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Abstract: Plant health is the basis of agricultural development. Plant diseases are a major factor for
crop losses in agriculture. Plant diseases are difficult to diagnose correctly, and the manual disease
diagnosis process is time consuming. For this reason, it is highly desirable to automatically identify
the diseases in strawberry plants to prevent loss of crop quality. Deep learning (DL) has recently
gained popularity in image classification and identification due to its high accuracy and fast learning.
In this research, deep learning models were used to identify the leaf scorch disease in strawberry
plants. Four convolutional neural networks (SqueezeNet, EfficientNet-B3, VGG-16 and AlexNet)
CNN models were trained and tested for the classification of healthy and leaf scorch disease infected
plants. The performance accuracy of EfficientNet-B3 and VGG-16 was higher for the initial and
severe stage of leaf scorch disease identification as compared to AlexNet and SqueezeNet. It was also
observed that the severe disease (leaf scorch) stage was correctly classified more often than the initial
stage of the disease. All the trained CNN models were integrated with a machine vision system
for real-time image acquisition under two different lighting situations (natural and controlled) and
identification of leaf scorch disease in strawberry plants. The field experiment results with controlled
lightening arrangements, showed that the model EfficientNet-B3 achieved the highest classification
accuracy, with 0.80 and 0.86 for initial and severe disease stages, respectively, in real-time. AlexNet
achieved slightly lower validation accuracy (0.72, 0.79) in comparison with VGGNet and EfficientNet-
B3. Experimental results stated that trained CNN models could be used in conjunction with variable
rate agrochemical spraying systems, which will help farmers to reduce agrochemical use, crop input
costs and environmental contamination.

Keywords: disease classification; convolutional neural network; deep learning; precision farming;
Leaf scorch disease; EfficientNet

1. Introduction

Plant diseases lead to the loss of modern farming production. The emergence of plant
diseases has a negative impact on agricultural crop yield. Plant diseases are not only a
threat to global food security, but they can also have terrible impacts for small farmers
whose incomes depend on crop production. Therefore, if plant infections are not identified
at early stages, they will decrease crop yield and food shortage will arise [1]. A healthy
plant must be protected from disease to ensure the quality and quantity of crop yield,
as they are harshly affected by diseases [2,3].

There are several diseases that affect crop production and also cause economic, social,
and environmental problems. Strawberries are one of the most sensitive and important
crops in the world. Strawberries have high nutritional content and commercial value,
and are a major fruit for daily consumption [4,5]. Strawberries are easily infected by several
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phytopathogenic fungi, bacteria, and viruses [6–8]. Strawberry leaf scorch (Diplocarpon
earlianum) is one of the most common and a severe leaf diseases of the strawberry crop,
caused by a species of fungus. The marks of leaf scorch disease consist of many small
irregular purple spots that appear on the outward leaf’s surface. It has a similar disease
cycle to other fungal diseases and it is managed in the same way. These diseases can
cause significant economic damage. Control of strawberry leaf scorch disease is important
because it is responsible for losses ranging from negligible to severe in strawberries. Leaf
scorch disease affects the yield of the strawberry crop. The application of appropriate
fungicides at the early stage of leaf scorch disease can reduce crop production losses. Plant
disease and pest control at the early stages of infections is essential for higher agricultural
production [9].

It also reported that more than 50% of crop production losses are the result of different
diseases and pest outbreaks [10]. Several efforts have been made to avoid crop losses
due to these diseases. In agriculture, expensive approaches and numerous agrochemicals
are used to control these diseases and pests. The extensive usage of these agrochemicals
approaches is harmful to plant and human health. Furthermore, these agrochemicals
also increase crop input costs [11]. Unnecessary application of agrochemicals can lead to
ecological deprivation, for example, the erosion of useful soil components or the addition of
poisonous ingredients in the soil [12]. For this reason, precise and quick recognition of plant
diseases is important in contemporary farming [13]. In the initial stages, the identification
of plant disease can serve as the key role for crop prevention. Indeed, it will enhance the
quantity and quality of agricultural products. It is important to note that early follow-up
is important for the proper selection of disease management techniques and to halt the
spread of the infection in healthy plants [14]. In general, recognition and classification
of diseases are noted by simple visual observation. However, this procedure must be
regularly checked by professionals [15] because it is also possible that farmers can wrongly
diagnose the diseases because of limited knowledge.

