Tomato A.Thaliana Rice Maize Wheat Sunflower Ryegrass Salicornia

Na content
increase

50–100 mM;
1 d

100 mM;
4 h–1 d

100 mM;
6 h–7 d 100 mM; 21 d 100 mM; 3 d 100–150 mM;

1 d
100–250 mM;

4 d
100–200 mM;

10–42 d
K content
decrease

50–100 mM;
1 d 100 mM; 4 h 100 mM; 7 d - 75–100 mM;

7–42 d 100 mM; 1 d 100–250 mM;
4 d

100–200 mM;
10–42 d

RWC *
decrease 100 mM; 2 h 100–200 mM;

1–15 d
100 mM;
4–12 h 50 mM; 7 d 75–100 mM;

3–42 d
50–100 mM;

2–54 d
200–250 mM;

12–14 d
100–200 mM;

10–42 d
Chlorophyll

decrease
75–100 mM;

3 d
100–200 mM;

4–18 d
30–150 mM;

6 h–3 d 50 mM; 21 d 50–100 mM;
3–42 d

100 mM;
40–60 d 250 mM; 14 d 85–250 mM;

14–30 d
Electrolyte

leakage
increase

50–100 mM;
1 d

100 mM;
6 h–15 d 100 mM; 6 h 100 mM; 8 d 100 mM; 30 d 100 mM; 2 d 100–250 mM;

12–14 d -

Stomatal
conductance

decrease

100 mM;
7–12 d 100 mM; 15 d 100 mM; 30 d 60 mM; 12 h 100 mM;

7–21 d
50–100 mM;

5–35 d - -

Water
potential 100 mM; 2 h 100 mM; 4 d 100 mM; 48 h 60 mM; 20 d 100 mM;

5–70 d
25–100 mM;

1–54 d - 150–400 mM;
24–42 d

Proline
increase - 100 mM;

14–15 d - 50 mM; 1 d 50–100 mM;
7–42 d

100–150 mM;
7–15 d - 85–600 mM;

30–45 d
Glycine
betaine
increase

- - - 50 mM; 21 d - 100 mM; 7 d - 200–500 mM;
15 d

Reference [83–86] [87–91] [92,93] [94–97] [98–102] [103–106] [107,108] [109–111]

* RWC = relative water content; h = hours; d = days.
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2.3. Oxidative Stress Markers

Salinity stress causes imbalance of reactive oxygen species [112]. This imbalance is
mainly as a consequence of disruption of electron transport chains (ETC) during photoinhi-
bition and/or decrease in water potential [113]. The ROS is dramatically increased upon
salinity stress and the first ROS reaction is termed as “oxidative burst” [114]. The higher
level of ROS becomes toxic for cells resulting in cellular damages and may lead to its death,
if increase is unchecked. Moreover, ROS also acts as signaling molecule that may lead to
the changes in transcript, proteins and metabolites in order to activate some of the adaptive
mechanisms [112]. Since different plant species have different sensitivity towards salinity,
the imbalance in ROS level is also detected at different salt concentration, for example,
50–100 mM salinity level in Arabidopsis, tomato, wheat, rice, maize plants, 120 mM NaCl
in sunflower, 255–300 mM in ryegrass, 400 mM–600 mM in salicornia [87,115–121]. In
addition to the concentration, duration of salinity is also a crucial factor in determining the
alteration in cellular ROS, for example, Arabidopsis, tomato and rice show ROS imbalance
after several hours of salt treatment [87,122–128] while in wheat, maize, sunflower, rye-
grass, salicornia the ROS level significantly increases after several days [107,121,129–132].
Additionally, higher changes in ROS under salinity is observed in older leaves as compared
to younger leaves of rice and maize [133,134].

It is known that ROS level is regulated by enzyme activity of ROS producers and ROS
scavengers [112]. Parallel to these ROS changes in plants during the salinity stress, there
is increase of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), glucose-6-
phosphate dehydrogenase (G6PDH), ascorbate peroxidase (APX), glutathione S-transferases
(GST), glutathione peroxidases (GPX), glutathione reductase (GR), dehydroascorbate re-
ductase (DHAR), monodehydroascorbate reductase (MDHAR), polyphenol oxidase (PPO),
phospholipid hydroperoxide glutathione peroxidase (PHGPX) in mature leaves of tomato,
Arabidopsis, wheat, rice, maize, salicornia (Table 2). These ROS related enzyme activity
changes are determined under similar concentration and time point of salt stress. Addition-
ally, it was shown that NADPH oxidases are important in plant response during salinity
stress [135]. Apart from enzymatic antioxidants, there is also an increase in non-enzymatic
antioxidants such as AsA (Ascorbate), GSH (glutathione) and tocopherols as observed in
Arabidopsis, wheat, sunflower; ryegrass, salicornia [87,89,107,121,132,136–139].

