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Abstract: Seed germination in response to fire-related cues has been widely studied in species from
fire-prone ecosystems. However, the germination characteristics of species from non-fire-prone
ecosystems, such as the saline-alkaline grassland, where fire occasionally occurs accidentally or is
used as a management tool, have been less studied. Here, we investigate the effects of different
types of fire cues (i.e., heat and smoke water) and their combined effect on the seed germination of
12 species from the saline-alkaline grassland. The results demonstrated that heat shock significantly
increased the germination percentage of Suaeda glauca and Kochia scoparia var. sieversiana seeds.
Smoke water significantly increased the germination percentage of Setaria viridis and K. scoparia seeds.
However, compared with single fire cue treatments, the combined treatment neither promoted nor
inhibited seed germination significantly in most species. These results suggest that fire cues can be
used as germination enhancement tools for vegetation restoration and biodiversity protection of the
saline-alkaline grassland.

Keywords: seed germination; fire cues; saline-alkaline grassland; salt-tolerant species; smoke water;
heat shock

1. Introduction

Fire is a fundamental ecological process that profoundly affects many terrestrial
ecosystems, including forest and grassland ecosystems [1–3]. Fire affects the distribution
of global biomes and acts as a natural selection force to drive the evolution of species [4,5].
In the Mediterranean climate zone, savannas, and coniferous forests in the northern hemi-
sphere, fire has become an important ecological factor to maintain the stability of these
ecosystems [6].

Fire can affect seed dispersal, germination, seedling establishment, flowering, and
other stages of plant growth and development [7]. Seed germination is an important
life-history stage, and it is also the main route for vegetation restoration following fire [8].
The immediately post-fire habitat is an advantageous environment for seed germination
and seedling establishment, with low competition and high available resources [9].

In addition to creating a favorable external environment for seed germination, the
vegetation combustion process produces smoke, heat, and a series of fire cues associated
with smoke that play critical roles in promoting seed germination [10–13]. Heat shock can
trigger germination by destroying the thick impermeable seed coat, allowing for water
uptake [14]. Plant-derived smoke contains karrikins (KARs), a family of compounds
produced by wildfires known to stimulate the germination of dormant seeds of at least
1200 Australian species [15–18]. Although seed germination in response to fire cues has
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been extensively studied in fire-prone ecosystems, their effects on seed germination of
species from non-fire-prone ecosystems are poorly understood [19,20].

The Songnen plain (121◦27′–128◦12′ E, 43◦36′–49◦45′ N) experiences a temperate
semi-humid and semi-arid continental monsoon climate [21]. The dry and windy weather
that prevails in winter and spring increases the risk of natural fire [22]. As a typical
interlaced farming–pastoral zone, farmers commonly burn straws before seeds are sown
each spring [23,24]. The germination stimulants in smoke are volatile and water-soluble
and can influence the surrounding habitats [25]. The Songnen plain is one of the world’s
major saline-alkali areas and is typically ecologically fragile [26]. Salt-alkali stress can
inhibit seed germination and seedling growth [27]. Grassland degradation due to climate
change and human activities has become a serious environmental problem in the Songnen
plain [28]. Therefore, salt-tolerant species, such as Leymus chinensis (Trin.) Tzvel and
Suaeda glauca (Bunge) Bunge, play an important role in the ecological restoration and the
sustainable development of animal husbandry [29,30]. Fire cues, especially smoke, provide
opportunities for the development of germination tools to promote seed germination and
seedling growth in ecological restoration efforts [15,31]. However, less attention has been
paid to the effects of fire cues on seed germination of salt-tolerant plants typical of the
Songnen plain.

In order to provide theoretical support for the vegetation restoration of degraded
habitat and sustainable development of animal husbandry, we selected 12 representative
salt-tolerant species in the Songnen saline-alkaline grassland to explore the response of
seed germination to different fire cues, alone and in combination, to address the following
two questions: (1) Does seed germination of species from Songnen non-fire-prone saline-
alkaline grassland respond to fire cues? (2) Is there a combined effect between smoke water
and heat shock on specific species?