The traditional method of checking plant disease infections is done by hiring pro-
fessional pathologists who can diagnose the disease correctly. However, this traditional
method needs more manual labor and time, and the spread of the disease in the field
cannot be accurately predicted [16]. Moreover, these difficulties are combined with the
reduction in workers in the farming region. Visual observations by skilled authorities
remain a key method for identifying plant diseases in rural regions of developing nations.
Visual observations involve constant observing by specialists, which can be costly in big
farms [17,18]. Furthermore, in several isolated regions, farmers may have to travel long
distances for hiring specialists, which is economically very expensive and time-consuming
for small farmers. However, this method can only be implemented in limited regions,
and cannot be prolonged in a positive way. The high cost and low proficiency of manual
disease identification deter the fast progress of existing farming [19]. Therefore, automatic
and accurate disease identification systems are crucial for agriculture production.

Autonomous farming technologies are being implemented to control plant diseases.
The use of agrochemicals and other expensive approaches can be shortened by using
intelligent systems. In precision farming technologies, many intelligent sensor systems
and automation methods are used. For intelligent farming, such as agrochemical spraying
on only the relevant region, it is necessary to identify the specific disease target area in
the field. Mobile operators, stationary stations, sensor systems and machines are used for
precision sensing in agriculture. Initially, precision farming was used to distribute fertilizers
according to diverse soil situations. Later, precision agriculture advanced for automatic
control of agricultural machines and implements, intelligent machines and practices, on-
farm investigation and mechanized controlling of farming production structures [20].
Data collection by sensors installed on machinery is non-destructive and can be used
at a large scale. Soil and aerial images are frequently important methods in precision
agriculture [21], and are used for the identification and classification of diseases. Intelligent
classification of plant diseases is an important investigation method, as it can demonstrate
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the assistance of observing huge crop areas to identify disease symptoms by observing the
plant leaves [22–24]. Therefore, looking for a faster, more automatic, cheaper and more
precise process of identifying plant diseases is important.

Progress in artificial intelligence expertise has given the approach for the improve-
ment of mechanized systems capable of achieving quicker and more precise outcomes
in detecting plant diseases. Today, artificial intelligence-based systems are widely used
to automatically identify various diseases [25]. Over the past decade, several outdated
machine learning simulations have been planned for identifying and categorizing plant
infections. Machine vision and deep learning methods for disease recognition have been
extensively investigated over the past twenty years [26]. Image processing has been used
extensively in farming, such as that used for weed identification, fruit classification [27],
also image processing used to detect and categorize plant diseases [28] and classifying of
different disease signs [29]. In recent times, many researchers have used deep learning for
recognition and studied various plant leaves diseases in depth [30]. Image-based methods
are fast and precise in identifying plant infections [31]. Digital images give significant
data elements that can be examined to create basic information for the number of uses.
Machine learning (ML) can be used to sense pests, parasites, and deficiency of nutrients in
plants [32].

In recent years, deep convolution neural networks have been extensively used in the
farming sector for example in weed, pest, and disease identification, fruit, flowers and
plant classification for yield assessment, and also in autonomous vehicles for navigation
purposes [33–35]. Deep learning can be classified into three categories according to the
technique and process of the research. Deep convoluted neural networks have been used
as the most advanced computer vision (CV) in various fields since 2014, and are the
most popular for identifying crop diseases because of their huge classification precision
detection accuracy of imageries [36]. Deep convolution neural networks (DCNN) have an
amazing capability to extract multifaceted structures from pictures [37,38]. Images have
been widely used as an influential instrument for classifying and identifying targets [39].
Convolution Neural Network (CNN) is one of the most popular machine learning (ML)
methods, according to published reports for the classification of crop diseases. Fujita
et al. [40] reported a novel real-world plant disease recognition method that included seven
kinds of diseases. They used CNN-based classification systems with an average accuracy
of 82.3%. Sladojevic et al. [41] suggested a different method to distinguish 13 diverse plant
diseases by deep convolutional neural networks. Another author reported a powerful
deep learning-originated device for real-time use that can identify nine various diseases of
tomato plants [42].