Another marker of salt stress is cell membrane injury and this can be determined by
electrolyte leakage and/or higher water loss (a decrease of RWC) [140,141] (see Table 1).
The cell membrane damage is generally due to the enhancement in ROS production during
the salt stress [9]. Also, lipid peroxidation marker such as Malondialdehyde (MDA)
content increase under salinity stress in Arabidopsis, wheat, rice, tomato, maize, ryegrass,
salicornia [37,87,116,117,129,132,142–148]. The increase in MDA in plants experiencing
salinity is detectable after the ROS molecule and enzyme activity changes. In rice and maize,
it is more in older leaves than younger ones [93,133,134]. Additionally, the instability of the
membranes may be visualized by thermography and hyperspectral reflectance techniques
measurements [11,19]. These techniques are based on the abilities of plants to reflect and
absorb light at different wavelengths (Raman, near-infrared, fluorescence etc.) depending
on biophysical characteristics of the plant cell, such as disruption of electron transport
chains (ETC), which changes under different stresses [149]. These changes in oxidative
stress markers in plants such as ROS molecules, ROS related enzyme activity, MDA and
membrane stability (leakage or RWC) are triggered not only by salt stress but other stresses
as well. However, these changes are mainly detectable in early stress response of plants
and in combination with morphological salt stress markers, they could be used for early
predictions of salt stress in plants.

2.4. Molecular Stress Markers

Transcriptomic and proteomic studies reveal that stress triggers the transcript and
proteome changes in plants [9]. From transcript analysis for plants under salinity stress,
some of the genes change their expression under various salt concentrations. These groups
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of genes could be used as molecular markers for prediction and confirmation of salt stress
in plants. In Table 2 and Figure S1 some of the genes that frequently show difference in
expression during the salinity stress (NaCl applications) are presented.

Most of the genes used for evaluating salinity stress impact in plants are involved
in cell protection, membrane transporters, osmoprotectants, ROS regulation enzymes
and signal transductions (e.g., transcription factors and protein kinases) (See Table 2
and Figure S1). Also, some of these genes are associated with senescence such as NAC,
NAP, WRKY 53, WRKY 25, SAG12, GDH (Table 2 and Figure S1). Measurements of genes
expression from different functional groups such as ion homeostasis, biosynthesis of
osmoprotectants, polyamines, synthesis of ROS scavengers and antioxidant enzymes and
senescence process related genes in salt stressed-plants allow better confidence in prediction
of stress impact in plants and could be used to predict the mechanism by which plants
respond to salt stress. Thus, based on transcriptional changes of genes, one may predict
the changes at physiological and morphological level. Additionally, the high-throughput
phenotyping is identifying the genetic components of salinity tolerance [150], which could
also be used as molecular markers.

Table 2. List of genes, which change their expression under salinity treatments depending on the salt concentration and
time of application.

Groups/Class Genes

Inductions of Genes under Salinity
Conditions

Plant Species Reference
NaCl

Concentrations Time

Stress sensors

Ca sensor kinase
CIPK11
CIPK21 150 mM 24 h A. thaliana [151]

CBL2 250 mM 24 h T. aestivum [152]

Protein kinase SOS2
SOS3 100–200 mM 3–6 h A. thaliana [153–155]

Ion balance
regulators

Na transporters NHX1 100 mM–250 mM 3 h–21 d Salicornia, T. aestivum, O. sativa [38,152,156,157]

Chloride anion
channel CLC 150–200 mM 3–9 d O. sativa, A. thaliana [157,158]

Cation channel ERD4
GLRX 200 mM–300 mM 24 h–5 d A. thaliana; T. aestivum [159,160]

Transferases GST 150 mM–255 mM 6–48 h T. aestivum, A. thaliana, R [152,161–163]