2. Results
2.1. Germination Response to Different SW Concentrations

Germination responses to different smoke water (SW) concentrations greatly differed
among species (Figure 1). Germination percentages of Chloris virgata Sw., Suaeda corniculate
(C. A. Mey.) Bunge, Lepidium densiflorum Schrader, and Plantago depressa Willd. were higher
than 90% (Figure 1D,F,I,J), while the germination percentages of Setaria viridis (L.) Beauv,
Setaria pumila (Poiret) Roemer & Schultes, Lespedeza bicolor Turcz., and Hibiscus trionum L.
were less than 10% (Figure 1B,C,K,L). Of the 12 tested species, the germination percentages
of 11 species did not differ significantly among different SW concentrations (p > 0.05,
Figure 1). Only the germination of Kochia scoparia var. sieversiana (Pall.) Ulbr.ex Aschers.et
Graebn significantly increased, reaching a maximum germination percentage of 86.75% at
the SW concentration of 1%, which was 54.25% higher than the control (df = 5, χ2 = 150.29,
p < 0.001, Figure 1G).
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(G) Kochia scoparia var. sieversiana, (H) Chenopodium acuminatum, (I) Lepidium densiflorum, (J) Plantago depressa, (K) Lespedeza 

bicolor, and (L) Hibiscus trionum. Bars show means ± SE (n = 5). Different letters mean significant differences in germination 

percentage among the concentrations (p < 0.05). 
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Figure 1. Germination percentage of 12 species in response to different concentrations of smoke water at 16/28 ◦C with
a 12/12 h dark/light diurnal cycle. The numbers (0, 0.5, 1, 1.5, 2, 3) represent the concentration degrees of smoke-water
dilution. (A) Leymus chinensis, (B) Setaria viridis, (C) Setaria pumila, (D) Chloris virgata, (E) Suaeda glauca, (F) Suaeda corniculate,
(G) Kochia scoparia var. sieversiana, (H) Chenopodium acuminatum, (I) Lepidium densiflorum, (J) Plantago depressa, (K) Lespedeza
bicolor, and (L) Hibiscus trionum. Bars show means ± SE (n = 5). Different letters mean significant differences in germination
percentage among the concentrations (p < 0.05).

The mean germination time (MGT) of five species differed significantly among differ-
ent SW concentrations (p < 0.05, Figure 2), while the MGT of L. chinensis and Suaeda glauca
(Bunge) Bunge was not significantly different from the controls (df = 5, F = 10.03, p = 0.074;
df = 5, F = 10.255, p = 0.068, Figure 2A,C). For C. virgata and L. densiflorum, the MGT was
significantly longer at 3% SW than at lower concentrations (Figure 2B,F). The MGT of
C. virgata and P. depressa increased with the increasing SW concentration (Figure 2B,G).
Compared to controls, the MGT of S. corniculata differed significantly among different SW
concentrations (df = 5, F = 4.732, p < 0.01), and the shortest MGT reached 3.02 days at the
SW concentration of 1.0% (Figure 2D). The MGT of K. scoparia under control treatment was
significantly shorter compared to those under other SW concentrations, as the germination
percentage was low and the germination was concentrated in the first five days (Figure 2E).
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Figure 2. MGT of 7 species in response to different concentrations of smoke water at 16/28 ◦C with a 12/12 h dark/light
diurnal cycle. Species with germination percentages lower than 25% were not analyzed. The numbers (0, 0.5, 1, 1.5, 2, 3)
represent the concentration degrees of smoke-water dilution. (A) Leymus chinensis, (B) Chloris virgata, (C) Suaeda glauca,
(D) Suaeda corniculate, (E) Kochia scoparia var. sieversiana, (F) Lepidium densiflorum, and (G) Plantago depressa. Bars show
means ± SE (n = 5). Different letters indicate significant differences in MGT among the concentrations (p < 0.05).

The root length and shoot length responses to different concentrations of SW varied
among species (Table 1). The root lengths of P. depressa first increased and then decreased
with the increasing concentration of SW, reaching a maximum at 1% SW concentrations.
The root length of S. glauca did not significantly differ among different SW concentrations,
while the root length of other species was significantly inhibited by 3% SW. Compared
with the root length responses to different SW concentrations, a high SW concentration
only inhibited the shoot length of C. virgata, S. corniculate, and K. scoparia.

