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Abstract: Global population growth has increased food production challenges and pushed agri-
cultural systems to deploy the Internet of Things (IoT) instead of using conventional approaches.
Controlling the environmental parameters, including light, in greenhouses increases the crop yield;
nonetheless, the electricity cost of supplemental lighting can be high, and hence, the importance of
applying cost-effective lighting methods arises. In this research paper, a new optimal supplemental
lighting approach was developed and implemented in a research greenhouse by adopting IoT tech-
nology. The proposed approach minimizes electricity cost by leveraging a Markov-based sunlight
prediction, plant light needs, and a variable electricity price profile. Two experimental studies were
conducted inside a greenhouse with “Green Towers” lettuce (Lactuca sativa) during winter and spring
in Athens, GA, USA. The experimental results showed that compared to a heuristic method that
provides light to reach a predetermined threshold at each time step, our strategy reduced the cost by
4.16% and 33.85% during the winter and spring study, respectively. A paired t-test was performed on
the growth parameter measurements; it was determined that the two methods did not have different
results in terms of growth. In conclusion, the proposed lighting approach reduced electricity cost
while maintaining crop growth.

Keywords: Internet of Things (IoT); optimal control; supplemental lighting in greenhouses; image
processing

1. Introduction

The global population is predicted to grow to around 9.15 billion by 2050, which will
increase the amount of food that needs to be produced [1]. Furthermore, the limitations of
natural resources and productive land, as well as climate constraints raise concerns about
food security. The rising demand for food has attracted researchers’ attention towards the
application of Internet of Things (IoT) technology in agriculture. The IoT is a network of
physical objects that transfer data to other devices over the Internet [2]. Applying the IoT
in controlled environment agriculture (CEA) has reduced human effort, time, and cost
and resulted in yield improvements [3]. The IoT integrates several technologies such as
wireless sensor networks (WSNs), radio-frequency identification (RFID), cloud and edge
computing, and human–computer interaction (HCI) [4].

The application of the IoT in agriculture includes monitoring, control of agriculture
machinery, tracking and tracing, precision agriculture, and greenhouse production [3].
Monitoring and acquiring data about some environmental factors in crop farming such as
temperature, humidity, solar radiation, pest movement, and rainfall help to understand
the patterns and maximize farm production [5]. Other than crop farming, monitoring the
water quality, water level, and temperature levels in aquaponics is another application of
the IoT [6]. Furthermore, factors to be monitored in forestry [7] and livestock [8] are other
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applications of the IoT in agriculture. Although some strategies have been developed in
the area of monitoring, developing cost-effective methods is still an open area [3]. Both
manned and autonomous vehicles (such as unmanned aerial vehicles (UAVs)) can collect
useful data for farmers; they can also be remotely controlled through the IoT system [9].
Applying the IoT in tracking and tracing can improve agricultural companies’ supply
chain. Tracking is related to capturing, collecting, and storing data along the supply chain
from upstream to downstream, while tracing enables distinguishing the product from
downstream to upstream [10].

Another application of the IoT is in precision agriculture, that is a management
strategy that collects real-time data such as crop maturity, weather, air quality, etc., and
then analyzing the data to improve crop yields and reduce cost [11]. IoT technology could
be employed in greenhouses to maximize profit, reduce cost and labor, and save energy.
Several studies have considered applying WSNs in greenhouses for monitoring [12–14]. In
this study, we focus on the application of IoT technology in greenhouse production.

Supplemental lighting improves plant growth and contributes to higher yields in
CEA, in particular greenhouses. During rainy days or winter months, the overall amount
of sunlight that plants receive might not be sufficient for plant growth and development.
Therefore, supplemental lighting is often necessary for greenhouse fruit and vegetable
production. However, the electricity needed for greenhouse supplemental lighting amounts
to about 30% of the operating costs [15]. As a result, enhancing the cost effectiveness of
lighting with modern technologies plays an important role in the CEA industry.

Among various lighting types, light-emitting diodes (LEDs) have proven to be more
effective, due to their dimming capability, which enables changing the intensity of the
output light to any continuous level [16]. On the other hand, the output light of high-
intensity discharge (HID) lamps only takes some quantized levels, thereby not considered
as the primary choice for optimal lighting strategies. Researchers have proposed rule-
based supplemental lighting control methods since 1994; the authors in [17] developed a
rule-based approach for HID lamps to reach a predefined light target within a specified
photoperiod. Light and shade system implementation (LASSI) is another control method
with an on/off control for HID lamps in combination with a sunlight prediction and
movable shades to achieve a constant DLI [18]. Another version of LASSI improved the
sunlight prediction, resulting in increasing the accuracy of lighting control [19].

In [20], the DynaLight system, an on/off control method for HID lamps, was de-
veloped. This system considers a leaf photosynthesis model, variable electricity pricing,
and weather forecast to reduce electricity cost while reaching a minimum daily sum of
photosynthesis. Nevertheless, the weather forecasts were provided twice daily at an hourly
resolution [20], which is not precise enough for proper optimization. Another version of
DynaLight for controlling HID lamps is called DynaLight IND, which is a multi-objective
optimization platform for optimizing artificial lighting in greenhouses [21]. For DynaLight
IND, an evolution strategy was proposed and compared with the original genetic algorithm
(GA) in DynaLight. The simulation results showed that the new version improved the GA’s
evolution efficiency and increased the computation speed compared to the original Dy-
naLight. However, other than simulations, there is a need to conduct practical experiments
to validate the properties of DynaLight IND [21].

