
plants

Review

Secretion-Based Modes of Action of Biocontrol Agents with a
Focus on Pseudozyma aphidis

Dhruv Aditya Srivastava, Raviv Harris, Gilli Breuer and Maggie Levy *

����������
�������

Citation: Srivastava, D.A.; Harris, R.;

Breuer, G.; Levy, M. Secretion-Based

Modes of Action of Biocontrol Agents

with a Focus on Pseudozyma aphidis.

Plants 2021, 10, 210. https://

doi.org/10.3390/plants10020210

Academic Editors: Antonella Vitti

and Sabrina Sarrocco

Received: 6 December 2020

Accepted: 19 January 2021

Published: 22 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Plant Pathology and Microbiology Department, Robert H. Smith Faculty of Agriculture, Food and Environment,
the Hebrew University of Jerusalem, Rehovot 76100, Israel; dhruv.srivastava@mail.huji.ac.il (D.A.S.);
raviv_harris@yahoo.com (R.H.); gilli.breuer@mail.huji.ac.il (G.B.)
* Correspondence: maggie.levy@mail.huji.ac.il

Abstract: Plant pathogens challenge our efforts to maximize crop production due to their ability
to rapidly develop resistance to pesticides. Fungal biocontrol agents have become an important
alternative to chemical fungicides, due to environmental concerns related to the latter. Here we review
the complex modes of action of biocontrol agents in general and epiphytic yeasts belonging to the
genus Pseudozyma specifically and P. aphidis in particular. Biocontrol agents act through multiple direct
and indirect mechanisms, which are mainly based on their secretions. We discuss the direct modes
of action, such as antibiosis, reactive oxygen species-producing, and cell wall-degrading enzyme
secretions which can also play a role in mycoparasitism. In addition, we discuss indirect modes of
action, such as hyperbiotrophy, induced resistance and growth promotion based on the secretion
of effectors and elicitors from the biocontrol agent. Due to their unique characteristics, epiphytic
yeasts hold great potential for use as biocontrol agents, which may be more environmentally friendly
than conventional pesticides and provide a way to reduce our dependency on fungicides based on
increasingly expensive fossil fuels. No less important, the complex mode of action of Pseudozyma-
based biocontrol agents can also reduce the frequency of resistance developed by pathogens to
these agents.
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1. Introduction

The world population is rapidly growing and is expected to reach over 9 billion peo-
ple by the year 2050. Feeding such a huge population will require a 70–100% increase in
total food production [1]. Since most soils with high productivity potential are already
under cultivation, and there is constant shrinkage of cultivated land area due to urban
and industrial development [2], it is necessary to maximize agricultural yield. Among
the most important contributors to low agricultural yield are pests and pathogens, which
are responsible for destroying up to 20% of the world’s harvest, with a further 10% loss
post-harvest [3,4]. Fungal pathogens cause most of the diseases in agricultural ecosystems
and are responsible for the most costly damage to many crops, including some of the
most devastating plant disease epidemics in history [5]. Bacteria can also cause diseases in
plants [6]. While relatively less agriculturally and economically damaging than fungi [7],
bacteria cause many serious diseases of plants throughout the world, especially in moist
and warm environments [6,8]. There are a few ways to reduce these devastating losses.
One is to develop resistant crops; however, these need 10 to 15 years to reach the field and
can lose their resistance within a decade, with the emergence of new pathogen mutations.
Although this method is widely used, it is time-consuming and in general, resistance can
only be developed for one crop at a time. The second alternative is the use of fungicides or
biomolecules to reduce the losses. Continual use of chemical-based pesticides has allowed
farmers to control the spread of pathogens and pests, and has helped ensure stable and
prosperous agricultural systems [9,10]. However, continuous pesticide use also results in
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the widespread problem of pathogen resistance because pathogens tend to find ways to
suppress the pesticides’ effects through detoxification methods, such as degradation, or by
active efflux of the toxic compound out of their cells using specific transporters [11,12]. In
fact, multidrug resistance (MDR) is a major challenge to agriculture the world over [13–16].
One solution is the use of multiple pesticides with different modes of action in combination
or in rotation [17]. However, excessive use of fungicides is deleterious to the ecosystem and
human health, and concerns over the potential impact of pesticides on the environment
are becoming more pressing. Thus, more stringent pesticide registration procedures and
regulations have reduced the number of synthetic pesticides available for agricultural
practice. Biological control agents (BCAs) and natural product-based pesticides (biopesti-
cides) are good alternatives to the use of traditional synthetic chemicals as they are less
harmful to both the environment and human health [18–21]. Furthermore, since BCAs
can hinder pathogen growth and development, thereby reducing diseases, via a complex
combination of direct and indirect modes of action—including antibiosis, mycoparasitism,
competition and induced resistance in the host plant—the development of pathogen re-
sistance to BCAs is more complicated [22,23]. As a result, there is growing interest in the
exploration and exploitation of naturally occurring microorganisms, such as fungi, for the
control of crop diseases [24]. The complex modes of action of BCAs are mainly directed by
secreted molecules and proteins that can act as antibiotics, effectors, elicitors and degrading
enzymes (Figure 1). This review summarizes the known modes of action of the epiphytic
yeast BCAs in general, and Pseudozyma aphidis in particular, with a focus on our ability to
define the functions of their secretions and possible uses for fungal pathogen control.
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2. Antibiosis: Fungal Metabolites as a Source for New Pesticides