Table 1. Root and shoot length (cm) in response to different concentrations of smoke water.

Species Length 0 0.5% 1% 1.5% 2% 3%

L. chinensis
root 5.70 ± 0.24 a 5.21 ± 0.21 ab 4.37 ± 0.26 b 5.21 ± 0.19 ab 5.07 ± 0.28 ab 4.32 ± 0.51 b
shoot 5.13 ± 0.13 a 4.90 ± 0.12 a 5.09 ± 0.11 a 5.19 ± 0.13 a 5.32 ± 0.18 a 5.00 ± 0.24 a

C. virgata root 7.01 ± 0.41 a 5.72 ± 0.32 a 4.16 ± 0.43 b 2.89 ± 0.28 bc 2.38 ± 0.30 c 2.81 ± 0.50 bc
shoot 2.48 ± 0.08 a 2.48 ± 0.22 a 1.91 ± 0.10 b 1.85 ± 0.08 b 1.95 ± 0.11 ab 1.75 ± 0.33 b

S. glauca root 3.21 ± 0.28 a 2.66 ± 0.26 a 2.73 ± 0.32 a 2.47 ± 0.25 a 3.43 ± 0.30 a 2.74 ± 0.25 a
shoot 3.05 ± 0.25 a 3.20 ± 0.20 a 3.17 ± 0.17 a 3.31 ± 0.27 a 3.29 ± 0.15 a 3.10 ± 0.16 a

S. corniculata
root 2.02 ± 0.09 a 0.99 ± 0.08 b 0.68 ± 0.10 bc 0.52 ± 0.11 cd 0.24 ± 0.05 d 0.33 ± 0.05 cd
shoot 1.05 ± 0.03 ab 1.09 ± 0.02 ab 0.99 ± 0.04 ab 1.50 ± 0.35 a 0.81 ± 0.06 b 0.59 ± 0.05 b

K. scoparia root 4.81 ± 0.62 a 4.59 ± 0.47 a 4.42 ± 0.34 a 3.33 ± 0.43 ab 2.78 ± 0.39 b 1.10 ± 0.32 c
shoot 1.87 ± 0.19 a 1.23 ± 0.07 b 1.22 ± 0.05 b 1.07 ± 0.06 bc 1.34 ± 0.07 b 0.83 ± 0.06 c

L. densiflorum root 4.18 ± 0.16 a 4.03 ± 0.18 a 2.23 ± 0.19 b 0.33 ± 0.21 c 1.01 ± 0.21 c 0.61 ± 0.07 c
shoot 0.51 ± 0.01 a 0.85 ± 0.24 a 0.67 ± 0.24 a 0.33 ± 0.02 a 0.43 ± 0.02 a 0.70 ± 0.23 a

P. depressa root 3.51 ± 0.22 ab 4.05 ± 0.17 a 4.28 ± 0.22 a 2.98 ± 0.31 bc 2.23 ± 1.31 c 0.34 ± 0.08 d
shoot 0.70 ± 0.03 a 0.67 ± 0.02 a 0.93 ± 0.20 a 0.68 ± 0.04 a 0.87 ± 0.27 a 0.46 ± 0.02 a

On the third day after the seed germination test, five seedlings were taken from each Petri dish to measure the lengths of roots and shoots.
Species with germination percentages lower than 25% were not analyzed. Numerical values show means ± SE (n = 5). Different letters
mean significant differences in the lengths of roots and shoots among the concentrations (p < 0.05).
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2.2. Germination Response to Heat, SW, and Their Combined Effects

