
plants

Article

Biomass Functions and Carbon Content Variabilities of Natural
and Planted Pinus koraiensis in Northeast China

Faris Rafi Almay Widagdo , Lihu Dong * and Fengri Li *

����������
�������

Citation: Widagdo, F.R.A.; Dong, L.;

Li, F. Biomass Functions and Carbon

Content Variabilities of Natural and

Planted Pinus koraiensis in Northeast

China. Plants 2021, 10, 201. https://

doi.org/10.3390/plants10020201

Received: 10 December 2020

Accepted: 18 January 2021

Published: 21 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry,
Northeast Forestry University, Harbin 150040, China; faris.almai@gmail.com or farisalmay26@nefu.edu.cn
* Correspondence: lihudong@nefu.edu.cn (L.D.); fengrili@nefu.edu.cn (F.L.);

Tel.: +86-451-8219-1751 (L.D.); +86-451-8219-0609 (F.L.)

Abstract: The population of natural Korean pine (Pinus koraiensis) in northeast China has sharply
declined due to massive utilization for its high-quality timber, while this is vice versa for Korean pine
plantations after various intensive afforestation schemes applied by China’s central authority. Hence,
more comprehensive models are needed to appropriately understand the allometric relationship
variations between the two origins. In this study, we destructively sampled Pinus koraiensis from
several natural and plantation sites in northeast China to investigate the origin’s effect on biomass
equations. Nonlinear seemingly unrelated regression with weighted functions was used to present
the additivity property and homogenize the model residuals in our two newly developed origin-free
(population average) and origin-based (dummy variable) biomass functions. Variations in biomass
allocations, carbon content, and root-to-shoot ratio between the samples obtained from plantations
and natural stands were also investigated. The results showed that (1) involving the origin’s effect
in dummy variable models brought significant improvement in model performances compared to
the population average models; (2) incorporating tree total height (H) as an additional predictor to
diameter at breast height (D) consistently increase the models’ accuracy compared to using D only
as of the sole predictors for both model systems; (3) stems accounted for the highest partitioning
proportions and foliage had the highest carbon content among all biomass components; (4) the
root-to-shoot ratio ranged from 0.18–0.35, with plantations (0.28 ± 0.04) had slightly higher average
value (±SD) compared to natural forests (0.25 ± 0.03). Our origin-based models can deliver more
accurate individual tree biomass estimations for Pinus koraiensis, particularly for the National Forest
Inventory of China.

Keywords: additive biomass equations; root-to-shoot ratio; carbon concentration; biomass partition-
ing; forest origin

1. Introduction

Terrestrial living plants hold a crucial role in regulating the climate through their
contributions in carbon flux density and storing a tremendous amount of carbon storage
(380–536 Pg C) [1,2]. The plant’s interaction in competing for both below- and above-
ground resources (i.e., soil nutrients, water, and light) shapes the forest’s composition and
structure, determining the forest community’s capacity in storing carbon [3]. However,
the forest community’s carbon sequestration capacity has gained an increasing number
of public concerns due to the more apparent appalling evidence of climate change and
global warming [4,5]. Carbon sequestration is highly associated with forest biomass; thus,
accurate biomass estimation is a key step for carbon appraisals and a primary tool for the
successful implementation of climate change mitigation strategies [6].

An individual tree biomass equation is widely known to be one of the most efficient
techniques to estimate forest biomass since direct biomass measurements need tremendous
resources (i.e., labor, time, equipment, and cost). Thousands of equations for stem, root,
crown variables (i.e., branch and foliage), aboveground, and total biomass have been
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developed worldwide [7–10]. Most of them used the allometric function (Y = aXb) to relate
the required biomass (Y) with several easy-to-measure independent variables (X), in which
tree diameter at breast height (D) is independently applied as the sole predictor. If several
biomass component equations are developed, the inherent correlation among them is often
neglected, nullifying their estimations’ additive property. As a result, the summation of
each component’s prediction will yield either an over- or under-estimation compared to
the total biomass prediction [11,12]. Hence, several researchers have specifically addressed
the importance of considering compatibility property in establishing tree-level biomass
equations [8,13–16]. Among various model specifications for nonlinear function, nonlinear
seemingly unrelated regression (NSUR) emerges as a primary standard [13,17–20], owing
to its flexibility, allowing each biomass component to have different combinations of
predictors and weighting function to increase the model’s accuracy and homogenize the
model residuals, respectively.

Besides biomass equations, an accurate carbon content value has also been recognized
as an important component since it will be multiplied by the biomass estimation result for
carbon stock quantification. In recent decades, there has been a slow but growing trend in
research for investigating the tree carbon content variation between species [21], biomass
components [22], growing sites [20], provenances [23], and forest origins [24]. Regardless
of its impreciseness, the use of the 50% generic carbon multiplication factor seems to be
endless, as often the very required specific carbon content value is still not available in the
literature. Thus, fostering the investigation on carbon content measurement and variability
is essential to promote global forest carbon stock assessments’ accuracy.