The adaptive lighting method [22] is another rule-based control approach that re-
duces cost by adjusting the duty cycle of LEDs to reach a specified threshold based on
photosynthetic photon flux density (PPFD) levels. Two general approaches were taken
in previous studies on supplemental lighting control with LEDs: either using real-time
sunlight intensity measurements to supply fixed PPFD levels [23,24] or assuming prior
information about sunlight intensity throughout the day [23]. Both of these perspectives
are faulty since sunlight intensity throughout the day is unknown and using the current
PPFD alone does not ensure reaching the daily light integral (DLI) or daily photosynthesis.

In our prior studies [25,26], we developed optimal supplemental lighting strategies
for both LEDs and HID lamps in greenhouses, which significantly reduced the electricity
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cost. We formulated the supplemental lighting control problem as a constrained convex
optimization problem, and we aimed at minimizing the electricity cost of supplemental
lighting, while considering sunlight prediction, plant light needs, and variable electricity
pricing in our model. This strategy used a Markov model to predict future sunlight inten-
sities. The simulation studies showed that the proposed method could reduce electricity
cost significantly [25]. To control the light intensity of HID lamps, we formulated a discrete
constrained optimization problem, which was solved using the method of multipliers and
a reinforcement learning (RL) algorithm, considering the Markov-based sunlight predic-
tion [26]. Although we made sure to provide sufficient light for good crop growth as the
constraint of the optimization problem, it is necessary to implement the method in the
greenhouse and monitor plant growth through experimental studies.

In the present paper, we implemented our proposed lighting strategy for LEDs in
a research greenhouse equipped with IoT technology. Lettuce was grown under two
treatments with different lighting control strategies over two seasons with low and high
natural light (winter and spring). To evaluate the proposed lighting control approach
in terms of plant growth, we collected data related to growth during both experiments.
The main contributions of this work are as follows: (1) We implemented an optimal
supplemental lighting control strategy in a greenhouse equipped with IoT technology. (2)
We evaluated the advantages of our proposed optimal lighting method based on not only
the electricity cost, but also the plant growth through experimental studies.

2. Materials and Methods
2.1. Preliminaries and Problem Formulation

Photosynthesis is a photon-driven process. Thus, photosynthetic light levels are
measured as the photosynthetic photon flux density (PPFD) with units of µmol m−2 s−1.
The PPFD is the light-photon numbers in the photosynthetically active wavelength range
(400–700 nm) per square meter per second. The daily light integral (DLI) in mol m−2 d−1 is
the integral of the PPFDs over 24 h. To ensure sufficient growth for plants in greenhouses,
it is recommended that they receive a minimum amount of DLI during the photoperiod,
which is the time period each day (up to 24 h) during which plants receive light [23]. To
formulate the optimization problem, the relation between two important parameters in
plant photosynthesis was considered. These parameters are the PPFD and electron trans-
port rate (ETR), which is the number of electrons transported through photosystem II per
square meter of leaf area per second (with units of µmol m−2 s−1). The daily photochemical
integral (DPI) in mol m−2 d−1 is the integral of the ETRs over 24 h. Furthermore, the ETR
and PPFD generally have an exponential rise to a maximum relation. The authors in [23]
derived a relationship between the ETR and PPFD as:

ETR = a (1 − e−k×PPFD),

where a is the asymptote of the ETR and k is the initial slope of the ETR divided by a.
For “Green Towers” lettuce, which was used in this study, a = 121 µmol m−2 s−1, and
k = 0.00277 [23].

For many greenhouse crops, to guarantee high-quality production and adequate
growth, a minimum DLI is suggested. In some cases, a specific photoperiod must also
be achieved. However, the DPI and plant growth depend on the combination of the
DLI and photoperiod; longer photoperiods with the same DLI result in a higher DPI
and more biomass [27,28]. Therefore, the DPI is a better predictor of plant growth and
better suited for lighting optimization algorithms than the DLI. “Green Towers” lettuce
requires a DPI of 3 mol m−2 d−1, corresponding approximately to a DLI of 17 mol m−2 d−1

under ambient sunlight conditions [23]. The optimization problem was formulated to
minimize the total amount of supplemental lighting cost to reach a specified DPI within a
specified photoperiod.
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The theory behind the experiments considered in this study is based on the constrained
nonlinear optimization problem presented in [25], which is as follows:

min
x

f (x) =
T

∑
t=1

Ct

k

[
ln(

a
a − xt − st

)− st

]
subject to:

T

∑
t=1

(xt + st) ≥
D
m

xt ≥ 0 ; t = 1, 2, · · · , T

xt ≤ ULED ; t = 1, 2, · · · , T,

(1)

where xt is the ETR resulting from supplemental light provided by the LEDs at time step
t, st is the ETR resulting from sunlight, st is the PPFD received from the Sun, ULED is the
maximum ETR that can be achieved with LEDs, Ct is the electricity price in cents/kWh, D
is the minimum DPI needed for the plant during the entire photoperiod, m is the length
of each time step in seconds, and T is the number of time steps. The first constraint in (1)
guarantees supplying sufficient light to the plants to reach the recommended DPI, and the
other constraints define the ETR bounds according to the PPFD of LEDs.