Many microorganisms, including a large portion of the known BCAs, produce and
secrete secondary metabolites with antimicrobial properties, as part of their constant com-
petition with other microorganisms in their natural environment [25] (Figure 1; Table 1).
Those metabolites can be exploited as microbial fungicides that may be more environmen-
tally friendly than chemical pesticides, and at the same time lack some of the disadvantages
of using living organisms. Due to their natural origins, microbial pesticides are more
biodegradable than synthetic chemicals [26]. Microorganisms can synthesize secondary
metabolites with versatile chemical structures and diverse biological activities that exceed
the scope of synthetic organic chemistry [27]. Therefore, a newly discovered antifungal
compound is more likely to have a new and more specific mode of action than the com-
mercial fungicides, and lack cross-resistance to them [28]. The specificity of microbial
pesticides is both an advantage and a disadvantage. While it reduces the risk of toxicity
to humans, the environment and other beneficial organisms in the field, it also makes
it harder for those pesticides to be effectively applied by farmers. Thus, an additional
possible use for microbial pesticides could be as lead compounds for the development of
novel synthetic fungicides.

Several strains of Trichoderma spp. have been found to produce antifungal com-
pounds that are toxic to phytopathogenic fungi such as Botrytis cinerea, Rhizoctonia solani
and Pythium spp. [29–32]. For example, Trichoderma virens, Trichoderma harziarum and
Trichoderma pseudokoningii produce unique peptaibols, which are linear peptide antibiotics
which can form pores in the membrane and induce programmed cell death (PCD) [31,33–36].
In addition, the yeast BCAs, such as Pseudozyma spp., have been found to secrete antimicro-
bial compounds. Pseudozyma rugulosa, Pseudozyma flocculosa and P. aphidis all exhibit biolog-
ical activity against the different powdery mildews with which they are associated [37–44].
While the mechanism of this biological activity has not yet been fully elucidated, P. rugulosa
and P. flocculosa were found to produce unusual extracellular fatty acids with antifungal
properties, which cause the release of intracellular ions and proteins when in contact with
sensitive fungi [45–50]. Furthermore, Pseudozyma tsukubaensis and Pseudozyma prolifica were
shown to produce a very large mycocin with both fungistatic and fungicidal activities.
This toxin has very narrow, taxonomically specific activity against some representatives
of the orders Microstromatales and Ustilaginales [51,52]. P. flocculosa was also found to
produce an unusual and rare cellobiose lipid with antifungal activity [53]. This glycol-
ipid, named flocculosin, inhibited several pathogenic fungi, including Candida albicans and
Trichosporon asahii [54]. In a later work, this group reported that flocculosin also has an-
tibacterial properties, directed rather specifically against both aerobic and anaerobic Gram-
positive bacteria. In both cases, the antimicrobial activity was achieved by irreversibly
damaging the cell membrane of the microorganisms [55]. Another unusual glycolipid,
which has a highly similar chemical structure to ustilagic acid, was produced by two other
Pseudozyma species: Pseudozyma fusiformata [56] and Pseudozyma graminicola [57]. While the
discovery of flocculosin is relatively new, ustilagic acid was discovered and established as
an antimicrobial compound more than 60 years ago. Interestingly, the main producer of
ustilagic acid is the phytopathogenic fungus Ustilago maydis [58]. Recent work has shown
that P. flocculosa is a close relative of the plant pathogen U. maydis whose pathogenicity trait
was lost during evolution [59]. However, new evidence indicates that flocculosin plays a
secondary, if any, role in the antagonistic activity of P. flocculosa against powdery mildews.
Instead, the biocontrol process seems to be mediated by a more complex interaction [60].