Some professionals are using the bandwidth of noticeable light that can be taken by
cameras at a comparatively low price, and have generally engaged in a particular disease
category [43]. Since a single tuber can infect multiple diseases, it will not be sufficient
for real-time applications [44]. Ferentinos et al. [45] proposed the CNN technique for
plant leaf recognition using the GoogLeNet model. The proposed technique was able
to identify damaged leaves with a recognition rate of >94%, even when only 30% of
the leaf was damaged. Mohanty et al. [30] used CNN for identifying crop species and
diseases based on a public dataset of images using GoogLeNet and AlexNet training
models. Based on the color, grayscale, and leaf segmentation, the proposed model was
99.35% accurate. The demonstration of deep learning procedures depends mostly on the
quality of the dataset than on other ordinary machine learning methods. Some recent
studies stated above show that there is an improvement in the use of deep learning
architectures in the identification of leaf diseases in plants. Still, there are gaps that need
to be explored in identifying plant leaf diseases, particularly around the use of new deep
learning architectures. In particular, there is an inevitable need for effective models that are
faster, and have more minor limitations and higher classification accuracies.

This study compares the performance of four CNNs models (EfficientNet-B3, VGG-
16, AlexNet and SqueezeNet) for the identification and classification of the initial and
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severe stage of leaf scorch disease in the strawberry crop. The study also evaluates the
effect of initial and severe stage of leaf scorch disease on the performance of CNN models.
This article introduces a new approach for real-time disease identification in the strawberry
field. For this purpose, the trained CNNs models (EfficientNet-B3, VGG-16, AlexNet and
SqueezeNet) integrated with a machine vision system for real-time image acquisition and
identification of leaf scorch disease in the strawberry field. Furthermore, the performance
of the trained CNNs models was evaluated under natural sunlight and artificial lighting
arrangements for image acquisition and better identification of leaf scorch disease in the
strawberry field.

2. Materials and Method
2.1. Convolutional Neural Network Models

The convolutional neural network is a multilayer deep learning network designed
to process data, including image, audio, and video. In CNN, the image is obtained from
the input terminal, and the image features are filtered out to the pooling layer through the
convolution layer to sort out the new image features. The convolutional layers comprise a
filter and a trigger function, and the leaf images will be classified into healthy or infected
leaves using convolutional neural networks based on the extracted characteristics.

For identifying plant types and their diseases, the CNN can demonstrate better classi-
fication accuracy than other typical characteristics extraction approaches [46]. A traditional
CNN architecture contains primarily convolution layers, grouping layers, full contact
layers, and output layers [47], as shown in Figure 1. There are various DCNN models with
their own features that are suggested each year. We focus on the two most popular architec-
tures, namely AlexNet [48], VGG16 [49], and a smaller faster architecture SqueezeNet [50],
and the performance of the proposed models compared with the newly introduced ar-
chitecture EfficientNet [51]. These most precise architectures have been trained for the
classification of the initial and severe stages of leaf scorch disease in strawberry plants.
All four CNN models, namely, AlexNet, VGG, SqueezeNet and EfficientNet, were trained
and tested for the identification of leaf scorch disease in strawberry plants. EfficientNet is
the most recent devolved model.
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Figure 1. Convolutional neural network for the classification of strawberry diseases.

2.1.1. AlexNet

AlexNet was proposed by Alex Krizhevsky et al. [48]. This model was presented for
the first time in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2012) in
2012 as part of the Image Classification Task Competition. Furthermore, the model won
by a large margin. AlexNet turns into the initial step for CNN’s new trend. The AlexNet
architecture carries the size of the input image to 227 × 227. It has 60 million parameters
and 650,000 neurons. AlexNet has five convolutional layers and three interconnected layers.
First, the two convolutional layers are normalized, and the third and fourth are followed
by a layer of maximum accumulation; they are directly connected, and a max-pooling is
followed by layers of the fifth convolutional layer. The last layer (FC8) has a class possibility
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of the coming input image. These possibilities are categorized from the softmax classifier.
One of the innovatory facts of AlexNet was its fast training by GPU. Multicore GPUs have
increased the speed of learning on very large image data.

2.1.2. VGG-16

The VGGNet [49] convolutional neural network architecture was introduced by some
scholars of the visual geometry group from the University of Oxford and (DeepMind)
Google. VGGNet won the runner-up position in the Image Classification Contest held in
2014. The model achieved an error rate of 7.5% in the top five in the rating set, a result
that earned it second position in the competition. VGG-16 inherited the AlexNet (2012)
architecture design ideas and went from eight to 16 layers on the AlexNet architecture.
VGG-16 consists of 13 convolution layers in which each two convolution layers have a pool-
ing layer at the end and three fully connected layers. The VGG-16 follows this arrangement
of two convolution layers having a pooling layer during the whole architecture. It always
uses 3 × 3 filters for Convolution. It takes an image input size of 224 × 224 pixels and the
model has approximately 138 million parameters.