Food Agricultural and Organization of the United Nations (FAO) reported that, from
2010 to 2015, there was an increasing and a decreasing trend of global plantations and natural
forest areas, with the rate of 3.3 million ha/year and 6.5 million ha/year, respectively [2,25].
Furthermore, researchers have found various palpable characteristic differences between
these two origins, such as in terms of water consumption [26], carbon sequestration rate [27],
soil organic carbon content [28], and species composition [29]. However, only a limited
number of the established tree-level biomass functions used the data obtained from both
plantations and natural stands to consider the origin’s effect in constructing the models.
Fu et al. [30] used the aboveground biomass data of Pinus massoniana from planted and
natural forests in southern China and concluded that involving the origin-effect with both
dummy variables and mixed-effect models brought significantly better performance on
model estimation compared to the population average model. Schuller et al. [31] harvested
small diameter natural- and planted-origin trees (0.5–15 cm) of Pinus taeda in southern
Arkansas to analyze the origin’s effect on biomass allometric relationships and reported
that the partitioning proportions of branches, foliage, and root biomass were found to
be greater in planted Pinus taeda compared to those of naturally regenerated samples,
whereas this was vice versa for stems, aboveground, and total biomass. Widagdo et al. [24]
utilized the above- and below-ground biomass dataset to establish Larix gmelinii origin-
based individual tree biomass models in northeast China; and found that the origin-based
models significantly improved the estimation of total biomass and all biomass components
compared to the basic origin-free models. Further studies are necessitated to scrutinize the
importance of involving the stands origin’s effect on biomass models and understanding
the two habitats’ individual tree biomass characteristic’s variations.

Korean pine (Pinus koraiensis) is one of the most valuable evergreen needle-leaved tree
species in northeast China, having a high quality of relatively decay-resistant timber [32]
along with edible nutritional-rich [33] and unique-aroma perceived nuts [34]. In China, the
natural and planted Korean pine respectively comprise an approximate total area of ~60 and
~300 thousand ha [35], designating the country as the world’s leading pine nut producer,
with an estimated export value exceeding 250 million USD/year [36]. Furthermore, more
than 98% of those natural and plantation Korean pine forest areas are located in northeast
China, particularly in Heilongjiang province (69% cf. 49%), the most extensive among
other regions. However, none of the previously established equations for Pinus koraiensis
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considered the forest origin’s effect, in which the majority of them only utilized either
plantations or naturally regenerated sample trees. Hence, this study aimed to: (1) use the
dummy variable with weighted NSUR model to involve the forest origin’s effect in developing
additive biomass equations for the foliage, branch, stem, root, and total biomass of Pinus
koraiensis; (2) utilize the jackknifing technique to validate the model fitting performance;
(3) investigate the forest origin’s effect on biomass allocations, carbon content variability,
and root-to-shoot (RS) ratio of Pinus koraiensis; and (4) compare our origin-free and -based
biomass equations with the established models for Korean pine by Wang et al. [37] and
Li et al. [38].

2. Materials and Methods
2.1. Data Collection

The biomass and carbon content dataset used in the current research was obtained
from both natural secondary forests (4 sites) and Pinus koraiensis plantations (4 sites) in the
Xiaoxing’an and Changbai Mountains, Northeast China (Figure 1). All of the eight sites
are located in Heilongjiang province (121–135◦ E and 43–53◦ N), the largest province in
the northeastern area of China, where both natural and planted Korean pine was mostly
situated. All sampling sites are owned and managed by The Forestry and Grassland
Administration of Heilongjiang province, which hierarchically falls under the supervision
of The State Forestry and Grassland Administration. The climate of the study areas is a
continental monsoon climate (Köppen-Geiger climate classification Dwb), characterized by
having warm-wet summers and dry-cold winters [39]. The mean annual rainfall ranges
from 550 to 900 mm (with an average of ~700 mm). Based on the Chinese Taxonomic
system, the soils are mostly dark brown forest soil (Haplumbrepts or Eutroboralfs). The
mean annual temperature also ranges from −7 to 3 ◦C, with the mean temperature at the
hottest (July) and coldest month (January) being 23 ◦C and −24 ◦C, respectively.

Figure 1. The location of the study area across several Pinus koraiensis plantations and natural stands
in Heilongjiang Province, Northeast China.
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All planted trees were destructively sampled from the first rotation of Pinus koraiensis
monoculture plantations, with the planting density of 2500 or 3300 trees/ha. The young
stands were normally pruned once before reaching 20 years of age, and the middle-age
stands were generally thinned one to three times with 5–7 years interval between each
thinning practice (thinning intensity 20–25%). Meanwhile, all naturally regenerated sample
trees were obtained from natural secondary forest sites, which are widespread across
northeast China. This type of forest mostly has a great potential to become a primary forest,
consisting of several layers of different ages, and Korean pine mostly occupies the canopy’s
upper position.

Sixty-three Korean pine trees with DBH and H of 5.4–34.4 cm and 5.4–19.7 m, respec-
tively, were destructively sampled. The biomass samples consisted of the aboveground
(i.e., foliage, branch, and stem) and belowground (i.e., root) components from 33 naturally
regenerated and 30 planted trees. Meanwhile, 45 trees were used for carbon content deter-
mination, in which 30 trees were obtained from plantations, and the balances were from
natural stands. The field measurements were conducted in July and August when foliage
biomass reaches its maximum. Some basic prerequisites were determined for selecting the
sample trees, such as healthy, undamaged trees, those with an un-forked single trunk, and
no border trees. Several parameters were measured in the field measurements: (1) DBH
and H of each sampled trees; and (2) the green weight (kg) of foliage, branches, stems,
and roots. Samples were then taken to the laboratory for oven drying and carbon content
determination. The in-depth explanations regarding the field measurements and laboratory
analysis have been entirely discussed in Dong et al. [14,22,40]. The descriptive statistics
of the measured dry weight biomass and the independent variables (i.e., DBH and H) are
presented in Table 1.

Table 1. Summary statistics of the tree samples.