A photoperiod of 16 h is common for greenhouse lettuce production and used to
illustrate the performance of the control strategy. The optimization problem was solved
at each time step (with the length of m seconds) during the allowed photoperiod for each
day, and supplemental light was provided up to the optimal PPFD calculated for that
time step. The process was repeated every m seconds time step, for a total number of
T = 16 × 3600/m when a 16 h photoperiod was used. The Markov-based predictive
values are substituted in (1), instead of the actual future sunlight intensities (which are not
obtainable in real time). For a detailed description on sunlight prediction using Markov
chains, we refer to our previous work [25]. Consequently, (1) can be demonstrated as:

minimize
x

T

∑
t=i

Ct

k

[
ln(

a
a − xt − st

)− st

]
subject to:

T

∑
t=i

(xt + st) ≥
D
m

−
i−1

∑
t=1

(xt + st),

xt ≥ 0; t = i, i + 1, · · · , T,

xt ≤ ULED; t = i, i + 1, · · · , T.

(2)

The optimization problem (2) was solved once before sunrise and once after sunset.
Throughout the day, (2) was solved repeatedly at each time step. The interested reader is
referred to [25] for more details on how to calculate the optimal lighting strategy.

2.2. IoT Structure

Four essential components of an IoT ecosystem include: (1) IoT devices; (2) communi-
cation technology; (3) the Internet; and (4) data storage and processing [3]. The description
of each component is provided as follows:

(1) IoT devices: IoT devices consist of embedded systems, which include microprocessors,
field programmable gate arrays (FPGAs), and input/output interfaces that interact
with sensors and actuators [3]. In this study, a quantum light sensor was used to
measure sunlight irradiance in the greenhouse, and an infrared (IR) night vision
camera was deployed to monitor growth and calculate the projected canopy size
(PCS) (a morphological indicator of plant growth). A Raspberry Pi was also used as
the microprocessor, which was connected to the camera and the light sensor through
an analog-to-digital converter (ADC). Data were stored on the Raspberry Pi SD card
and then transferred through WiFi. Reliability, portability, security, and cost were
taken into account while choosing the IoT devices;
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(2) Communication technology: Communication technology in IoT systems can be catego-
rized based on the standards, spectrum, and application scenarios. In the deployment
of wireless connectivity, the range of the communication distance, data rate, security
and resilience, and cost of gateway modems are some of the parameters that should
be considered [3]. For our study, WiFi was chosen as the wireless technology with a
WLAN and WPA2 security;

(3) Internet: The connection between IoT devices and the Internet allows transferring
data towards a remote infrastructure for storage, processing, and further analysis.
Security, accessibility, and support for real-time data should be taken into account
while transferring data [3];

(4) Data storage and processing units: Data collected in agriculture applications can be in
different forms including images, text, audio, and video. Cloud IoT platforms have
been used to store big data collected from sensors. Some of the commercial platforms
that provide data storage and analysis are Onfarm systems, Cropx, KAA, Farmx,
Easyfarm, and Farmlogs [3]. In our experiment, data in the form of text and images
were stored on the Raspberry Pi SD card and retrieved remotely using WPA2 and
RealVNC software (RealVNC is available at https://www.realvnc.com/en/, accessed
on 20 November 2020).

2.3. Experimental Setup

To evaluate the performance of the proposed lighting control approach in terms of
plant growth, as well as electricity cost, two experiments were conducted inside of a
research greenhouse for “Green Towers” lettuce in Athens, GA, USA. The experimental
unit consisted of a group of 15 plants in 10 cm2 pots on each bench. Those pots were filled
with a soil-less substrate (80% peat: 20% perlite (v/v) (Fafard 1P; SunGro Horticulture,
Agawam, MA, USA)). Plants were grown under two supplemental lighting treatments
(the proposed method and a heuristic one) and were manually irrigated every two or
three days with a nutrient solution containing 100 mg L−1 N made with a water-soluble
fertilizer (15N–2.2P–12.45K, Peters Excel 15–5–15 Cal-Mag Special; Everris NA Inc., Dublin,
OH, USA).

We compared the lighting electricity cost of our proposed method to two supplemental
lighting strategies: (1) baseline, which is also optimal and solves the optimization problem
(2) assuming perfect prior knowledge of sunlight throughout the day; (2) heuristic, in
which the goal was to supply enough supplemental light to reach a minimum PPFD, unless
the PPFD from sunlight alone exceeded the threshold. Thus, by the end of photoperiod, the
plants will have received enough supplemental light to reach a DPI greater than or equal to
the suggested quantity. In this method, sunlight prediction and real-time electricity price
are not taken into account. Since the assumption of perfect prior knowledge of sunlight
is not realistic nor practical, only the heuristic method and the proposed method were
implemented in the greenhouse to grow lettuce under those treatments and compare plant
growth. However, the simulation results related to the electricity cost for the baseline
method are provided and represent a theoretical optimal scenario.

Our control algorithms were implemented on the Raspberry Pi 3 Model B (a low-cost,
small microprocessor) using the Python programming language. Raspberry Pi operates as
a control hardware to decide on how much supplemental lighting the plants need based
on the predicted sunlight. CVXPY, a domain-specific language (DSL) that enables solving
convex optimization problems with the high-level features of Python [29,30], was used to
calculate the optimal lighting (CVXPY is available at http://www.cvxpy.org, accessed on 1
January 2020).