P. aphidis extracts have also been found to inhibit spore germination and linear growth
of fungal phytopathogens such as B. cinerea and Alternaria brassicicola [43], as well as
important bacterial phytopathogens such as Clavibacter michiganensis subsp. michiganensis,
Pseudomonas syringae pv. tomato and Xanthomonas campestris pv. campestris [61].Those
metabolites have not yet been identified but they are largely lipophilic and found to induce
reactive oxygen species (ROS) accumulation and PCD in B. cinerea hyphal cells [62].
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Several commercially used pesticides have been developed from microbial metabolites
through chemical modifications, such as fludioxonil, fenpiclonil and strobilurins [26,63,64].
Strobilurins are natural substances isolated mainly from basidiomycetes. The first stro-
bilurin was isolated from liquid culture of Strobilurus tenacellus. Natural strobilurins are
highly active against yeasts and filamentous fungi, by inhibiting their mitochondrial respi-
ration. Since they break down rapidly in the light, they are not reliable for disease control.
Instead, they were used as lead compounds to develop synthetic fungicides that are more
stable and more powerful when used commercially in agricultural practice [65]. Several
commercial strobilurin-based products are on the market or in development. Since these
products are derived from natural products, they are environmentally safe due to their
rapid degradation in the environment [64,66]. Since the discovery of the strobilurins, many
other microbial metabolites with promising antimicrobial properties have been discovered
through activity-based screening against important phytopathogens. Chaetoviridins, which
were purified from the broth of Chaetomium globosum, exhibit high levels of in vitro and
in vivo antifungal activity against Magnaporthe grisea and inhibit the development of rice
blast disease [67,68]. Fusapyrone and deoxyfusapyrone, isolated from Fusarium semitectum,
exhibit a broad range of antifungal activity [69]. Several peptides with control efficacy
against plant diseases have also been identified. For example, verlamelin is a peptide pro-
duced by the fungus Acremonium strictum with strong inhibitory activity against powdery
mildew [70,71].