ROS regulators

ROS scavengers

APX 50–255 mM 48 h–15 d T. aestivum, O. sativa, Z. mays,
S.lycopersicum, Ryegrass [30,45,161,164,165]

CAT 25–255 mM 48 h–7 d T. aestivum, Z. mays, S.
lycopersicum, O. sativa, Ryegrass [30,45,157,161,164,165]

SOD 50–250 mM 4–75 d T. aestivum, S. lycopersicum,
Ryegrass [30,164,165]

Redox enzymes

GR 100–150 mM 24 h–7 d A. thaliana, T. aestivum [30,162]

LOX 300 mM 5 d T. aestivum [160]

PAO 50–250 mM 3 h–5 d T. aestivum, A. thaliana [160,166]

Cell protectors
Proline synthesis

P5CR 100 mM–250 mM 2 h–6 d O. sativa, T. aestivum, S.
lycopersicum [167–169]

P5CS 100 mM–255 mM 2 h–6 d A. thaliana, O. sativa, S.
lycopersicum, Ryegrass [161,167,168,170,171]

Polyamine
biosynthesis ADC 100–250 mM 5–7 d T. aestivum, O. sativa [160,172]

Senescence
regulators

Transcriptional
factors

NAC 150 mM–200 mM 12 h–24 h A. thaliana, Salicornia [162,173]

NAP 150–200 mM 5 h–6 d A. thaliana, O. sativa [174,175]

ANAC092 150 mM 6–24 h A. thaliana [151,176]

WRKY53 150 mM 4 d A. thaliana [177]

WRKY25 150 mM 6 h A. thaliana [162]

Protease SAG12 150 mM 4 d A. thaliana [176,177]

Nitrogen
remobilization GDH2 100–150 mM 48 h–6 d O. sativa, A. thaliana [163,178]
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The molecular markers for evaluation of stresses are rarely used in research for
trees and other non-model plants compared with the morphological and physiological
measurements, which are less expensive and easy to conduct. However, it might be possible
to generate molecular markers for less/rarely studied plants based on homologues of stress
related genes that were studied well in other model or important crop plants (Table 2).

3. Evaluation of Salinity Stress in Plants by Different Stress Markers

Depending on the concentration and duration, generally, salinity affects all the plants,
some of which, like Arabidopsis and tomato are more sensitive, whereas others such as
wheat, rice, rye grass and so forth are less sensitive (See Figure 1 and Table 1). Nevertheless,
the changes at molecular, physiological, morphological level under salinity stress have
similar trends (either increase or decrease) for the discussed crop plants. The measurements
of Na+ and K+ ions content in plants give strong proof for salinity stress. Other stress signs
may also provide the information related to salinity strength and time of exposure. For
example, the morphological stress markers such as relative weight changes and germina-
tion may predict the moderate and toxic level of salinity, respectively (Figures 1 and 2).
Monitoring the morphological changes coupled with Machine learning approaches could
prevent salt stress in plants in smart greenhouse. In addition, evaluating salt sensitive
(Tomato or Arabidopsis) and tolerant (salicornia) plants side-by-side in a smart greenhouse
could reliably predict the ability of the examined plant to tolerate the extent of salt stress.
For example, if the plant being studied suffers similar to tomato or Arabidopsis while sal-
icornia growth remains unaffected, the salinity level in the soil is likely to in the range of
100–300 mM NaCl (Figure 1 and Table 1).

The physiological traits such as chlorophyll content, RWC, electrolyte leakage, stom-
atal conductance, water potential, proline, glycine betaine change on application of 100 mM
NaCl after several days (Table 1). The molecular markers manifest the 100 mM salt stress
level prior to physiological changes. These can be detected in minutes or longer time
(Tables 1 and 2). The ROS changes and ROS related enzyme changes are also early rec-
ognizable markers for stress [87,122–128]. Generally, the ROS level changes have wave
shape changes during the time of stress exposure, this fluctuation of ROS occurs in stressed
and also in normal conditions [179,180]. Thus, to define the fluctuation in ROS level under
moderate stress, it is better to measure ROS level in time-series rather than image-type mea-
surements, which is a snapshot measurement only for one time point [181]. Spectrometric
or staining methods are commonly used for ROS detection under salinity stress [182] but
also the imaging system are rapidly developing for monitoring redox state of the plant
cell [183–185] allowing measurement of ROS changes in vivo [186].