Overall, the germination percentages of four species were significantly affected by
heat, SW, and their combined treatments (p < 0.05, Figure 3). Compared to the controls,
SW significantly increased the germination of S. viridis and K. scoparia by 25% and 46.44%,
respectively (Figure 3B,G). Heat shock significantly increased the germination percentages
of S. glauca and K. scoparia by 33.92% and 22.5%, respectively, while it inhibited the ger-
mination of C. virgata, which decreased by 13.91% (Figure 3E,G,D). The combined effects
of SW and heat shock significantly promoted the germination of S. viridis, S. glauca, and
K. scoparia by 22%, 30.92%, and 59.5%, respectively, while it inhibited the germination
of C. virgata, which decreased by 12.92% (Figure 3B,E,G,D). The germination percentage
of C. virgata, treated with both heat shock and SW, was significantly lower than those
treated with SW alone, which indicated that their combined effect was negative (Figure 3D).
However, compared with a single fire cue, the combined effect had no significant positive
or negative effect on other species.
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Figure 3. Germination percentage of 12 species in response to different fire cues at 16/28 ◦C with a 12/12 h dark/light
diurnal cycle. CK, control; H, heat shock at 80 ◦C for 10 min; S, 1% smoke water; H + S, the combined treatment of heat
shock and smoke water. (A) Leymus chinensis, (B) Setaria viridis, (C) Setaria pumila, (D) Chloris virgata, (E) Suaeda glauca, (F)
Suaeda corniculate, (G) Kochia scoparia var. sieversiana, (H) Chenopodium acuminatum, (I) Lepidium densiflorum, (J) Plantago
depressa, (K) Lespedeza bicolor, and (L) Hibiscus trionum. Bars show means ± SE (n = 5). Different letters mean significant
differences in germination percentage among fire cues (p < 0.05).
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Overall, the MGT of six species was significantly affected by heat, SW, and their
combined treatments (p < 0.05, Figure 4). The MGT of L. chinensis and S. viridis was not
significantly changed by fire cues (df = 3, F = 2.677, p = 0.444; df = 3, F = 0.214, p = 0.885,
Figure 4A,B). The MGT of S. corniculata reached a minimum value of 3.02 days under
SW treatment, which was significantly shorter compared to the controls (Figure 4E). Heat
shock significantly prolonged the MGT of C. virgata and P. depressa by 0.49 and 1.00 days,
respectively, and shortened the MGT of S. glauca and L. densiflorum by 2.00 and 1.99 days,
respectively (Figure 4C,H,D,G). The combined treatment of SW and heat shock significantly
shortened the MGT of S. glauca and L. densiflorum while prolonging the MGT of C. virgata,
K. scoparia, and P. depressa (Figure 4D,G,C,F,H). Because the germination percentage of
K. scoparia was very low under the control treatment, all fire cue treatments significantly
increased the germination of K. scoparia but also prolonged the germination time.
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Figure 4. MGT of 8 species in response to different fire cues at 16/28 ◦C with a 12/12 h dark/light diurnal cycle. Species with
germination percentages lower than 25% were not analyzed. CK, control; H, heat shock at 80 ◦C for 10 min; S, 1% smoke water;
H + S, the combined treatment of heat shock and smoke water. (A) Leymus chinensis, (B) Setaria viridis, (C) Chloris virgata, (D) Suaeda
glauca, (E) Suaeda corniculate, (F) Kochia scoparia var. sieversiana, (G) Lepidium densiflorum, and (H) Plantago depressa. Bars show
means± SE (n = 5). Different letters mean significant differences in MGT among fire cues (p < 0.05).

3. Discussion

Plant-derived smoke has been demonstrated to act as a germination cue in a large
number of species [8,18,32]. The germination stimulants in smoke, such as karrikinolide
(KAR1) and glyceronitrile (SP1), are responsible for promoting seed germination in some
plants from fire-prone or non-fire-prone ecosystems [15,16,33]. Çatav et al. [34] found that
the germination percentage of Satureja thymbra from the Mediterranean region increased
from 57% to 86.5% after treatment with 50% SW [34]. Our results show that SW promoted
the germination of K. scoparia, S. viridis, and other representative species in the non-fire-
prone saline-alkaline grassland. In another study on a non-fire-prone ecosystem, Daws
et al. [35] found that seed germination of eight weed species from non-fire-prone ecosystems
significantly improved after KAR1 treatment, indicating that KAR1 has wide applicability
as a germination stimulant. However, most seeds with physiological dormancy respond to
smoke cues only after a period of after-ripening. In this study, under the same treatment,
the germination of S. viridis in the combined heat shock and SW experiment was higher
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than that in the SW gradient experiment. The reason for this result was that S. viridis seeds
underwent a month of after-ripening at room temperature after the end of the SW gradient
experiment, which led to a decrease in the physiological dormancy (PD) level. Notably,
smoke contains substances that not only stimulate germination but also inhibit it [36].
The composition of plant-derived smoke is complex, and there are still some unknown
germination stimuli in smoke cues [37]. Therefore, more experiments on the effects of
smoke on seed germination are needed in the future, especially in selecting representative
species from different habitats, which will help to identify new specific chemicals in smoke
that affect seed germination.