To develop the Markov model for sunlight prediction, sunlight data collected from
the NREL database [31] were taken as representative of the sunlight intensity outside our
greenhouse. Often, 40–70% of the sunlight PPFD represents the PPFD measured at a leaf
surface in a greenhouse because of the building materials of the greenhouse ceiling and the
sunlight radiation angle [32]. For the development of the Markov model, we considered

https://www.realvnc.com/en/
http://www.cvxpy.org
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40% as the light transmission rate since the greenhouse had an internal shade cloth, which
was used to achieve low sunlight levels and facilitate lighting research. This model was
used in both experiments to predict sunlight based on real-time PPFD measurements by
a light sensor inside the greenhouse, underneath the shade cloth. These measurements
represent the amount of sunlight that reached the plants. The parameters used in our
optimization problem were similar to those considered in our prior study [25] and for the
type of LEDs used in the experiments (given in Table 1).

Table 1. Model and optimization parameters used in this work.

Variable Value Variable Value

a 121 µmol m−2 s−1 m 900 s

D 3 mol m−2 d−1 T 64

ULED 86.21 µmol m−2 s−1 k 0.00277

To measure the sunlight PPFD over the plant canopy in the greenhouse, an analog
full-spectrum quantum sensor (SQ-500-SS, Apogee instruments, Logan, UT, USA) with an
improved spectral range of 389–692 nm ± 5 nm was used. SQ-500-SS is a self-powered
PAR light sensor with a 0–40 mV output and calibration factor of 100 µmol m−2 s−1 mV.
Sunlight intensity was measured by the light sensor using a Python script every three
minutes, then averaged to be representative of sunlight at each time step (15 min). Since
the Raspberry Pi only reads digital inputs, the analog output of the sensor was converted
to digital using ADS1115, which is a high-precision 16 bit ADC. ADS1115 uses the I2C
communication protocol to read analog values; therefore, I2C should be enabled on the
Raspberry Pi before interfacing.

The supplemental lighting source used in our setup was the GE ArizeTM element
L1000 LED grow light bars with a 3:1 red-to-blue light ratio (HPPB4) and a power of 627 W.
Several methods of controlling the output signal of LED drivers are available; the 0–10
V dimming approach was used for our purposes. In this method, there is a near-linear
relationship between the dimming voltage of the LED driver and the output light of the
LED. To control the output light of the LEDs, two GPIO pins of the Raspberry Pi (GPIO
13 and GPIO 18) were used to generate two pulse-width modulation (PWM) signals. One
PWM signal controls the LEDs under the heuristic treatment, and the other one controls the
LEDs under the prediction-based treatment. These PWM signals of the Raspberry Pi need
to be amplified and filtered to become compatible with the dimming voltage of the LED
driver; thus, a signal-conditioning circuit (using the TL081 operational amplifier (op-amp))
was designed to supply the proper signal to the LED drivers. Based on the calculated
supplemental lighting strategy, the duty cycle of the PWM signals was determined by the
Raspberry Pi and converted to the compatible dimming voltage (control signal) for LED
drivers by the signal-conditioning circuit. At each time step (15 min), the control signals
for the two treatments were adjusted, thereby changing the output light of the LEDs.

Every morning, the Raspberry Pi automatically runs the Python code, which reads
real-time light sensor data, predicts future sunlight, solves the optimization problem, and
calculates the supplemental lighting for both treatments at each time step (every 15 min)
for a 16 h photoperiod. Once the photoperiod is over and plants receive sufficient light, the
LEDs are turned off.

To monitor the plant growth and PCS for the two treatments, Arducam day–night
vision cameras were installed above the benches. The camera was mounted facing down-
ward above the crop. These cameras have an IR cut filter that switches automatically. The
filter is on for daylight color accuracy and off for IR night vision. Therefore, the camera can
take pictures at night in complete darkness using its small IR LEDs. Moreover, this camera
is an inexpensive choice (less than USD 30) for monitoring plant growth. Each camera
was connected to a Raspberry Pi, which was set to automatically take pictures every night
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when the LEDs were off, so that there would be no sunlight or LED light interfering with
the plant images. Figure 1 shows the imaging setup.

Figure 1. Imaging setup built in the greenhouse.

We accessed the data related to supplemental lighting, sunlight, cost, and plant images
through real-time remote monitoring of the Raspberry Pi using WPA2 and RealVNC
software. Plant images were processed using PlantCV, which is an image analysis package
for plant phenotyping [33] (PlantCV is available at https://plantcv.readthedocs.io/en/
stable/, accessed on 20 November 2020). The PCS was measured by using a reference with
a known area and counting the number of detected leaf pixels.

Shown in Figure 2 is the experimental setup in the greenhouse. The light sensor was
installed above the LED fixtures so that it was not affected by the LED light and was
connected to the ADC. The ADC converts the analog measurements to digital, and hence,
the Raspberry Pi can read them. After predicting sunlight and solving the optimization
problem, the duty cycle of the PWM signals was determined and amplified. These control
signals were connected to the dimming wires of the LED driver, thereby changing the
output light of the LED. The camera was installed above the crops and connected to
the Raspberry Pi through a ribbon cable. The materials used in the proposed setup are
presented in Table 2.

https://plantcv.readthedocs.io/en/stable/
https://plantcv.readthedocs.io/en/stable/
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Figure 2. Experimental setup in the greenhouse.

Table 2. Main materials used in our experimental setup.