Basically, these molecular, physiological and morphological changes in plants follow
the order, where the first changes by stress will be visualized by molecular, followed by bio-
chemical then physiological and at last by morphological markers (Figure 3, Tables 1 and 2).
Additionally, the ROS molecule plays an important role in signaling for stress and thus,
these oxidative stress markers changes are detectable at similar time with molecular mark-
ers changes after exposure by salt application (see time points in References [87,122–128]
and Table 2). Therefore, each stress marker has order in terms of time observation af-
ter stress, where the oxidative and molecular stress markers are early sensors for stress
compared with other markers but they will not specify stress type.

Additionally, if the measurements will focus on specific locations in plant organs like
young and/or older leaves then the recognition of stress in plants will be detectable in
early stages. For example, the old leaves are accumulating salt earlier than young leaves in
crop plants (Table 3). Moreover, the visible symptoms of senescence such as decrease in
total chlorophyll and/or chlorophyll a, b content and decrease of photosynthesis efficiency
was also higher in old leaves in comparison to young leaves of crop plants upon NaCl
application (Table 3). Chlorophyll content measurements, fluorescence were also greater
decreased in old leaves under salt stress [93,187] and this measurement does not require the
detachment of the leaves (Table 3). Additionally, the degradation of total soluble proteins
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was higher in old leaves as compared to young leaves under salinity stress (Table 3). Also,
it was shown that the ROS levels and catalase activity were higher in old leaves than young
leaves after salt stress applications (Table 3). Other signs of senescence such as ethylene gas
production was observed after salt treatments [90]. Also, the remobilization of nitrogen
and the formation of the autophagosome under salinity stress may also be used as markers
for the salinity stress in plants [188]. Generally, the senescence symptoms in leaves could
be detected in earlier stages by using molecular markers (Table 2 and Figure 3). Thus, some
morphological, physiological and molecular changes under salt stress are highly detectable
in older (mature) leaves compared to other organs or whole plant and measurements of
these stress markers on a specific area of plants would increase efficiency of deep learning
approaches on phenotyping the salt stressed plants.
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Table 3. Differences in old and young leaves of crop plants triggered by salinity stress.

Parameters Plants References

Higher accumulation of Na+ in old leaves than
young leaves Wheat, Barley, Rice, Maize, Sunflower [93,133,134,187,189–193]

Higher accumulation of Cl− in old leaves than
young leaves Wheat and Barley, Sunflower [187,189,191]

Higher photochemical efficiency decrease in old
leaves than young leaves Wheat and Barley, Rice [93,187]

Higher decrease of total chlorophyll content in old
leaves than young leaves Wheat, Barley, Sunflower [93,192,194]

Higher soluble protein decrease in old leavesthan
young leaves Rice, Wheat [93,195]

Higher increase in MDA content in old leaves than
young leaves than young leaves Rice, Maize [93,133,134]

Higher electrolyte leakage in older leaves than
young leaves Rice, Maize [93,134]

Higher ROS reduction and H2O2 generation in
older leaves than young leaves Rice, Maize [133,134]

Higher increase in catalase activity in older leaves
compare to young Rice, Maize [133,134]
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4. Prediction and Identification of Stressed Plants Using Deep Learning Approaches

Machine learning techniques are developing rapidly for agricultural needs such as
for plant recognition, plant or fruits counting, classification of crop types, phenotyping
of various plant species, classification of mutants, leaf counting, identification of vein
patterns and leaf characteristics detection of plant diseases, weed control, as well as the
prediction of biotic stresses in plant leaves [17]. Basically, these approaches analyze big data
of images, from monitoring various morphological changes in plants to identifying and/or
classifying and/or phenotyping plants [17,196]. There are so many different machine
learning approaches out there but some are frequently applied in plants, such as Artificial
Neural Networks (ANN), Logistic Regression, Random Forest, Support Vector Machines
(SVM), K-Nearest Neighbors (KNN) and Deep Learning are commonly used in predic-
tion and/or classification and/or detection of stress in plants [17,197,198]. Among these
different machine learning approaches, the deep learning models such as Convolutional
Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory
(LSTM) are recently on the increase for use in imaging analysis. This is because the CNN
has shown great accuracy in finding specific patterns in image data, so it is mainly used
for identification and classification of different damages in plant leaves, especially for
searching the damages caused by biotic and abiotic stimuli [17]. The other models, RNN
and LSTM, are also valuable in the analysis of time series image data [17], which is impor-
tant for prediction of damages in plant leaves. It has also been pointed out that various
combinations of deep learning approaches can be used for classification and prediction of
plant characteristics [17,199] and these combinations of different models can be used in the
future for accurate diagnosis of signs of stress in plants for smart greenhouse procedures.