Variables
Naturally Regenerated (N = 33) Planted (N = 30) Total (N = 63)

Mean Range S.D. Mean Range S.D. Mean Range S.D.

Tree DBH (cm) 18.2 7.3–34.4 7.3 18.4 5.4–33.4 6.9 18.3 5.4–34.4 7.0
Total height (m) 13.7 8.2–19.7 3.3 11.5 5.4–16.2 2.7 12.7 5.4–19.7 3.2

Root biomass (kg) 32.7 2.3–141.4 35.0 31.3 1.6–107.0 26.0 32.0 1.6–141.4 30.8
Stem biomass (kg) 97.3 8.3–336.9 87.9 79.1 3.4–246.5 60.0 88.6 3.4–336.9 75.8

Branch biomass (kg) 17.7 1.4–67.4 18.1 25.2 0.3–99.3 24.6 21.3 0.3–99.3 21.6
Foliage biomass (kg) 7.3 1.1–22.4 5.4 12.9 0.3–38.3 10.0 9.9 0.3–38.3 8.3

Total biomass (kg) 155.0 14.0–563.1 144.1 148.6 5.6–491.2 118.8 152.0 5.6–563.1 131.6

DBH: Diameter at breast height; S.D.: Standard deviation; N: Number of samples.

2.2. Statistical Analysis
2.2.1. Base Model

A scatterplot between the biomass data and available independent variables (i.e., D
and H) was used to identify trends in the relationship (Figure 2). The base model was
constructed using the common allometric power function with an additive error structure
to examine the relationship between the predictors and biomass components. The equation
can be written as follows:

Yi = eβi0 Xβi1
1 Xβi2

j + εi (1)

where Yi denotes the ith biomass tissues in kg (i = 1st–4th respectively represent the root,
stem, branch, and foliage); Xi are the independent variables (j = 1 for D and j = 2 for H);
βij are the parameters of the models; εi represents the error term. Considering one and
two predictors to consist of D and a combination of D and H, respectively, has become
a common practice in developing individual tree biomass models [16,41,42]. Thus, in
this study, both uni- and multi-variate additive models were developed, providing more
alternatives for forestry practitioners and researchers.
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Figure 2. Relationship between the independent and dependent variables.

2.2.2. Population Average (Generalized) Model

The population average (PA) models were fitted to all data without considering the
effects of tree origin (i.e., plantation and natural forest). Cross-equation with one parameter
restriction was used to account for the compatibility property within each five-equation
system as it has been suggested by Parresol [15]. This structure ensures the additivity
between the estimation of the component biomass, making it possible to sum a certain
component’s estimation depending on the necessity. The additive systems of the PA models
with one (PA-1) and two (PA-2) predictors can be expressed as:

PA − 1



Yr = eβr0 Dβr1 + εr
Ys = eβs0 Dβs1 + εs

Yb = eβb0 Dβb1 εb
Yf = eβ f 0 Dβ f 1 + ε f

Yt = Yr + Ys + Yb + Yf + εt

(2)
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PA − 2



Yr = eβr0 Dβr1 Hβr2 + εr
Ys = eβs0 Dβs1 Hβs2 + εs
Yb = eβb0 Dβb1 Hβb2 + εb
Yf = eβ f 0 Dβ f 1 Hβ f 2 + ε f

Yt = Yr + Ys + Yb + Yf + εt

(3)

where Yr, Ys, Yb, and Yf respectively denote the root, stem, branch, foliage, and total
biomass. Other abbreviations are the same with Equation (1).

2.2.3. Origin-Based Dummy Variable Model

Forest origins can be considered as categorical effects in constructing biomass mod-
els [9,24,30,43]. Hence, we used a dummy variable (DV) model to account for the differences
of the specific traits between the naturally regenerated and planted single-tree biomass
model. As in PA models, the NSUR with one parameter restriction was also used to guar-
antee the presence of the additivity property between each component’s biomass equation.
The additive systems of the DV models with one (DV-1) and two (DV-2) predictors can be
expressed as:

DV − 1


Yr = e(βr0i∗Z0i+βr0i∗Z0i)D(βr1i∗Z1i+βr1i∗Z1i) + εr

Ys = e(βs0i∗Z0i+βs0i∗Z0i)D(βs1i∗Z1i+βs1i∗Z1i) + εr

Yb = e(βb0i∗Z0i+βb0i∗Z0i)D(βb1i∗Z1i+βb1i∗Zz1i) + εr

Yf = e(β f 0i∗Z0i+β f 0i∗Z0i)D(β f 1i∗Z1i+β f 1i∗Z1i) + εr
Yt = Yr + Ys + Yb + Yf + εt

 (4)

DV − 2


Yr = e(βr0i∗Z0i+βr0i∗Z0i)D(βr1i∗Z1i+βr1i∗Z1i)H(βr2i∗Z2i+βr2i∗Z2i) + εr

Ys = e(βs0i∗Z0i+βs0i∗Z0i)D(βs1i∗Z1i+βs1i∗Z1i)H(βs2i∗Z2i+βs2i∗Z2i) + εr

Yb = e(βb0i∗Z0i+βb0i∗Z0i)D(βb1i∗Z1i+βb1i∗Z1i)H(βb2i∗Z2i+βb2i∗Z2i) + εr

Yf = e(β f 0i∗Z0i+β f 0i∗Z0i)D(β f 1i∗Z1i+β f 1i∗Z1i)H(β f 2i∗Z2i+β f 2i∗Z2i) + εr
Yt = Yr + Ys + Yb + Yf + εt

 (5)

where βrji, βsji, βbji, and βfji are respectively the origin-specific coefficients for roots, stems,
branches, and foliage biomass (j = 0, 1, and 2; i = a and b); Zji represents the dummy
variable; and other abbreviations are the same with in Equations (1)–(3). The dummy
variable Zji was set as follows: Zja = 1 and Zjb = 0 for the data acquired from Korean pine
plantation, while Zja = 0 and Zjb = 1 for those obtained from natural forest.