2.1.3. SqueezeNet

The SqueezeNet model was proposed by Iandola et al. [50] in 2016. SqueezeNet is a
smaller and faster architecture with fewer parameters and better classification performance
and is also suitable for integration with smaller computing devices such as single-board
computers or mobile phones. SqueezeNet has eight fire modules, each consisting of a
compression layer with 1 × 1 filters (downward input channel of 3 × 3 filters) and an
extension layer with a combination of 1 × 1 and 3 × 3 filters. By doing so, the number
of incoming connections into 3 × 3 filters is reduced. The architecture begins with a
convolutional layer, followed by eight fire modules, followed by a convolutional layer,
and a softmax classifier. It requires an image input size of 227 × 227 pixels and the model
has around 1.2 million parameters.

2.1.4. EfficientNet

The EfficientNet model was proposed by the Google research brain team in 2019 at the
international conference on machine learning [51]. In the ImageNet classification methods,
the EfficientNet model is one of the latest models with a parameter of 66M and an accuracy
of 84.4%, also known as a group of CNN models. EfficientNet has eight models from B0 to
B8, and if we increase the number of models, the remarkable accuracy of the model will also
increase, but the parameters will not increase considerably. The latest version of EfficientNet
is EfficientNet-B7, and it has the highest accuracy with fewer parameters. EfficientNet uses
the mobile inverted bottleneck convolution (MBConv). The MBConv block receives two
inputs, the first one is data and the second is arguments of the block. A set of attributes, such
as input filters, output filters, expansion rate, and compression rate, are used in an MBConv
block. EfficientNet also performs better for complex data. EfficientNet-B3 takes the input
images of 300 × 300 pixels and architecture with approximately 12 million parameters.

2.2. Dataset Description

Images of strawberry leaves (healthy and infected) were taken from the strawberry
fields in southern Punjab (31◦21′41.99” N, 70◦58′10.99” E), Pakistan, during the 2020 crop
season. A digital camera (Canon PowerShot SX530 Digital Camera) captured colour images,
at a ratio of 16:9, with a resolution of 1920 × 1080 pixels, of diseased (leaf scorch) and
healthy strawberry leaves (Figure 2). These images were taken at morning, noon, afternoon
and evening, under different light intensities, environments and from varying positions
to encompass all possible situation for training the CNNs models. Images were captured
based on visual symptoms to categorize the initial and severe stages of the disease in
strawberry plants. Identification of initial symptoms of leaf scorch in strawberry plants
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would be beneficial for more timely diagnosis of diseases so that they can be controlled on
time by applying fungicides.
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disease stage of leaf scorch.

A total of 1689 leaf images were taken, in which 552 were of healthy leaves, 580 were
of the initial stage, and 557 were of the severe stage of leaf scorch disease infected leaves.
The data augmentation method in deep learning is important for generalizing the models
to increases their accuracy, so that the models can be more efficient and functional in
real-world field conditions [52]. The augmentation method can help the model to increase
the precision of its predictions by training the models from diverse dataset perceptions.
Therefore, to improve the robustness of the architecture and increase the number of obser-
vations, the data augmentation method was implemented with all datasets [53]. For data
augmentation, the rotation technique was performed considering the different shapes and
directions of the leaves in the field.

In data augmentation, all images in the dataset were rotated clockwise by 45◦ degrees
(starting from 0◦ to 315◦ of the original image). In this way seven new images were achieved
from every single image. The total 1689 image dataset was therefore increased by eight
times to 13,512 new observations, in which 580 initial stage and 557 severe stage disease
images were increased to 4640 and 4456 images, respectively, and 552 healthy leaves images
increase to 4416 images.

2.3. CNN Models Training and Testing

A dataset containing 13,512 photographs of healthy and diseased (leaf scorch) leaves
of strawberry plants was used for the training and testing of CNN models. All the images
in the dataset were randomly divided into three splitting ratios of datasets for training,
validation and testing of the object-classification CNN models. The splitting ratios of
datasets were 80:20 (80% dataset used for training, and 13% for validation and 7% for
testing) as shown in Table 1.

Table 1. Description of image dataset used for training, testing and validation.