3. Effectors and Hyperbiotrophy-Dependent Inhibition

Effectors are molecules that are secreted from pathogens or beneficial microorganisms
and affect the outcome of their interaction with their host, such as participating in successful
colonization or pathogenicity processes (Figures 1 and 2; Table 1). Most of the plant
pathogen-secreted effectors function inside the host plant cell and are mostly virulence-
promoting factors that inhibit or interfere with the plant’s defense system [72–75]. A few
recent studies have suggested that effectors may also contribute to the BCAs’ ability to
control plant pathogens [76–79]. In Trichoderma spp., some effectors have been shown to be
involved in antagonistic effects, such as the cerato-platanin protein Sm1 and its orthologue
EPl1 that induce ROS production and pathogenesis-related (PR) gene expression in the host
plant [80–82]; (For review see Ramírez-Valdespino et al., 2019 [79]). Two other Trichoderma
proteins, Sm2 and Epl2, were found to be more relevant to defense activation in the
plant host, but their functions are unknown [83,84]. A recent study on Trichoderma spp.
identified 16 effector-like proteins during its interaction with Arabidopsis thaliana and
the plant pathogen R. solani. The transcription levels of those putative effectors were
modified in response to either the host plant or the fungal pathogen, and some had
predicted functions, such as proteases, LysM and thioredoxins. One of those genes, Hydii1
from T. virens, was identified as a hydrophobin participating in root colonization and
its expression was correlated with the enhanced antagonistic effect of T. virens against
R. solani [78]. Other hydrophobins from Trichoderma, such as HBF2-6, Hytlo1 and Hyd1,
were found to be involved in colonization and the host plant’s defense response. A study
on the beneficial F. oxysporum CS-20 demonstrated recently that CS20EP a small cysteine-
rich protein, predicted as secreted effector, elicits ion exchange and defense response
against pathogenic F. oxysporum in tomato plants [85]. Studies comparing the genomes and
secretomes of the pathogen U. maydis and other smut pathogens with the BCA P. flocculosa
demonstrated that these fungi, which have very different lifestyles, share genome features,
including hallmarks of pathogenicity [59,86]. This comprehensive work demonstrated
that P. flocculosa had lost a specific subset of candidate secreted effectors connected to
virulence but had acquired genes encoding secreted proteins believed to have direct
relevance to its biocontrol ability against plant pathogens [59]. Another comparative study
of four genomes of Pseudozyma species with that of U. maydis found 113 putative secreted
effectors in common: some were validated as effectors, such as the Pep1 protein which
suppresses microbe-associated molecular pattern (MAMP)-triggered ROS production [87].
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An orthologue of Pep1 from Pseudozyma could also complement a Pep1-deficient U. maydis
mutant, restoring its virulence [64]. These new subsets of secreted effectors may function
as virulence factors against plant pathogens, as we recently demonstrated that a P. aphidis-
secreted fraction can activate ROS production and PCD in B. cinerea hyphal cells [44].
A later study demonstrated hyperbiotrophy as a new mode of action, when a unique
effector of P. flocculosa directed inside Blumeria graminis (powdery mildew) caused a flow
of nutrients into P. flocculosa [77]. This disruption in the nutrient flux caused collapse of the
powdery mildew haustoria, and the plant eventually recovered from the pathogen [65].
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Figure 2. Biocontrol agents’ involvement in plant defense pathways with a focus on
Pseudozyma aphidis. Recognition of biocontrol agents by microbe associated molecular patterns
(MAMPs) and suppression of MAMP-triggered immunity (MTI) by biocontrol agents, while activa-
tion the effector-triggered immunity (ETI) and expression of pathogenesis relate genes (PRs), and
later on activation of the systemic acquired resistance (SAR) and induced-systemic resistance (ISR) in
distal tissue.

4. Induced Resistance by Fungal Metabolites

To cope with constant attacks by invading pathogens, plants have evolved a wide
range of defense mechanisms, including the use of preexisting physical (e.g., cuticle and
cell wall) and chemical (e.g., antimicrobial compounds) barriers [88]. Pathogens and
beneficial microbes can be detected by their MAMPs, which are recognized by specific
pattern-recognition receptors (PRRs). MAMP–PRR interactions can lead to a weak response
termed pattern or MAMP-triggered immunity (Figure 2) [89]. Pathogens that pass these
first layers of defense may encounter the hypersensitive response—the rapid induction of
localized cell death—which prevents their spread beyond local infection [90,91]. Those
pathogens that persist and overcome the hypersensitive response still need to challenge the
well-orchestrated plant defense responses, which involve effector-triggered immunity that
includes systemic acquired resistance (SAR)(Figure 2) [90,92–94]. SAR is a form of induced
resistance in plants with a specific defense-signaling pathway that occurs systemically after
localized exposure to a pathogen, and is especially useful against biotrophic pathogens. It is
characterized by the accumulation of salicylic acid (SA) and the expression of SAR-marker
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PR genes [95], but it can also be SA-independent [96]. Some microorganisms are associated
with induced systemic resistance (ISR), which does not involve the accumulation of SA.
Instead, it is mediated by jasmonic acid (JA) and ethylene (ET), which co-regulate a set of
defense-related genes, different from those regulated by SA [97,98]. The JA/ET defense-
signaling pathway plays an important role in plant defense responses against necrotrophic
pathogens and herbivorous insects [97–99].

Some beneficial microbes, especially growth-promoting bacteria and fungi in the
rhizosphere, can enhance the induced resistance responses in plants, mainly via secreted
elicitors (Figure 2; Table 1). While beneficial microbes are generally associated with ISR,
they can also activate SAR. The specifically activated pathways may involve JA/ET, SA, or
both [43,100,101]. Prolonged activation of inducible defense involves major costs that affect
plant growth and reproduction. Therefore, for the SAR/ISR to be affordable and beneficial,
it should mainly be activated when the plant is exposed to attack [94,102,103]. To achieve
this, beneficial microbes induce a unique physiological state called priming, which causes
the plant to respond with faster and stronger activation of the induced defense responses,
but only following an attack by pathogens [104].