2.2.4. Heteroscedasticity Neutralization

Heteroscedasticity is a common problem in tree biomass and volume modeling, which
creates a certain pattern of inconsistency in the model’s residuals. To date, two methods
(i.e., logarithmic transformation and weighted regression) have been widely applied as
countermeasures to reduce the heteroscedasticity issue [16]. In the present study, the
weighted least squares regression was used to homogenize the error variance, since it
is more reliable to be applied for the nonlinear regression. For each biomass equation,
a unique weighting function was determined using the power function to independently
fit the predictors (Di) and the error variance (εi) of the ith individuals. A more detailed
theoretical explanation can be found in Harvey [44], while the practical application using
the SAS/ETS PROC MODEL procedure [45] in Dong et al. [14] and Balboa-Murias et al. [46]

2.2.5. Model Validation

The two additive model systems (PA and DV) were fitted using the entire dataset
(sample size N). In the present study, there were no independent data available for model
validation; thus, the jackknifing technique (leave-one-out) was utilized. All exclude-one
observations (sample size N−1) were systematically utilized in building the validation
models, and the held-out observation was used to calculate the predictions. Two statistics
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were employed for model fitting assessment: (1) the coefficient of determination (R2);
and (2) root mean square error (RMSE), while three jackknifing statistics were utilized for
evaluating the model performance: (1) mean error (ME); (2) mean absolute error (MAE);
and (3) mean absolute percentage error (MAPE). The equations can be written as follows:

R2 = 1 − ∑n
i=1 (Yik − Ŷik)

2

∑n
i=1 (Yik − Yk)

2 (6)

RMSE =

√
∑n

i=1
(
Yik − Ŷik

)2

n
(7)

ME =
∑n

i=1
(
Yik − Ŷik,−i

)
n

(8)

MAE =
∑n

i=1
∣∣Yik − Ŷik,−i

∣∣
n

(9)

MAPE =
∑n

i=1
∣∣(Yik − Ŷik,−i)/Yik

∣∣
n

× 100 (10)

where Yik is the observed biomass for the ith individual and the kth category (k = 1, 2, 3, 4,
and 5, are root, stem, branch, foliage, and total, respectively); Ŷik is the predicted biomass
for the ith individual and the kth category (fitted using N sample size); Ŷ is the average
value of the observed biomass; and Ŷik,−i is the estimated biomass for the ith individual
and the kth category (fitted using N−1 sample size). Furthermore, to analyze whether or
not the effect of considering growing origin in the dummy variable (DV) models brought a
significant improvement compared to the population average (PA) models, both F-test and
Lakkis-Jones test [47,48] were applied in this study. The statistics were calculated as follow:

F =

(
SSEPA − SSEDV
d. f .PA − d. f .DV

)
× d. f .DV

SSEDV
(11)

L = 2 ln

((
SSEPA
SSEDV

) N
2
)

(12)

where SSEPA and SSEDV denote the population average and dummy variable models
(without and with growing origin variables) sum of squares errors, respectively; d.f.PA and
d.f.DV represent the degrees of freedom of the PA and DV models, respectively; and N is
the total samples.

2.2.6. Variation of Carbon Content

The factorial analysis of variance (ANOVA) test was used to assess the effect of tree
size (D), tree height (H), growing origins (i.e., plantation and natural forest), and biomass
components (i.e., foliage, branch, stem, and root) on carbon content value. The analysis was
conducted using the SAS PROC GLM procedure [45], as it has been commonly performed
in previous researches [20,49,50].

3. Results
3.1. Biomass Partitioning between the Planted and Naturally Regenerated Korean Pine

Figure 3 presents the biomass relative percentage of each part (i.e., foliage, branch,
stem, and root) across five diameter (D) classes (i.e., <10, 10–15, 15–20, 20–25, >25) as
Ruiz–Peinado et al. [51] noted that the distribution of biomass into different parts was
highly related to D. The belowground biomass (root) relative to the proportion of the
total biomass was consistent in planted Korean pine, around 22% in five diameter classes.
For the naturally regenerated Korean pine, the root biomass proportion did not indicate
any regular pattern across five diameter classes (Figure 3). The stem biomass relative
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proportion to total biomass was found to decrease gradually from the 2nd to the 5th D
classes in both origins. However, the decline was almost three times higher in Korean
pine plantations (~10%) than in natural stands (~3.5%). The branch biomass proportion
of the planted Korean pine increased gradually from the 1st (6.8%) to the 5th (19.6%) D
classes. For the natural Korean pine, apart from the 2nd D class (8.02%), branch biomass
presents a consistent relative percentage (~12%). The same pattern occurred in the foliage
component of the planted sample trees, in which the foliage biomass percentage was found
to be constant at around 8.5% across all D classes (Figure 3). Meanwhile, for natural Korean
pine, a decreasing trend in foliage biomass proportion was shown from the 1st (8.8%) to
the 5th (3.8%) D classes.