Dataset Splitting Ratio Training/Validation/Testing Total Leaves Images Healthy Leaves Initial Disease Stage Severe Disease Stage

80:20

Training 10,809 3595 3611 3603

validation 1756 580 590 585

testing 945 310 320 315

For training and testing of the convolutional neural network, all the images used
in this study were resized to 224 × 224, 227 × 227, 227 × 227 and 300 × 300 pixels
by IrfanView software (Version 5.50, Irfan Skijan, Jajce, Bosnia) for VGG-16, AlexNet,
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SqueezeNet and EfficientNet-B3 models respectively according to the network input size
for more accessible learning, validation and testing processes. The images used for training
were not used during testing. All model training and testing processes were performed
using a computational processing unit (Nvidia GeForce GTX 1080 Integrated with 8 GB
GDDR5X RAM that operates on 256-bit memory) and a Pascal GPU GP104 that operates
at a frequency of 1733 MHz) on the operating system Windows 10 64 bits. The keras
API running on tensor flow machine learning computational framework was used for
model training. The tensor flow framework was developed by Google, and was originally
developed to perform large datasets of numerical calculations [54].

To train our convolutional neural network models, we randomly initialized its pa-
rameter weights and bias, the parameters are continuously updated through forward
propagation and backward propagation during training, and the final ones at the end of
the training establish the models. Additionally, several hyper-parameters were selected
to obtain the high value of precision. Hyper-parameters directly affect the performance
and training speed of neural networks. The hyper-parameter tuning process was used
for the optimization of hyper-parameters. The optimal values of hyper-parameters were
determined using a trial-and-error process by adjusting their values and selecting the hyper-
parameters that give the best results on the validation set. Momentum value was attained
as 0.95, batch size 32, the base learning rate was 0.001, and weight decay 0.0005 presented
the best results. VGG-16, AlexNet, SqueezeNet and EfficientNet-B3 models were used
and trained for diseased and healthy strawberry plant leaf classification using the tensor
flow framework. After training, all DCNN models were also tested for the classification of
disease-infected leaves and the models were saved.

2.4. CNNs Models Evaluation Parameters

The performance of the CNN models was evaluated with different evaluation metrics.
Precision, recall, F1Score, and test accuracy metrics were used to evaluate the performance
of the convolutional neural network models that were used in training. Validation and
test outcomes for all CNN models were adapted in matrices of binary confusion, which
are true positive (Tp), false positive (Fp), true negative (Tn), and false negative (Fn) [55].
Healthy leaves indicate as negative (N and 0), and diseased, infected leaves mark as
positive (P and 1). The true positive indicates the number of leaves that are appropriately
categorized as disease infected, and the true negative indicates the number of leaves that
are correctly categorized as non-infected leaves. False-positive is considered a type 1 error,
indicating the number of leaves that have been falsely categorized as infected leaves, while
a false negative, which is considered a type 2 error, indicates the number of leaves that have
been wrongly categorized as uninfected. By using a confusion matrix, the test accuracy,
precision, recall, and F1-score will be calculated.

Precision represents the accuracy of a neural network model in the occurrence of a
positive recognition, and is measured by Equation (1):

Precision = Tp/(Tp + Fp) (1)

The sensitivity represents the effectiveness of the neural network in which the target
is classified and calculated by Equation (2):

Sensitivity (Recall) = Tp/(Tp + Fn) (2)

Test accuracy is the total observation rate of the correctly predicted observation and
measured by Equation (3):

Test accuracy = Tp + Tn/ (Tp + Fp + Fn + Tn) (3)



Plants 2021, 10, 2643 8 of 17

The F1-score is the average of harmonic mean of precision, recall and calculated by
Equation (4):

F1-score = 2 × precision × recall / precision + recall (4)

2.5. Performance Evaluation of Trained CNN Models for Real-Time Plant Disease Classification

A deep learning based unmanned ground vehicle (UGV) was developed for real
time plant disease (leaf scorch) recognition in the strawberry field as shown in Figure 3.
The vehicle system comprises an electric four-wheeled chassis frame vehicle. The vehicle
had 0.60 m of ground clearance and the two wheels spacing was kept at 70 m for moving in
strawberry row. The wheel spacing and ground clearance were kept changeable according
to the strawberry field conditions. The vehicle system was power-driven by a 24-V lithium
battery and automatically drives by remote control (SAGA1-L8B), and the vehicle ground
speed is up to 5 km/h. The vehicle was designed to operate within a single strawberry
plant row (0.60 m width). The unmanned ground vehicle consisted of a color camera
(Logitech C920) for image acquisition in real time and a laptop.