Heat shock breaks the physical dormancy of seeds by destroying the thick imper-
meable layer of the seed coat to promote seed germination. It has been reported that the
physical dormancy of two legumes (Harpalyce sp. and Mimosa leiocephala) was broken by
heat shock, promoting seed germination [38–40]. However, in this study, we found that
heat shock significantly promoted seed germination of S. glauca and K. scoparia, which are
representative plants in saline-alkaline grassland with PD. This means that heat shock is
not the exclusive cue for physically breaking dormancy in dormant seeds. Previous studies
have shown that some species with PD also respond to heat shock by germination, e.g.,
Drosophyllum lusitanicum, Darwinia diminuta, and Darwinia fascicularis [41,42]. In addition
to PD, heat shock can also promote the germination of seeds with morphophysiological
dormancy (MPD), e.g., Anigozanthos flavidus [43].

A high concentration of SW inhibits seed germination and seedling growth. We
found that high concentrations of smoke increased the MGT and inhibited the seedling
growth of some species. The results are consistent with Chou et al. [44] and Van Staden
et al. [45], who showed that high concentrations of SW inhibit germination and seedling
growth. As a representative inhibitor, trimethylbutenolide (TMB) has been proven to have
the ability to inhibit seed germination in smoke [36]. Therefore, the inhibitory effects of
high concentrations of SW on seed germination are probably caused by the influence of
germination-inhibiting substances that override the effects of KARs [44]. Temperature and
the duration of exposure are two important heat-shock-associated variables that affect
seed germination. In this study, we found that heat shock at 80 ◦C for 10 min significantly
inhibited the germination of C. virgata and prolonged the MGT of C. virgata and P. depressa.
This indicates that the heat shock intensity exceeded the tolerance threshold of these
species. Previous studies have shown that the germination of Melica ciliate reached a
maximum under heat shock at 110 ◦C for 5 min, but it was completely inhibited at 150 ◦C
for 10 min [13]. To better simulate the effects of fire cues on seed germination, it is necessary
to investigate the fire regime of different ecosystems, such as forests and grasslands, which
can vary greatly.

The combined treatment of heat shock and SW may show positive, negative, or no
effect on seed germination [43,46]. The effects of combined treatment may be related to
many factors, such as seed dormancy type and fire cue intensity. In this study, the combined
treatment of heat shock and SW significantly inhibited the germination of C. virgata, while
there was no significant positive or negative effect on other species. This indicates that the
combined intensity of SW and heat shock exceeds the seed germination requirements of C.
virgata. For species with combinational dormancy, heat shock breaks the physical dormancy
barriers of seeds, and subsequent addition of SW could promote the release of seeds from
their physiological dormancy to achieve a higher germination percentage [42]. Seeds with
physical dormancy are usually unable to respond to smoke due to the impermeability of
the seed coat.

As a typical ecological fragile region, saline-alkaline stress is the main limiting factor
of seed germination in the Songnen saline-alkaline grassland [27,47]. The soil seed bank is
an essential part of degraded vegetation dynamics, which directly impacts the resilience of
the ecosystem [48]. In nature, germination-promoting substances of smoke penetrate into
soil with rain and stimulate the germination of seeds in the soil seed bank [49]. Therefore,
the responses of seed germination of salt-tolerant plants to fire cues, such as S. glauca, K.
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scoparia, suggest that fire cues could be used as germination enhancement tools to help
vegetation restoration in degraded ecosystems.