Item Details

plant “Green Towers” lettuce

lighting source GE ArizeTM element L1000 LED grow light bar

light sensor SQ-500-SS

microprocessor Raspberry Pi 3 Model B

signal-conditioning circuit TL081 op-amp, 24V DC power supply adapter, resistors, and capacitors

ADC ADS1115

camera Arducam automatic day/night camera module (model number: B003503)

The first experiment ran from 11 December 2020 through 28 January 2021, when
sunlight levels were low. The daily minimum temperature, max temperature, minimum
vapor pressure deficit (VPD), and maximum VPD inside the greenhouse were 12.4 ± 3.4 °C,
22.4 ± 2.8 °C, 0.46 ± 0.15 kPa, and 1.81 ± 0.63 kPa (mean ± SD), respectively. The CO2 level
was at the ambient level; the average DLI from sunlight under the shade cloth was 2.22 ±
0.6 mol/m2d, and the daily amounts are provided in Figure 3. The setup in Figure 2 was
installed, and three lettuce replicates for the heuristic method and three for the proposed
optimal method with six LEDs were considered. Figure 4 depicts the greenhouse section in
the first experiment. On each bench, 15 plants were grown as 1 experimental unit. This
section of the greenhouse was surrounded by windows except for the west wall, where the
cooling pad was. Therefore, the benches on the west side may received less sunlight late in
the day. It is also possible that the temperatures may have been slightly lower on the west
side due to the cooling pad. However, very little cooling was required in winter. Ambient
light and temperature can affect plant growth, and the treatments were blocked to account
for such effects. Further details are provided in the Results and Discussion Section. Plants
were harvested 49 d after seeding, and the proposed method was evaluated in terms of
both the electricity cost and plant growth.
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Figure 3. DLI from sunlight under the shade cloth during the first experiment.

For the imaging part, only two cameras were installed above the two benches, one
controlled by the heuristic method (Bench Number 8 in Figure 4) and the other one by the
prediction-based method (Bench Number 7 in Figure 4). Thus, we used two Raspberry
Pis in this experiment, one connected to a camera for taking pictures of one replicate
of the heuristic method and another to take pictures of the plant under the prediction-
based treatment and to control the output light of all six LED fixtures. During the first
experiment, the photoperiod started at 4:30 a.m. and ended at 8:30 p.m. At 8:30 p.m., the
LEDs turned off, and the camera automatically took images at 11:30 pm when there was
no supplemental light in the greenhouse. We obtained a variable hourly electricity price
profile from a website (https://www.ieso.ca/power-data, accessed 1 December 2019) and
scaled the numbers to account for the U.S. electricity prices based on government rates.
The electricity price profile considered in this experiment is given in Figure 5 and was the
same throughout the study.

Figure 4. Experimental units in the greenhouse under two different lighting treatments in the first
experiment. Plants on the pink benches were grown using the prediction-based lighting method, and
those on the blue benches were grown using the heuristic method.

https://www.ieso.ca/power-data
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Figure 5. Variable electricity price in cents/kWh used in the first experiment.

Remark. The units of f in (1) are cents (kWh)−1 µmol m−2 s−1; therefore, a conversion factor
is needed to convert these units to cents/m2. Converting the PPFD of GE LEDs to kW m−2,
2.9 µmol J−1 (or equivalently 2.9 × 103 µmol (kW)−1 s−1) was performed [34]. Assuming the
length of each time step (15 min or 0.25 h), the conversion factor q is defined as:

q =
1

2.9 × 103 × 0.25. (3)

Therefore, q× f represents the electricity cost of supplemental lighting with units of cents/m2.

Other than the PCS, the leaf chlorophyll content index (CCI), anthocyanin content
index (ACI), specific leaf area (SLA), and shoot dry weight were measured to compare plant
growth for the two lighting approaches. The CCI and ACI were measured using chloro-
phyll and anthocyanin meters (CCM-200 plus and ACM-200 plus; Apogee Instruments,
Logan, UT, USA) on the uppermost fully expanded leaves at two different times, once
partway through the study and again near the end. Each time, 10 measurements on each
experimental unit (group of 15 plants) were collected. The average value of these measure-
ments was considered for each unit. A higher CCI can increase the light absorptance [35],
and the anthocyanins in leaves have a protective role against intense light [35].

The SLA was calculated by dividing the leaf area of a plant by the shoot dry weight.
For each experimental unit (15 plants), 3 plants were selected, and the total leaf area was
measured using a leaf area meter (LI-3100 leaf area meter; LI-COR Biosciences, Lincoln,
NE, USA). When drying the plants in the oven, these three plants were placed separately
from the other plants. After drying them at 70 °C for 7 d, the shoot dry weight of each
group of plants was also measured, thereby achieving the SLA per plant. Furthermore,
dividing the total dry weight over the number of pots for each unit (15), we obtained the
shoot dry weight per plant.

A paired t-test (two-tailed form) was performed for each growth parameter to de-
termine if the two lighting methods had different results. In this test, each replicate was
considered to be a pair, and the mean values for the two treatments were compared. If the
p-value was less than the significance level (here, 0.05), the null hypothesis was rejected,
which means there was a significant difference between the two methods.