Plants 2021, 10, x FOR PEER REVIEW 8 of 17 
 

 

Test accuracy is the total observation rate of the correctly predicted observation and 
measured by Equation (3): 

Test accuracy = Tp + Tn/ (Tp + Fp + Fn + Tn)  (3)

The F1-score is the average of harmonic mean of precision, recall and calculated by 
Equation (4): 

F1-score = 2 × precision × recall / precision + recall (4)

2.5. Performance Evaluation of Trained CNN Models for Real-Time Plant Disease Classification 
A deep learning based unmanned ground vehicle (UGV) was developed for real time 

plant disease (leaf scorch) recognition in the strawberry field as shown in Figure 3. The 
vehicle system comprises an electric four-wheeled chassis frame vehicle. The vehicle had 
0.60 m of ground clearance and the two wheels spacing was kept at 70 m for moving in 
strawberry row. The wheel spacing and ground clearance were kept changeable according 
to the strawberry field conditions. The vehicle system was power-driven by a 24-V lithium 
battery and automatically drives by remote control (SAGA1-L8B), and the vehicle ground 
speed is up to 5 km/h. The vehicle was designed to operate within a single strawberry 
plant row (0.60 m width). The unmanned ground vehicle consisted of a color camera 
(Logitech C920) for image acquisition in real time and a laptop. 

The camera was connected directly to the laptop computer using universal serial bus 
(USB) cables. Furthermore, the camera acquires 640 × 256 pixels image and covers a 0.50 
m × 0.60 m (length × width) area of a single strawberry row. For the identification of dis-
ease infected strawberry plants, the trained CNN models were deployed in Intel(R) 
Core(TM) i7-4712MQX CPU @ 2.30 GHz, Nvidia GTX850M laptop computer. All four 
trained CNN models (AlexNet, VGG-16, SqueezeNet, and EfficientNet-B3) were imple-
mented in real-time in the strawberry field to identify initial symptoms and severe symp-
toms of leaf scorch disease in strawberry plants, and the models performance was evalu-
ated by observing the infected plants predictions and by comparing it with manually de-
tected disease plants in the strawberry field (Figure 3). 

 
Figure 3. Workflow diagram of CNN models for real time disease identification in field. 

Experimental Plan 
The field experiment was performed in the strawberry field located in district Layyah 

(31°21′41.99″ N, 70°58′ 0.99″ E), southern Punjab, Pakistan. The performance of trained 
CNN models (AlexNet, VGG-16, SqueezeNet, EfficientNet-B3) for the classification of leaf 
scorch diseased infected plants were evaluated under two different lighting situations 
(natural and artificial) during the image acquisition in the field experiments (Figure 4). In 
natural lighting conditions, the natural outdoor sunlight influences the chromatic color 

Figure 3. Workflow diagram of CNN models for real time disease identification in field.

The camera was connected directly to the laptop computer using universal serial
bus (USB) cables. Furthermore, the camera acquires 640 × 256 pixels image and covers
a 0.50 m × 0.60 m (length × width) area of a single strawberry row. For the identifica-
tion of disease infected strawberry plants, the trained CNN models were deployed in
Intel(R) Core(TM) i7-4712MQX CPU @ 2.30 GHz, Nvidia GTX850M laptop computer.
All four trained CNN models (AlexNet, VGG-16, SqueezeNet, and EfficientNet-B3) were
implemented in real-time in the strawberry field to identify initial symptoms and severe
symptoms of leaf scorch disease in strawberry plants, and the models performance was
evaluated by observing the infected plants predictions and by comparing it with manually
detected disease plants in the strawberry field (Figure 3).

Experimental Plan

The field experiment was performed in the strawberry field located in district Layyah
(31◦21′41.99” N, 70◦58′ 0.99” E), southern Punjab, Pakistan. The performance of trained
CNN models (AlexNet, VGG-16, SqueezeNet, EfficientNet-B3) for the classification of leaf
scorch diseased infected plants were evaluated under two different lighting situations (natu-
ral and artificial) during the image acquisition in the field experiments (Figure 4). In natural
lighting conditions, the natural outdoor sunlight influences the chromatic color variations
throughout the image acquisition process. The resulting images show chromatic aberration
in the leaves of the strawberry plants that affect the CNN models’ performance. During
the natural lighting situation of the field experiment, the wind speed was 2–5 km h−1 with
an ambient temperature of 27–32 ◦C and relative humidity of 14–20%.
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Figure 4. Deep learning based mobile system for real time leaf scorch disease identification in strawberry field.