Generally, all these high-throughput phenotyping technologies are based on the anal-
ysis of different type of images such as RGB imaging, near-infrared imaging, infrared
thermal imaging and fluorescence imaging [200–202]. These prediction of plant diseases
and pest attacks or environmental impact on plants by machine learning approaches are
mostly focused on identification of visual symptoms of biotic damage [17], which are
discussed as morphological stress markers. As mentioned above, these morphological
signs appear in plants later than physiological, oxidative and molecular stress markers
(Figure 3). Currently, deep learning approaches are beginning to combine morphological
stress markers data (visible signs in leaves) with physiological stress markers such as tran-
spiration rate, biomass, water content, biochemical components (sodium concentration),
photosynthetic efficiency, caratenoides [19,203–205]. However, to the best of our knowl-
edge, there is still no extensive research on deep learning approaches for predicting abiotic
or biotic stress in plants that use a combination of oxidative, molecular and morphological
markers. In addition, using deep learning analysis for attached or detached leaves and
whether these leaves are mature or young for better prediction has not been done yet. As
previously mentioned, physiological and morphological stress marker analysis of older
leaves (lower leaves) shows greater changes under salinity stress rather than young leaves
(Table 2) but it has not yet been shown how this could affect prediction or identification
damage using deep learning approaches. In addition, deep learning approaches for pre-
dicting salinity stress in plants have only been applied for a single plant species (Barley
or Spinach or Okra) [19–22]. It would be interesting if machine learning approaches were
applied in different plant species, specifically to the salt sensitive (Tomato or Arabidopsis)
and tolerant (salicornia) plants, for their identification and prediction of salinity stress in
plant (Figure 1 and Table 1). Additionally, it successfully generated different transgenic
plants with different gene modifications, for example, it generated fused constructions of
the gene promoter region with GFP proteins [206]. These transgenic plants (in Table 2) with
GFP protein, could be useful for evaluation of molecular stress markers and prediction of
salinity stress in plants. Thus, we believe that the following suggestions have potential for
application through deep learning approaches for stress prediction in plants: (a) analysis
of images data with other stress markers such as oxidative and/or molecular markers, (b)
emphasis on analysis of mature leaves versus young leaves, (c) use of control plant data
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such as stress-sensitive or stress-tolerant plants or the transgenic plant promoter fused
with GFP and other fluorescent markers.

5. Conclusions

Continuous expansion of soil salinization area is inversely proportional to crop yield
and this poses a challenge to global food security. To improve plant adaptability and perfor-
mance to such condition, different areas such as plant stress physiology, molecular biology,
genetic engineering, biotechnology are being exploited. Machine learning approaches are
promising in developing smart greenhouse, by phenotyping plants and controlling the
environmental growth parameters. Developing such controlled growth room conditions
require not only equipped imaging technologies but also important physiological, oxida-
tive and molecular data. Morphological markers in plants such as root or shoot growth,
germination, flowering time indicate obvious signs of stress but also the appearance of
senescence symptoms under salinity stress is an important sign—which appear early in
older leaves after salt application. From physiological parameters, the chlorophyll content,
RWC, electrolyte leakage, stomatal conductance, water potential, proline, glycine betaine
changes in plants are commonly detected under NaCl stress. These physiological changes
manifest themselves before the molecular markers. ROS and ROS-related-enzyme changes
are also early recognizable markers for stress. Molecular and oxidative stress maybe useful
in early detection of salinity stress impact. Still, each stress marker, either morphological,
physiological, oxidative or molecular changes in plants, have their own limitation. An
integrated approach and usage of different sensors for specific areas of the plant such as
old leaves would increase the sensitivity in detection of salinity stress in plants. However,
this integration of morphological, physiological, molecular and deep learning parameters
requires concerted studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/2223-7
747/10/2/243/s1, Figure S1: Change in expression of genes in Arabidopsis, wheat, rice and maize
triggered by salt stresses.
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