The second experiment was conducted using the same crop species in the same
place, from 2 April 2021 through 18 May 2021, when sunlight levels were higher than
in the first experiment. The minimum temperature, max temperature, minimum vapor
pressure deficit (VPD), and maximum VPD inside the greenhouse were 18.7 ± 1.5 °C,
25.8 ± 1.5 °C, 0.52 ± 0.21 kPa, and 1.86 ± 0.75 kPa (mean ± SD), respectively. The CO2
level was at the ambient level; the average DLI from sunlight under the shade cloth was
7.45 ± 3.11 mol/m2d, and the daily amounts are given in Figure 6. Not only were the
sunlight levels much higher than in the first experiment, they were also more variable, thus
increasing the potential benefits of an optimized lighting control approach.
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Figure 6. DLI from sunlight under the shade cloth during the second experiment.

This time, we experimented on more replicates, i.e., five replicates for each treatment,
which is represented in Figure 7. Plants were harvested 47 d after seeding. The same
hardware setup was utilized for this experiment; however, the PCS was monitored for
three replicates of each treatment using six Arducam cameras. The cameras were installed
above Bench Numbers 1 and 2, 7 and 8, and 14 and 15 (see Figure 7). Moreover, the lighting
control started at 5 am every day and ended at 9 pm. This change was made to ensure
that the photoperiod fully encompassed the natural photoperiod. Another different factor
compared to the first experiment was the use of a fixed electricity price (13.19 cents/kWh),
rather than real-time pricing. Considering real-time pricing is advantageous to reduce the
electricity cost of lighting. However, for the second experiment, we intended to use the
electricity price available to our research greenhouse, which is fixed. Measurements of the
growth parameters were repeated for the second experiment, and paired t-tests (two-tailed
form) were performed to accept or reject the null hypothesis.

Figure 7. Experimental units in the greenhouse under two different lighting treatments in the second
experiment. Pink color is an indicator of the prediction-based lighting method, while blue is for the
heuristic method.

3. Results and Discussion

First, we discuss the results of the first experiment. The lighting control performance
and sunlight prediction throughout different days with different sunlight levels are shown
in Figures 8–10. Figure 8 is representative of a rainy day with very low sunlight irradiance.
January 14th’s irradiance was close to a day with regular sunlight during that period,
and Jan 28th had a relatively high sunlight irradiance (presented in Figures 9 and 10,
respectively). The cost increase on each day compared to the baseline was calculated and
shown in Table 3. Moreover, the average of actual sunlight, its prediction, and supplemental
light for different methods were calculated throughout this experiment and displayed in
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Figure 11. Based on the results in Table 3, the cumulative cost increase for the heuristic
method was 5.45%, while for the prediction-based method, it was 1.06% compared to
the baseline. Therefore, our prediction-based lighting approach showed about a 4.16%
electricity cost reduction compared to the heuristic method throughout the first experiment.

Table 3. Cost of lighting control strategies in $/m2 per day for different days during the first experiment.

Day Baseline Cost Prediction-Based Method Cost Heuristic Method Cost
Increase Compared to Baseline Increase Compared to Baseline

December 24 0.39 0.0027 (0.7%) 0.0174 (4.46%)
January 14 0.33 0.0040 (1.21%) 0.0178 (5.39%)
January 28 0.27 0.0038 (1.41%) 0.0286 (10.59%)

cumulative cost 16.14 0.17 (1.05%) 0.88 (5.45%)

In the baseline approach, perfect prior knowledge of sunlight throughout the day
is assumed, which is not practical and only represents a theoretical optimal scenario. A
predictive model is not able to predict sunlight with 100% accuracy; therefore, the sunlight
information in the baseline approach is always more accurate than that in the proposed
method. In other words, the baseline is an ideal optimal scenario with the least electricity
cost, which is not practical. However, the prediction-based method is optimal and practical,
which resulted in a very close solution to the baseline (the global optimal solution of the
lighting problem). The heuristic lighting strategy generally provided more light than the
minimum DPI and resulted in extra supplemental lighting cost; thus, it is not optimal.

Figure 8. Performance of lighting control strategies and sunlight prediction for December 24th, a day
with a low sunlight level during the first experiment.
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Figure 9. Performance of lighting control strategies and sunlight prediction for January 14th, a day
with a moderate sunlight level during the first experiment.

Figure 10. Performance of lighting control strategies and sunlight prediction for January 28th, a day
with a high sunlight level during the first experiment.
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Figure 11. Performance of lighting control strategies and sunlight prediction for the whole period of
the first experiment (49 d) as an average.

Some of the images taken by our setup (see Figure 1) are shown in Figure 12. The top
images were taken of the plants under prediction-based lighting, and the bottom images
were taken of the plants under the heuristic lighting method. The left pairs in Figure 12
were captured 32 d after seeding (January 11th), and the right pairs were captured at the
end of the experiment (January 28th). Arducam took the left images of each pair at night in
darkness, and then, the images were transferred to a computer through the VNC viewer.
Hence, we could access the images remotely and in real time via WiFi. Using the PlantCV
package, the images were analyzed, and the PCS was measured by thresholding, thereby
resulting in the right images of each pair in Figure 12.

Figure 12. The original and the processed images on Day 32 and the last day of the first experiment.

The results of the statistical analysis on all growth parameters are provided in Table 4.
The p-value for all parameters was greater than 0.05; consequently, the means of the two
treatments were almost equal for each growth parameter (especially shoot dry weight,
which was the most important growth parameter). Therefore, the proposed approach
did not affect the plant growth adversely or positively. We calculated another parameter,
which was the total dry weight divided by the total electricity cost (in cents/m2) , for
each approach. This parameter includes both cost and growth information, which for the
prediction-based method was 0.0797 (g/cent) and for the heuristic method was 0.0738
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(g/cent), a 7.4% reduction. Hence, the proposed optimal lighting approach resulted in a
reduction of the electricity cost and did not affect plant growth adversely.