Several fungal BCAs, mainly of the genus Trichoderma, have been reported to elicit ISR
and priming in colonized plants. For example, T. harzianum T39 primed grapevines against
downy mildew [105]; and T. asperellum SKT-1 induced resistance in Arabidopsis against
the bacterial pathogen P. syringae pv. tomato [106] and modulated the expression of genes
involved in the JA/ET-signaling pathways of ISR [107]. The endophytic basidiomycete
fungus Piriformospora indica primes various plant species against powdery mildew [108],
and the protective Fusarium oxysporum strain Fo47 primes tomato plants against pathogenic
F. oxysporum strains [109]. In addition to the direct control of phytopathogens, P. aphidis and
P. churashimaensis were found to indirectly protect plants by local and systemic induction of
SAR and ISR, and priming the plant’s defense machinery for stronger induced defense acti-
vation after pathogen infection [43,110]. However, P. aphidis suppressed MAMP-triggered
callose formation on the plant leaf surface, suggesting that it bypasses the MAMP-triggered
immunity to become established on the leaf surface, and only later induces plant resistance
and priming (Figure 2; unpublished data).

Various chemicals have been discovered that seem to act at various points in the
defense-activating networks and mimic all or part of the biological activation of resis-
tance [111]. Two prominent examples of such chemicals are acibenzolar-s-methyl (ASM)
and β-aminobutyric acid (BABA). ASM is a functional analogue of SA that acts downstream
of SA accumulation through the activation of SA-response mechanisms. Application of this
compound induces similar responses in plants to those induced by biotrophic pathogens or
SA, including overexpression of PR genes [112], and it has been widely reported to induce
resistance against a broad spectrum of pathogens in many plant species. BABA is a non-
protein amino acid known to induce resistance against many plant pathogens in a range of
crop plants [113] by both SA-dependent and SA-independent defense mechanisms [114].

Many natural compounds have also been claimed to elicit ISR and priming, includ-
ing oligosaccharides, glycosides, amides, vitamins, carboxylic acids, and aromatic com-
pounds. Most mimic pathogen interactions and are able to induce or prime defense in a
concentration-dependent fashion. However, the mode of action of these elicitors is eventu-
ally determined by the hosts and the stress that they are facing [115–118]. Extracts of plants
and microorganisms are a potential source for the discovery and isolation of new natural
elicitors, such as hexanoic acid which is a natural compound produced by strawberry. This
potent natural priming inducer can activate broad-spectrum defenses by inducing callose
deposition and the SA and JA pathways [115,119]. While natural elicitors can occasionally
be found anywhere in the natural world, as evidenced by the case of hexanoic acid, a
more likely source of such compounds is fungal BCAs. Since the elicitation of ISR and
priming by fungal BCAs naturally involves some kind of chemical mechanism, extracts of
these fungi and their secretions are more likely to contain the natural elicitors, which can
be isolated and identified. Hossain et al. [120] reported that root treatment with culture
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filtrate of the growth-promoting fungus Penicillium simplicissimum induced resistance to
P. syringae pv. tomato in Arabidopsis plants [120]. ISR activation against the same pathogen
in Arabidopsis plants was also induced by blends of volatile compounds extracted from the
growth-promoting fungi Ampelomyces spp. and Cladosporium spp. m-cresol and methyl
benzoate were identified as the major active compounds in these blends [121].

As in many cases with fungal BCAs, most of the extensive studies have been per-
formed with Trichoderma spp. Djonović et al. [80] identified and purified a small protein
(designated Sm1) from T. virens secretions that triggered production of ROS and induced the
expression of defense-related genes, both locally and systemically, in cotton. Pretreatment
of cotton cotyledons with Sm1 also provided high levels of protection against the pathogen
Colletotrichum sp. [80] (see also Section 3). T. virens also produces unique peptaibols with
antibiotic properties (see also Section 2) [31], but it also has the ability to induce resistance.
Cucumber plants co-cultivated with T. virens strains disrupted in their ability to produce
these peptaibols showed a significantly reduced systemic resistance response to the leaf
pathogen P. syringae pv. lachrymans, and reduced ability to produce phenolic compounds
with inhibitory activity. On the other hand, two synthetic peptaibol isoforms (TvBI and
TvBII) from T. virens induced systemic protection to leaf-pathogenic bacteria, induced
antimicrobial compounds in cucumber cotyledons, and upregulated the expression of
several defense-related genes [122].