Figure 3. Biomass allocation of the four primary components across five range of diameter classes for: (A) The naturally
regenerated; and (B) the planted Pinus koraiensis. The bars are standard errors and n is the number of sample trees per D class.

3.2. RS Ratio and Carbon Content Variations of the Two Origins

The pattern of the root-to-shoot (RS) ratio was also visualized across five diameter
classes based on the tree growing origins (Figure 4). The 1st D class of the planted sample
trees gave the highest RS ratio (0.35), while the 3rd D class of the naturally regenerated
Korean pine accounts for the smallest RS ratio (0.22). For the planted sample trees, apart
from the 1st D class, the RS ratio was showing a regular pattern from the 2nd to the 5th D
classes (0.27 ± 0.01). Meanwhile, the RS ratio pattern of the naturally regenerated sample
trees was found to be irregular across the five D classes (0.24, 0.26, 0.22, 0.25, and 0.28).
On average (±SD), the RS ratio of the planted Korean pine (0.28 ± 0.04) was found to be
slightly higher than the naturally regenerated sample trees (0.25 ± 0.03).

The carbon content of foliage, branch, stem, and root biomass tissues from both
origins (plantations and natural stands) were also measured in this study (Figure 5). The
effect of tree DBH (F value = 14.20 and p = 0.0002), tree total height (F value = 5.19 and
p = 0.0240), and biomass tissues (F value = 5.71 and p = 0.0009) on carbon content were
found to be significantly different. Meanwhile, the effect of growing origins (F value = 0.40
and p = 0.5275) and all interactions between variables (i.e., tree DBH, tree total height,
origins, and biomass tissues) were found to be not statistically significant. The overall
carbon content can be ranked: foliage (49.32%) > branch (49.04%) > root (48.28%) > stem
(47.73%). The planted Korean pine had a slightly higher average carbon content than those
of naturally regenerated sample trees (48.75% cf. 48.29%), as well as across all four primary
tree tissues (Figure 5). However, the differences of all biomass tissues between the two
origins were not statistically significant.
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Figure 4. Comparison of the root-to-shoot (RS) ratio between the planted and natural Pinus koraiensis
across five ranges of diameter classes. The bars are standard errors. The number of the sample trees
per D class is similar with Figure 3.

Figure 5. The carbon content of Pinus koraiensis for the root, stem, branch, and foliage sampled from
both natural and plantation forests. Means are equal to the height of the bars, while the vertical lines
represent the standard error.

3.3. The PA and DV Additive Biomass Model Systems

The data of 63 destructively sampled Pinus koraiensis from Northeast China were used
to develop one- and two-variable biomass models. Using the PROC MODEL procedure
in SAS Software (SAS Institute Inc., Cary, NC, USA, 2011), the population average (PA)
and dummy variable (DV) additive biomass model systems were simultaneously fitted
by applying one constraint in the NSUR model structure to ensure the presence of the
additivity property (Equations (2)–(5)). The fitting results of PA and DV model systems for
the four primary components (i.e., stem, foliage, branch, and root) and total biomass are
presented in Tables 2 and 3, respectively.
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Table 2. Parameter estimates of the one- and two-variable population average (PA) additive models.

Equations Components Parameters Estimates S.E.

PA-1
(One-variable)

Root
βr0 −4.10368 0.1765
βr1 2.52639 0.0548

Stem
βs0 −2.29469 0.2002
βs1 2.26941 0.0644

Branch
βb0 −5.40818 0.3448
βb1 2.79699 0.1066

Foliage β f 0 −3.73742 0.4135
β f 1 2.01881 0.1325

PA-2
(Two-variables)

Root
βr0 −4.47742 0.2138
βr1 2.51914 0.0720
βr2 0.14399 0.1051

Stem
βs0 −3.36539 0.2068
βs1 1.94692 0.0661
βs2 0.77835 0.0914

Branch
βb0 −4.14573 0.3243
βb1 3.13166 0.1041
βb2 −0.86857 0.1251

Foliage
β f 0 −1.96307 0.3978
β f 1 2.56451 0.1310
β f 2 −1.31504 0.1849

S.E. is the standard error.

The parameters of D were positive in all equations (Tables 2 and 3). Meanwhile, the
parameters of H varied depending on the biomass tissues. The parameters of H in all
of the stem and foliage equations (i.e., PA-2 and DV-2) were always found to be positive
and negative, respectively. The stem tissue’s positive relationship with both parameters
D and H indicated that, for an equivalent value of D, the stem biomass rose with rising
H. The positive D and negative H in the foliage tissue implicated that, for an equivalent
value of D, foliage biomass decreased with the rising H. For the branch tissue, the results
varied between origins (Table 3). In plantation sites, the parameter of H was found to be
positive, indicating the branch biomass rose with rising H for an equivalent value of D,
while this was vice versa in natural forests. Meanwhile, different results were obtained
between the PA and DV models for the root biomass equations, in which the parameter H
was found to be positive in the PA model and negative in both the DV models (plantation
and natural sites).

Table 4 showed that the two additive biomass model systems (i.e., PA and DV) devel-
oped in this study satisfactorily fitted the data. The foliage tissue had the lowest model
fitting (R2 = 0.699–0.930), while total biomass models delivered the best results of model
fitting (R2 = 0.985–0.989). The addition of H into two-variable biomass equations gave an
apparent improvement in the models’ performances compared to the one-predictor models,
successfully increasing the models’ R2 and decreasing the ME, MAPE, MAE, and RMSE
(Table 4). More detailed model validations are presented in Figure 6, where the MAPE,
ME, and MAE were visualized throughout five ranges of D classes. The figure discovered
that DV mostly yielded smaller errors than PA, indicating that better model performance
was provided by DV models. PA-1 often appeared as the worst model, and DV-2 as the
best model across all diameter classes and biomass tissues (Figure 6). Overall, the model
performances can be ranked according to the combination of the model predictors as
follows: DV-2 > PA-2 and DV-1 > PA-1.
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Table 3. Parameter estimates of the one- and two-variable dummy variable (DV) additive models.