Table 4. Results of the paired t-test on the growth parameters during the first experiment.

Measurement
Mean
(Prediction-
Based)

Mean
(Heuristic)

Standard
Deviation
(Prediction-
Based)

Standard
Deviation
(Heuristic)

Standard
Error
(Prediction-
Based)

Standard Error
(Heuristic) p-Value t-Value

CCI/January 11th 16.36 17.1 2.84 1.68 1.64 0.97 0.40 1.06

CCI/January 28th 24.06 22.93 1.94 1.42 1.12 0.82 0.33 1.26

ACI/January 11th 4.86 4.91 0.45 0.13 0.26 0.08 0.82 0.25

ACI/January 28th 5.56 5.58 0.64 0.17 0.37 0.1 0.96 0.06

SLA per plant
(cm2/g) 114.17 117.67 3.66 11.7 2.11 6.76 0.54 0.73

shoot dry weight
per plant (g) 2.89 2.79 0.41 0.36 0.24 0.21 0.8 0.28

Figures 13–15 show the performance of the lighting strategies and sunlight prediction
throughout different days with different sunlight levels in the second experiment. Figure 13
is representative of rainy days with low sunlight irradiance compared to the mean irradi-
ance in April. April 7th irradiance was close to a day with regular sunlight during that
period, and May 6th had high sunlight irradiance (presented in Figure 14 and Figure 15,
respectively). The cost increase in each day compared to the baseline was calculated and
shown in Table 5. Moreover, the average of actual sunlight, its prediction, and supplemen-
tal light for different methods were calculated throughout this experiment and displayed
in Figure 16. Based on the results in Table 5, the cumulative cost increase for the heuristic
method was 62.86%, while for the prediction-based method, it was 7.74% compared to the
baseline. Our prediction-based lighting approach showed about a 33.85% electricity cost
reduction compared to the heuristic method throughout the second experiment.

Some of the images taken by our setup (see Figure 1) during the second experiment
are illustrated in Figure 17. The left pairs were captured 33 d after seeding (May 4th),
and the right pairs were captured at the end of the experiment (May 18th). The PCS was
measured using PlantCV package, and we monitored the plant growth remotely via WiFi
in real-time, the same method as the first experiment. The average of the PCS for those
replicates that had a camera was measured for each treatment and shown in Figure 18.

Other than the lighting approach, different temperatures and ambient light in the
greenhouse had at most minor effects on our results, since our treatments were blocked to
account for east to west environmental gradients within the greenhouse.
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Figure 13. Performance of lighting control strategies and sunlight prediction for April 15th, a day
with a low sunlight level during the second experiment.

Figure 14. Performance of lighting control strategies and sunlight prediction for April 7th, a day with
a moderate sunlight level during the second experiment.
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Figure 15. Performance of lighting control strategies and sunlight prediction for May 6th, a day with
a high sunlight level during the second experiment.

Figure 16. Performance of lighting control strategies and sunlight prediction for the whole period of
the second experiment (47 d) as an average.
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Table 5. Cost of lighting control strategies in $/m2 per day for different days during the second
experiment.

Day Baseline
Cost

Prediction-Based Method
Cost Increase Compared to
Baseline

Heuristic Method Cost
Increase Compared to
Baseline

April 7 0.16 0.0085 (5.31%) 0.14 (87.5%)

April 15 0.21 0.0135 (6.43%) 0.11 (52.38%)

May 6 0.06 0.0015 (2.5%) 0.21 (350%)

cumulative
cost 9.49 0.73 (7.69%) 5.96 (62.8%)

Figure 17. The original and the processed images on Day 33 and the last day of the second experiment.
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Figure 18. Average PCS for the two treatments during the last 23 d of the second experiment.

The results of the statistical analysis on the growth parameters for the second exper-
iment are provided in Table 6. The p-value for all parameters was greater than 0.05,
except for the SLA (t(4) = 3.37, p = 0.03). The SLA was greater for the proposed
strategy (µ = 131.24, σ = 8.1 cm2/g per plant), compared to the heuristic method
(µ = 116.69, σ = 7.34 cm2/g per plant). However, this difference was not necessarily
due to a true biological effect. It was more likely due to a Type I error. Thus, the statistical
analysis did not show meaningful differences in plant growth between the two treatments.
The total shoot dry weight divided by the total cost for the prediction-based method was
0.2166 (g/cent) , while for the heuristic method, it was 0.1475 (g/cent) , 32% lower. Hence,
the proposed strategy resulted in a higher efficiency than the heuristic method in terms of
electricity cost together with plant growth.

Table 6. Results of the paired t-test on the growth parameters during the second experiment.