The resistance induced by fungal BCAs can also be elicited by small secreted molecules
such as secondary metabolites. Vinale et al. [123] demonstrated that pre-application of
secondary metabolites isolated from the culture filtrate of several biocontrol strains of
Trichoderma reduces the disease symptoms of B. cinerea on tomato plants, and induces
overexpression of PR proteins [123]. We recently found that application of P. aphidis extract
(a fraction that does not contain antibiotic activity) can induce PR genes in tomato plants
and activate the plant defense system (Harris R and Levy M unpublished data).

5. Mycoparasitisim and Cell Wall-Degrading Enzymes

The secreted fraction of BCAs contains factors other than antibiotics and elicitors/effectors
that might play a part in their ability to control pathogens. Some of these are cell wall-
degrading enzymes and proteases which have been well documented as being part of
the mycoparasitic mode of action (Figure 1; Table 1). As early as 1932, Weindling [124]
described mycoparasitism of R. solani hyphae by the hyphae of Trichoderma lignorum,
including coiling around the pathogen hyphae, and penetration and subsequent dissolution
of the R. solani cytoplasm [30]. Mycoparasitism was demonstrated as one of the BCA’s
direct modes of action that relies on the production of fungal cell wall-degrading enzymes
such as chitinases, the latter having been shown to affect pathogenicity of germinating
conidia of B. cinerea [125,126]. However, it has also been shown that some Trichoderma spp.
isolates that have the potential to produce cell wall-degrading enzymes do not necessarily
provide good biocontrol activity [127].

The antagonistic activity of P. aphidis against powdery mildew seems to be mainly
parasitic. Scanning electron microscopy analysis revealed that P. aphidis dimorph from
yeast-like to hypha-like and ecto-parasitizes the powdery mildew hypha by coiling around
it [44]. Similar mycoparasitism occurs with P. flocculosa on conidia of cucumber powdery
mildew [59]. In contrast, we have shown that to control gray mold disease caused by
B. cinerea, P. aphidis remains as a yeast-like structure and thus does not coil around B. cinerea
hyphae [44]. However, the P. aphidis cells could adhere to B. cinerea hyphae and secrete
lytic enzymes and proteases when exposed to B. cinerea cell wall extract, suggesting that
close proximity enhances the antibiotic activity and cell wall-degrading enzyme efficiency,
thereby also supporting the parasitism dogma [62]. The dimorphic switch from hypha-like
to yeast-like is a well-known phenomenon in fungal pathogens [128]. In C. albicans, this
dimorphism is essential for pathogenicity [129,130]. This morphological transition is mainly
determined by environmental cues and conditions, such as pH, temperature and nutrient
availability [128,131]. For example, C. albicans and Penicillium marneffei are yeast-like at
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low pH, while at higher pH they transform into hypha-like [132,133]. Pseudozyma spp.
also demonstrate dimorphism in response to different cues [43,44], and we also detected
P. aphidis with a hypha-like structure at high pH, whereas it was yeast-like at low pH
(unpublished data).