Equations Origins Components Parameters Estimates S.E.

DV-1
(One-variable)

Natural

Root
βr0 −4.58785 0.3204
βr1 2.67952 0.0994

Stem
βs0 −2.25782 0.2153
βs1 2.28230 0.0652

Branch
βb0 −4.95561 0.3411
βb1 2.60134 0.1051

Foliage β f 0 −3.18675 0.4247
β f 1 1.75082 0.1385

Planted

Root
βr0 −3.81245 0.3607
βr1 2.41863 0.1154

Stem
βs0 −2.23070 0.2973
βs1 2.20883 0.0918

Branch
βb0 −5.82831 0.3084
βb1 2.99239 0.0953

Foliage β f 0 −4.26419 0.3503
β f 1 2.27914 0.1114

DV-2
(Two-variables)

Natural

Root
βr0 −4.24899 0.5111
βr1 3.02592 0.2160
βr2 −0.51898 0.3727

Stem
βs0 −3.40236 0.3582
βs1 1.85305 0.1258
βs2 0.90319 0.2300

Branch
βb0 −3.63392 0.5838
βb1 3.07384 0.2351
βb2 −1.01454 0.4008

Foliage
β f 0 −1.53751 0.8336
β f 1 2.34938 0.4170
β f 2 −1.27838 0.6761

Planted

Root
βr0 −3.64574 0.3971
βr1 2.47972 0.1166
βr2 −0.14226 0.2108

Stem
βs0 −3.33091 0.4193
βs1 2.05227 0.0976
βs2 0.62892 0.1616

Branch
βb0 −5.77974 0.4322
βb1 2.94660 0.1052
βb2 0.03947 0.1565

Foliage
β f 0 −3.95709 0.6063
β f 1 2.25431 0.1504
β f 2 −0.08953 0.2446

S.E. is the standard error.
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Table 4. Weighting functions, model validation statistics, and the Lakkis and Jones (L-test) and the non-linear extra sum of
squares (F-test) results in an investigation of the differences between the PA and DV models.

Models Weighting
Functions R2 RMSE ME MAE MAPE L-Value Pr > |L| F-Value Pr > |F|

Root
PA-1 D3.5046 0.948 7.02 −0.82 5.41 25.76
DV-1 D2.2508 0.956 6.51 −0.08 5.03 24.79 50.06 <0.0001 11.04 0.0015
PA-2 D2.6015 0.952 6.81 −0.45 5.40 25.38
DV-2 D3.0141 0.958 6.44 −0.05 5.16 24.55 41.56 <0.0001 5.92 <0.0001
Stem
PA-1 D2.1503 0.936 19.25 −1.03 13.72 17.28
DV-1 D1.1556 0.963 14.75 0.14 11.01 15.50 165.33 <0.0001 44.65 <0.0001
PA-2 D1.4699 0.976 11.89 −0.01 8.36 11.08
DV-2 D1.4078 0.977 11.68 −0.32 8.76 11.57 18.07 <0.0001 2.47 0.1209

Branch
PA-1 D1.7870 0.884 7.37 0.28 5.22 27.69
DV-1 D1.8359 0.972 3.65 −0.21 2.86 21.90 428.88 <0.0001 192.59 <0.0001
PA-2 D1.7992 0.943 5.18 −0.23 4.03 28.09
DV-2 D1.5032 0.975 3.48 −0.31 2.88 23.65 245.76 <0.0001 50.50 <0.0001

Foliage
PA-1 D1.5015 0.699 4.58 0.20 3.28 39.59
DV-1 D1.9542 0.927 2.72 −0.08 1.87 28.65 426.82 <0.0001 190.86 <0.0001
PA-2 D1.6854 0.848 3.26 −0.09 2.35 37.42
DV-2 D1.6308 0.930 2.25 −0.14 1.93 31.04 231.83 <0.0001 46.41 <0.0001
Total
PA-1 D1.9378 0.985 16.76 −1.36 12.46 11.11
DV-1 D1.5307 0.985 16.86 −0.23 12.70 11.18 17.47 0.0007 0.82 0.5168
PA-2 D1.5013 0.988 15.01 −0.79 10.74 10.01
DV-2 D1.3057 0.989 15.58 −0.81 11.14 10.33 11.10 0.0299 0.32 0.9239

R2: the coefficient of determination; RMSE: root mean square error; ME: mean error; MAE: mean absolute error; MAPE: mean absolute
percentage error; Pr > |L|: the P value of the L-test; Pr > |F|: the p value of the F-test.