4. Materials and Methods
4.1. Seed Collection

Mature seeds were collected from at least 20 individuals of each of the 12 species in
Songnen saline-alkaline grassland. All individuals were located in the same location, with
each individual approximately 0.5 m from any other study plant. Seeds were dry stored in
paper bags at room temperature (~22 ◦C) until the experiments commenced in November
2020 (Table 2).

Table 2. Information on the test species.

Species Family Collection time GD (days)

L. chinensis Poaceae July 2020 28
S. viridis Poaceae November 2020 26
S. pumila Poaceae September 2020 26
C. virgata Poaceae September 2020 8
K. scoparia Chenopodiaceae October 2020 25
S. glauca Chenopodiaceae October 2020 10
S. corniculata Chenopodiaceae September 2020 10
C. acuminatum Chenopodiaceae September 2020 10
L. densiflorum Brassicaceae July 2020 10
P. depressa Plantaginaceae July 2020 10
L. bicolor Fabaceae October 2020 9
H. trionum Malvaceae October 2020 9

GD: duration of germination experiment from start to end.

4.2. Germination Experiment

One kilogram of dried plant material from native vegetation of Western Australia
(i.e., Proteaceae, Fabaceae, Rutaceae) was fully burnt to produce smoke, which was subse-
quently pumped through 5 L of distilled water for 2.5 h to produce a 100%, fully saturated
concentration of smoke water [50]. Deionized water was used to dilute the saturated SW
to 0.5%, 1%, 1.5%, 2%, and 3% concentrations, representing 5 different treatment concentra-
tions of SW [50,51]. Deionized water (0% SW) was used as the control. For the germination
experiment, seeds were placed in the germination medium containing 0.7% agar and used
with the above-mentioned SW concentrations.

In the heat shock treatments, seeds were put in an oven and heat-shocked at 80 ◦C for
10 min [52]. Heat-shock-treated seeds were placed in Petri dishes (9 cm in diameter) with
0.7% agar medium. In the experiments testing the combined effects of heat shock and SW,
seeds were first put in an oven and heat-shocked at 80 ◦C for 10 min and then placed in the
0.7% agar medium containing 1% SW concentration for germination experiments.

For all experiments, 25 seeds were placed in each Petri dish, and each treatment was
repeated four times. Petri dishes were kept in an incubator (Harbin, China) at 16/28 ◦C
with a 12/12 h dark/light diurnal cycle [47,53]. Germination was checked once a day, and
the experiment was stopped when no germination was observed for three consecutive
days. On the third day after the seed germination test, five seedlings were taken from
each Petri dish to measure the lengths of roots and shoots. The tested species that had
germination percentage <25% were excluded from root length and shoot length analysis.

4.3. Statistical Analysis

Germination percentage and mean germination time (MGT) were calculated using the
following formulas [54,55]:

Germination percentage =
n
N
×100%; MGT =

∑ it
∑ i
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where n is the number of final germinated seeds, N is the total number of seeds, i is the
number of seeds newly germinated on the day t, and t is the number of days counted from
the beginning of the germination experiment. The tested species that had germination
percentage <25% were excluded from MGT, root length, and shoot length analyses.

We used generalized linear models (GLMs) with binomial error structure and the
log link function to evaluate the effects of different treatments on germination. The linear
model was used to analyze the effects of different treatments on MGT, root length, and
shoot length. Tukey’s test was used for multiple mean comparisons. All statistical analyses
and figures were carried out in R 3.6.3.

5. Conclusions

In conclusion, our results show that fire cues significantly promoted the germination
of some salt-tolerant species, e.g., S. viridis, K. scoparia, and S. glauca, which are representa-
tive plants in the saline-alkaline grassland. The seed germination responses to different
types and intensities of fire cues varied among species. Since salt-tolerant plants are the
key species involved in vegetation restoration in degraded saline-alkali grassland, under-
standing the response of seed germination to fire cues is of great significance for future
restoration of degraded grassland and sustainable development of animal husbandry in
these ecologically fragile areas.
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