6. Competition for Space and Nutrients

Competition can occur between the BCA and the pathogen on plants for either space or
nutrients; competition for both can hinder plant pathogens and control their ability to pro-
liferate and infect plants. Similar to other BCAs, different Trichoderma strains use divergent
modes of action to control phytopathogens, including competition for space and for micro-
or macronutrients [118]. Low availability or limited sources of these nutrients challenge
BCAs to develop different strategies to utilize them. One strategy might be competition for
space, ultimately excluding the pathogen from the host plant. For example, T. harzianum is
able to control B. cinerea on grapes by colonizing the blossom tissue to compete for space
and eventually excluding the pathogen from its infection site [134]. Other strategies rely
on the ability of BCAs to mobilize nutrients using low pH [123], specialized enzymes such
as invertase [135], sugar transporters [136,137] or siderophores [138]. The ability to use
diverse carbon or nitrogen sources from the plant and the pathogen can also contribute to
the competitive ability. For example, Kloeckera apiculate competing with Penicillium italicum
for nutrients and vitamins has a lower spectrum of carbon sources but a wide range of
nitrogen sources as compared to the pathogen [139]. There are some examples of combined
competition for both space and nutrients, such as the BCA Pichia guilliermondii which
controls Rhizopus nigricans on tomato fruit during storage [140]. Aureobasidium pullulans
also controls the decay of apple fruit caused by B. cinerea and Penicillium expansum by
competing for both space and nutrients [141]. Competition for space and nutrients was also
demonstrated after application of P. aphidis on tomato plants. P. aphidis accumulated and
proliferated significantly more in the lesion area of B. cinerea than in the uninfected area,
suggesting competition for space [43]. Furthermore, using excess sugar on tomato fruit
reduces the competition for nutrients between the fungi and thus decreases the efficacy
of P. aphidis against B. cinerea [62]. The ability to utilize more sources of carbon or nitro-
gen will give the BCA the advantage over the pathogen, and this will eventually reduce
the infection.

Table 1. Overview of biological control agents (BCAs) modes of action mechanisms.

Biocontrol Agent Compound/Protein/Gene Mechanism/Activity Pathogen Ref.

Antibiosis/ ROS/ PCD

Acremonium strictum Verlamelin Unknown
Erysiphe graminis f. sp. hordei

Puccnia recondita
Botrytis cinerea

[5,70]

Trichoderma virens
Trichoderma spp. Peptaibols Formation of pores in

bilayer lipid membrane.
B. cinerea

Mucor mucedo [3,6,31,33,122]

Trichoderma
pseudokoningii Peptaibols

Induces
metacaspase-independent

apoptotic cell death.
Fusarium oxysporum [35]

T. virens Peptaibols Induced resistance. Pseudomonas syringae [3,12,122]

Pseudozyma aphidis Mostly lipophilic
compounds. ROS/PCD

Podosphaera xanthii
B. cinerea

Clavibacter michiganensis
[44,61,62,101]
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Table 1. Cont.

Biocontrol Agent Compound/Protein/Gene Mechanism/Activity Pathogen Ref.

Psudozyma rugulosa
Pseudozyma flocculosa

(syn.Sporothrix
flocculosa)

(Z)-9-heptadecenoic
Z)-6-methyl-9-hepta

decenoic acids
Cis-9-Heptadecenoic

acid (CHDA)

Disturbance in fluidity of
the cell membrane,

leakage of electrolytes and
proteins.

E. graminis
var. tritici, powdery mildews [45–50]

P. flocculosa Flocculosin Leakage of cell membrane.
Candida albicans,

Trichosporon asahii,
powdery mildews

[53–55]

Pseudozyma
tsukubaensis

Pseudozyma prolifica
Mycocins Membrane disruption. Ustilaginomycetes [51,52]

Pseudozyma graminicola
Pseudozyma fusiformata Ustilagic acid

Disruption of the
cytoplasmic membrane

permeability.

~300 tested species of yeastlike and
mycelial fungi [56,57]

Chaetomium globosum Chaetoviridins A
and B Antibiosis Puccinia recondita, Magnaporthe grisea [67,68]

Fusarium semitectum Fusapyrone and
deoxyfusapyrone Antibiosis

B.cinerea,
Aspergillus parasiticus, and Penicillium

brevi
[69]

Gliocladium virens p Gliovirin and
heptelidic acid

Suppressing TNF-alpha
synthesis. Pythium ultimum [30]

G. irens q Gliotoxin and
dimethylgliotoxin Oxidative stress Rhizoctonia solani [30]

Effectors

P. flocculosa pf02826, pf00303
and pf02382

Dissemination and
sequestration of nutrient. Blumeria graminis [77]

Pseudozyma sp. Pep1, Cmu1, Cwh41
and Hum3 BCA -Plant interactions [76,87]

T. virens tvlysm1
Colonization of BCA and

defense against the
pathogen.