The significant differences between the origin-free and -based biomass models were
tested using both Lakkis Jones (L-test) and nonlinear extra sum of squares tests (F-test;
Table 4). Apart from DV-2 in stem biomass equations, the F-test showed significantly
different results (p < 0.0001) between the PA and DV models across all of the four primary
tree tissues (p < 0.005 for DV-1 in root biomass). Meanwhile, F-values of both DV-1 and
DV-2 in total biomass equations were found to be insignificant. However, the L-test showed
significant differences between the PA and DV additive model systems for foliage, branch,
stem, and root biomass (p < 0.0001), including DV-1 (p < 0.001) and DV-2 (p < 0.05) in total
biomass equations. These results indicated that tree growing origin is an essential element
to be considered in developing tree-level biomass models for Pinus koraiensis. However,
our newly developed PA models are still able to be used; even the performance was not as
accurate as the DV models.
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Figure 6. Comparison of the leave-one-out validation results between the additive system of population average models
(PA-1 and PA-2) and dummy variable models (DV-1 and DV-2) across five ranges of diameter classes. ME: mean error; MAE:
mean absolute error; MAPE: mean absolute percentage error.

3.4. Comparison with the Established Pinus Koraiensis Biomass Models

All additive equation systems (i.e., PA-1, PA-2, DV-1, and DV-2) were compared
against the established equations for predicting single-tree biomass of Korean pine by
Wang et al. [37] and Li et al. [38]. The prediction results of each model were plotted against
the observed biomass value in Figure 7. Both one- and two-predictors equations of PA and
DV models gave apparent better performances compared to the two previously published
equations. DV-2 constantly presented the lowest RMSE for the root (6.44 kg), stem (11.68 kg),
branch (3.48 kg), foliage (2.25 kg), and total biomass (15.58 kg). Meanwhile, the highest
RMSE values were yielded by the equations of Wang et al. [37] for root (12.73 kg), branch
(11.32 kg), and total biomass (29.58 kg), and similarly with the equations of Li et al. [38] for
stem (31.56 kg) and foliage biomass (11.93 kg). Furthermore, both Wang et al. [37] and Li
et al. [38] equations had relatively high relative errors (RE), which specifically generated
remarkable overestimations for branch (98.94%) and foliage biomass (185.89%), respectively
(Figure 7).
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Figure 7. Comparison between the models developed in this study and the previously published biomass models for
Korean pine.

4. Discussion

Biomass partitioning has been acknowledged as an important element in plant phys-
iological ecology as it reflects the plant’s long-term responses to various environmental
conditions [52,53] and thus will potentially have a more critical role in the future. We
observed the variations in biomass allocation between the planted and naturally regener-
ated Pinus koraiensis across five ranges of D classes. The branch biomass proportions in
Korean pine plantation yielded a ~10% increase from the 2nd to the 5th D class (Figure 3).
The reason is likely related to one of the major purposes of Korean pine plantation es-
tablishment in Northeast China, pine nut production [33,54]. Hence, the branch became
thicker, larger, and stronger to support the high number of produced cones. The average
partitioning proportions of stems (62.9 ± 1.9%) in the natural environment were ~7.0%
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higher than those found in plantations (56.0 ± 4.4%) due to having ~2 m more in average
tree total height across the same ranges of D (Table 1). These results might indicate that
the natural Korean pine trees obtained lower light intensities compared to those grown
in plantations [55–57]. As the “functional equilibrium” theory explained that if the limit-
ing factor is located above-ground, plants will relatively allocate more biomass in shoots
(i.e., foliage, branch, and stem), and vice versa if the growth limiting factor is located
below-ground [58,59].

The root-to-shoot (RS) biomass ratio was quantified for Pinus koraiensis since it has
been commonly known as a simple option to allometric equations for predicting below-
ground biomass [52,60,61]. Both mean (0.27 ± 0.03) and ranges (0.22–0.35) of the obtained
RS ratio are located within the RS ratio ranges (0.18–0.35) of other pine and coniferous
tree species [61,62]. Planted Korean pine had a slightly insignificantly higher RS ratio than
those of naturally regenerated sample trees (0.28 cf. 0.25), different from previous research
by Luo et al. [63], which reported that natural forests had significantly greater RS ratio
compared to plantations. However, their forest-origin comparison dataset consisted of
several mixed broadleaf-coniferous tree species across China’s forests, ignoring the species-
specific variation. Pooling all species to analyze the RS ratio difference between origins
might yield uncertainties, as the opposite result was obtained by Mokany et al. [52]. They
used a pooled dataset from global forests and concluded that no significant differences were
identified between the RS ratio of the plantations and natural forests. Thus, the species-
specific RS ratio is more reliable, since each tree species has different growth strategies,
architecture, and vibrant interaction with various biophysical environments [64,65].

Apart from the tree growing origins (i.e., plantation and natural forest), the carbon
content of Pinus koraiensis was found to be affected significantly by DBH, H, and biomass
tissues (i.e., stem, root branch, and foliage). The carbon content of Pinus koraiensis was the
highest in foliage, slightly lower in branches, the lowest in stems, and slightly higher in
roots. A statistically significant difference in carbon content between the four primary tree
tissues has also been reported in the literature for other tree species in Northeast China [20,22].
Furthermore, Rodríguez-Soalleiro et al. [21] revealed that tree species and biomass tissues
are considered the biggest sources in tree carbon content variation, explaining about 69%
of the total variance. In addition, carbon content of planted Pinus koraiensis was slightly
insignificantly higher compared to the naturally regenerated trees, both averagely (48.75%
cf. 48.29%) and separately across the foliage (49.54% cf. 48.90%), branches (49.08% cf.
48.98%), roots (48.64% cf. 47.57%), and stems (47.75% cf. 47.69%). Similar results were
obtained by Elias and Potvin [66], which analyzed the carbon content difference between
the two origins using ten tropical tree species from Panama. It turns out that seven species
were insignificantly different, in which three of them (Anacardium excelsum, Enterolobium
cyclocarpum, and Tabebuia rosea) had higher carbon content in plantations than natural
forests. Overall, the average carbon content of Korean pine (48.60%) obtained in this study
had a 1.40% lower value than the commonly used 50% carbon content. Hence, using
the 50% generic carbon content might yield an approximately 1.0–4.5% overestimated
prediction for tree-level Korean pine carbon stock quantification. A more detailed analysis
regarding the bias yielded by the widely used 50% carbon constant value can be seen in
Zhang et al. [50], Dong et al. [40], and Widagdo et al. [20].