Measurement
Mean
(Prediction-
Based)

Mean
(Heuris-
tic)

Standard
Deviation
(Prediction-
Based)

Standard
Deviation
(Heuris-
tic)

Standard
Error
(Prediction-
Based)

Standard
Error
(Heuris-
tic)

p-Value t-Value

CCI/May 7th 9.81 10.54 0.80 0.73 0.36 0.33 0.19 1.98

CCI/May 18th 12.19 11.80 1.40 0.76 0.63 0.34 0.62 0.54

ACI/May 7th 3.63 3.67 0.22 0.14 0.1 0.06 0.77 0.32

ACI/May 18th 4.1 4.02 0.16 0.25 0.07 0.11 0.49 0.75

SLA per plant
(cm2/g) 131.24 116.69 8.1 7.34 3.62 3.28 0.03 3.37

PCS per plant
(cm2) 241.93 246.06 14.42 32.99 8.33 19.05 0.78 0.33

shoot dry weight
per plant (g) 2.95 3.04 0.45 0.42 0.2 0.19 0.06 2.64
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Both experiments validated that the prediction-based method can reduce cost while
maintaining plant growth. As shown in Figures 3 and 6, the sunlight levels were much
lower during the first study compared to the second study; therefore, more supplemental
light was provided to reach the minimum DPI during the first study, which resulted in
a higher electricity cost (for both approaches). Since the dry weight at the end of the
experiments was almost the same, the total dry weight/total cost was lower for the first
study. The difference in the DLI from sunlight also affected the electricity cost savings of
the proposed method for the two experiments. During the first study, the DLI was very low,
and that resulted in providing so much supplemental light to satisfy the light requirements
of the plants with both lighting approaches (the heuristic and the proposed method). The
heuristic method provided the greatest benefits when the light levels are variable, both in
the short term (15 min) and longer term (day to day). Thus, there was not a huge difference
in the cost of the lighting methods. However, during the second study, the DLI levels were
much higher, and much less supplemental lighting was needed to reach the minimum
lighting requirement. Hence, the proposed method reduced the cost by a higher percentage
in the second study (33.85% compared to 4.16%).

The cost profile in the second experiment was a fixed price, since we wanted to
consider the actual conditions in our research greenhouse. The simulation results in our
previous work [25] showed that the proposed method with variable electricity pricing
contributed to a cost reduction in different months of the year. If we used a variable cost
profile for the second study, as well as the first one, the cost reduction in the second study
would have been even higher.

The proposed strategy for controlling supplemental lighting significantly differs
from the previous approaches. Most of the previous approaches that were mentioned
in the Introduction Section are rule-based methods and do not use sunlight prediction
[15,17,22]. Among all the methods proposed for HID lamps, the DynaLight system and
DynaLight IND are the most efficient ones since they use weather forecast, a photosynthesis
model, and a variable electricity profile. However, these methods are still not optimal
because providing the weather forecasts twice daily is not enough to obtain the optimal
lighting strategy, and for the improved version of this system (DynaLight IND), practical
experiments should be conducted to validate its efficiency [20,21]. On the other hand, our
proposed method was evaluated through both simulations and practical experiments.

A study on an adaptive control approach for LEDs [15] showed that a method similar
to the heuristic method reduces the cost of supplemental lighting, compared to two other
rule-based methods. In the present paper, we concluded that the prediction-based approach
reduced the cost significantly compared to the heuristic method. Therefore, our strategy
outperformed the other methods by taking advantage of the sunlight predictive model,
the minimum DPI requirement, and variable electricity pricing. The shortcoming of our
method is that the sunlight predictive model uses the mean value of the historical data at
the beginning of the day, and for rainy days with too low sunlight levels, this may result in
overestimating sunlight. Therefore, this approach may not perform as expected in this case.

There has been much research on growing lettuce with 24 h photoperiods [36].
Nonetheless, this practice has not (yet) been adopted by the industry, where photoperiods
of 16–20 h are more commonly used. To make our research relevant to the greenhouse
industry, we decided to use a photoperiod that is commonly used in commercial green-
houses. The energy savings that can be realized may indeed depend on the photoperiod
that is used. Our lighting optimization protocol was formulated in such a way that any
photoperiod can be used, and it is not specific to a 16 h photoperiod.

Finally, we note that lighting can provide a substantial amount of heat to a greenhouse;
but the effects of more efficient lighting methods and greenhouse heating requirements are
often ignored. A major challenge is that the interaction between lighting and heating is
location specific and requires advanced models to estimate [37]. We thus opted to focus
solely on lighting costs in this study.
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4. Conclusions

In this paper, a new optimal approach was developed and implemented for supple-
mental lighting control in greenhouse environments using IoT technology. This method
solves an optimization problem to satisfy plant light needs using Markov-based sunlight
prediction and variable electricity pricing. Two experimental studies during two different
seasons in the same greenhouse were conducted, where the proposed lighting approach
was validated in terms of electricity cost reduction (4.16% reduction during the winter
study and 33.85% during the spring study) while maintaining plant growth.
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The following abbreviations are used in this manuscript:

ACI Anthocyanin content index
ADC Analog-to-digital converter
CCI Leaf chlorophyll content index
CEA Controlled environment agriculture
DLI Daily light integral
DPI Daily photochemical integral
DSL Domain-Specific Language
ETR Electron transport rate
FPGA Field programmable gate array
GA Genetic algorithm
HCI Human–computer interaction
HID High-intensity discharge
IoT Internet of Things
IR Infrared
LASSI Light and shade system implementation
LED Light-emitting diode
PCS Projected canopy size
PPFD Photosynthetic photon flux density
PWM Pulse-width modulation
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RFID Radio-frequency identification
RL Reinforcement learning
SLA Specific leaf area
UAV Unmanned aerial vehicle
VPD Vapor pressure deficit
WSN Wireless sensor network
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