Rhizoctonia solani [78]

T. virens Cerato-platanin protein
Sm1

Induces ROS and PR
genes expression in cotton. Cochliobolus heterostrophus [80]

T. virens Sm2 and Epl2 Induced resistance C. heterostrophus [80]

Fusarium oxysporum
strain CS-20 CS20EP

Elicits defense responses
and ion exchange in

tomato plants.
F. oxysporum [85]

Hydrolytic Enzymes

Trichoderma harzianum Endo-chitinase,
chitobiosidase

B.cinerea;
F. oxysporum Sclerotium rolfsii [125–127]

P. aphidis Chitinase, protease
lipase, cellulase

P. xanthii,
B. cinerea [44,62]

Parasitism

Trichoderma lignorum Mycoparasitism, haustoria
formation. R. solani [30,124]

P. flocculosa Mycoparasitism,
Hyperbiotrophy.

P. xanthii
B. graminis [55,77]

P. aphidis Ecto-parasitism P. xanthii [44]
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Table 1. Cont.

Biocontrol Agent Compound/Protein/Gene Mechanism/Activity Pathogen Ref.

Induced resistance (IR)

T. harzianum T39
Through jasmonic

acid(JA) and
ethylene(ET) signals.

Induced resistance in
grapevine. Plasmopara viticola [105]

Trichoderma asperellum
SKT-1

Through salicylic acid
(SA), JA and ET

signaling pathways.

Induced resistance in
Arabidopsis thaliana. P. syringae [106]

T. asperellum T203 Through JA and ET
signals.

Induced resistance in
cucumber. P. syringae [107]

T. virens Sm1 and 18 mer
peptaibols.

Induced resistance in
cucumber. P. syringae [80,122]

Piriformospora indica
ISR, upregulation of PR
genes and heat-shock

proteins.

Induced resistance in
barley. B. graminis [108]

F. oxysporum Fo47
Root colonization

upregulation of GLUA
and PR-1a.

Induced resistance in
tomato. Fusarium wilt [109]

Penicillium
simplicissimum GP17-2

Through SA, JA and ET
signaling pathways.

Induced resistance in
A. thaliana. P. syringae [111]

Ampelomyces sp. and
Cladosporium sp

Volatiles; m-cresol and
methyl benzoate induce

ISR.

Induced resistance in
A. thaliana.

P.syringae pv.
tomato DC3000 [121]

P. aphidis
Induce ISR and SAR

through JA/ET and SA
pathways.

Induce resistance in
A. thaliana, tomato and

cucumber.

B. cinerea
C. michiganensis [43,61,101]

Competition

T. harzianum Competition for space. B. cinerea [134]

P. aphidis Competition for space and
nutrients.

P. xanthii,
B. cinerea [43,44,62]

Pichia guilliermondii Competition for space and
nutrients. Rhizopus nigricans [140]

Kloeckera apiculate Competition for nutrients Penicillium italicum [139]

Programmed cell Death, PCD; Reactive Oxygen Species, ROS; Tumor Necrosis Factor, TNF; Induced Systemic Resistance, ISR; Systemic
Acquired Resistance, SAR.

7. Conclusions

Health and environmental concerns, along with the rapid development of pathogen
resistance to widely used pesticides, call for enhancing the use of BCAs and biopesticides
developed from their secretions in the long term, for the benefit of the consumer and the
growers. Most biocontrol modes of action are mediated by their secretion-based fraction,
which can include metabolites and proteins with different functions—from antibiotics
through effectors—and enzymes that can affect or interact with the pathogen and/or the
plant host. Much attention is being given to the characterization of such BCA-secreted
molecules and proteins, but the development of robust molecular research tools is needed.
Recent work shows that Pseudozyma can be modified using CRISPR-Cas9 system [142] for
gene editing, and being yeast-like, it is comparatively easier to transform than filamentous
fungi [44]. Large-scale studies, such as tritrophic interactions and omics [77,143], albeit
challenging, will also help decipher pathways and reveal novel targets in pathogens
and plants for directed control mechanisms. These tools will help further elucidate the
molecular mechanism underlying the BCAs’ secretion components and will advance our
ability to improve BCAs’ modes of action to suppress plant pathogens.

Note: P. antarctica, P. aphidis and were recently transferred to the genera Moesziomyces [144]
and P. flocculosa to Anthracocystis [145]. For this communication, we kept their original
names as they appear in the publications to which we refer.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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