As one of the most superior predictors for predicting biomass, diameter at breast
height (D) has been widely applied in a large number of tree-level species’ allometric
equations across regions and forest types [7,31]. However, researchers still put a strong
effort into increasing the biomass equation’s accuracy by adding more supporting indepen-
dent predictors, such as tree total height (H), crown length, crown radius, wood density,
and tree/stand age [6,19,41]. Among those, H has been reported as the most promising
additional predictor to D, introducing a remarkable improvement on the model’s predictive
ability. Our results are consistent with the literature, in which the addition of H mostly
increases the models’ fitting performance across the five model categories (i.e., total, stem,
root, branch, and foliage; Table 3). In addition, the relationship between crown biomass and
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H was found to be negative, as has been repeatedly reported in previous studies [16,24].
It is indeed in full compliance with the natural law of the forest: for trees having the same
D, shorter trees generally tend to have a denser and larger crown compared to those of
higher trees, yielding more biomass allocated in the crown [67,68].

The effects of tree-growing origins (plantations and natural forests) were also con-
sidered by developing the dummy variable (DV) models and comparing the biomass
prediction results with the origin-free population average (PA) models. Significantly differ-
ent results were obtained between the DV and PA models (Table 3), suggesting that the
origin’s effect needs to be properly considered to establish biomass equations for Pinus
koraiensis. Compared to the PA models, the DV models successfully reduced the estimation
bias by 35.80%, 41.65%, 12.57%, and 6.35%, and for the foliage, branch, stem, and root
biomass, respectively (calculated using RMSE, Equation (7)). These findings are in line
with previous research by Zeng [9], Schurel et al. [31], and Widagdo et al. [24], which con-
firmed the importance of considering the origin’s effect on biomass models of Chinese fir
(Cunninghamia lanceolata), loblolly pine (Pinus taeda), and larch (Larix gmelinii) in southern
China, Arkansas, and northeast China, respectively. Better performance of origin-based
biomass models might also be related to a major shift in productivity allocation (i.e., stand
density or site productivity) between the planted and natural forest, leading to differences
in their tree features, such as wood density [60].

In this study, all newly developed models (PA-1, PA-2, DV-1, and DV-2) were entirely
compared against the previously established biomass equations for Pinus koraiensis (Figure 7),
developed by Wang et al. [37] and Li et al. [38]. However, both of these researchers only
used the dataset from the Korean pine monoculture plantations, neglecting the forest
origin’s effect in constructing the models. Wang et al. [37] used 10 destructively sampled
trees from northeast China, and Li et al. [38] felled 35 trees from central South Korea to
establish several belowground and aboveground biomass tissue equations. The additivity
property between several biomass tissues was also not considered in their developed
equations, in which it has been properly considered in our both PA and DV additive model
systems. Thus, remarkable errors were produced when their biomass equations fitted to
our specific tissues and total biomass dataset, which consist of destructively sampled trees
obtained from both plantations and natural stands. Overall, our uni- and multi-variable
model systems provided high accuracy for predicting tree-level biomass of both planted
and natural Pinus koraiensis compared to several previously established biomass equations
for Pinus koraiensis.

5. Conclusions

Uni- and multi-variable biomass models were developed for the two additive systems
of population average (PA) and dummy variable (DV) models, using destructively sampled
biomass datasets of natural and planted Pinus koraiensis from northeast China. Forest
origins were found to significantly affect the biomass equations, specifically for the four
primary tree tissues. Incorporating the origins effect in DV models and introducing tree
total height (H) as an additional predictor to DBH effectively improved the biomass
equations’ accuracy. Besides being outperformed by the DV models, PA models presented
relatively good performances and can be alternatively used when both natural and planted
Korean pine data are an inseparable set. The property of additivity was also presented in
our biomass model systems using nonlinear seemingly unrelated regression (NSUR) with
specific weighted functions for each equation to solve the heteroscedasticity problem. All
models have been validated using the Jackknifing technique. Overall, the performance
of our newly developed PA and DV models can be ranked according to their respective
combination of predictors: DV-2 > PA-2 and DV-1 > PA-1.

Biomass allocations, carbon content variability, and root-to-shoot (RS) ratio of the
planted and natural Korean pine were also analyzed in this study. The differences in
biomass distribution patterns between the two origins were apparent, and plantations
had a slightly higher average value than natural forests in terms of RS ratio (0.28 cf. 0.25)
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and carbon content (48.75% cf. 48.29%). Distinct traits of biomass partitioning, carbon
content, and RS ratio were detected between plantations and natural forests. Hence, forest
origin is a crucial element to be considered for improving the accuracy of tree-level biomass
equations and carbon stock estimations. Our newly established biomass model systems
can be used for estimating the biomass and carbon of Pinus koraiensis, specifically for the
National Forest Inventory of China. However, these equations will only deliver their best
performance for usage within the appropriate data coverage (i.e., DBH, H, and regions);
otherwise, a large bias might be produced.
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