In the controlled lighting environment for image acquisition, the vehicle system
was covered with green cloth so that the imaging sight can be protected from direct
sunlight and reduce the chromatic color variations throughout the image acquisition in
the strawberry field [56]. In this way the image acquisition quality is enhanced, and CNN
models performance improved. Throughout the artificial lighting environment experiment,
the wind speed was 2–6 km h−1 with the ambient temperature of 25–35 ◦C and relative
humidity of 20–30%. A 50m long single strawberry plant row was selected for real-time
field experiments, each experiment was repeated five times and the average classification
accuracy values were calculated by evaluation metrics.

3. Results
3.1. CNNs Models Performance Results

The CNN models (AlexNet, VGG-16, SqueezeNet, EfficientNet-B3) were trained at an
80:20 dataset splitting ratio (80% dataset used for training, 13% for validation, and 7% for
testing). The values of recall, F1-score, and precision obtained from all models on the test
dataset are provided in Table 2. For all CNNs models, classification accuracy values were
recorded in the range of 0.88 to 0.92 and 0.93 to 0.98 for initial and severe disease stages,
respectively. The validation results show that the EfficientNet-B3 outperformed than the
other CNN models and achieved higher values of accuracy, precision, sensitivity/recall,
and F1-score.

Table 2. CNN models validation results for the classification of disease infected strawberry leaves.

Model Disease Stage Precision Sensitivity/ Recall F1 Score Inference Time (ms)

VGG-16
Initial 0.91 0.90 0.90 355

Severe 0.96 0.95 0.95 349

AlexNet
Initial 0.88 0.89 0.88 109

Severe 0.94 0.93 0.93 111

SqueezeNet
Initial 0.87 0.88 0.87 76

Severe 0.93 0.92 0.92 66

EfficientNet-B3
Initial 0.92 0.91 0.91 212

Severe 0.98 0.97 0.97 222



Plants 2021, 10, 2643 10 of 17

The EfficientNet-B3 model achieved the higher values of precision (0.98), recall (0.97),
and F1-score (0.97) for severe disease stage as compared to classification values of initial
disease stage infected leaves (precision 0.92, recall 0.91, and F1-score 0.91). The EfficientNet-
B3 and VGG-16 significantly performed better than AlexNet for the classification of disease
leaves (initial stage and severe stage).

The second-best model was VGG-16, which provided higher values of precision
(0.96), recall (0.95), and F1-score (0.95) for the severe disease stage, and the classification
accuracy values decrease for initial stage classification. The model recorded values of
precision, recall and F1-score were 0.91, 0.90 and 0.90, respectively. SqueezeNet was less
effective in the classification of the initial disease stage and attained the lowest values of
precision (0.87), recall (0.88), and F1-score (0.87). However, for the classification of severe
disease stage, SqueezeNet achieved significant classification values of precision (0.93),
recall (0.92), and F1-score (0.92). The validation results show that the SqueezeNet model
for the classification of fungal leaf disease recorded lower values of precision, recall and
F1-score as compared to the other two models.

The test accuracy is also an effective performance metric used to evaluate the per-
formance of the CNN models. The EfficientNet-B3 model achieved higher accuracy with
0.92 and 0.97 for initial and severe disease stage classification as compared to the VGG-16,
AlexNet and SqueezeNet models. The VGG-16 model attained slightly lower accuracy
with 0.91 and 0.96 for initial and severe disease stages, respectively, on the other hand
SqueezeNet attained the lowermost accuracy values with 0.87 and 0.93 for initial and
severe disease stages, respectively (Figure 5). AlexNet also achieved lower classification
accuracy in comparison with VGG-16 and EfficientNet-B3. The validation results reveal
that overall EfficientNet-B3 model performed better than the other three CNNs models
(VGG-16, SqueezeNet, AlexNet) for the classification of both disease stages (initial stage,
severe stage).
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Figure 5. Accuracy of AlexNet, EfficientNet, VGG-16 and SqueezeNet for the classification of initial and severe stage of leaf
scorch disease infected leaves.

CNNs Models Inference Time

The average inference time for all the CNN models is reported in Table 2. The model
SqueezeNet recorded that the lowest inference time ranged from 66 to 76 milliseconds
as compared to other CNN models. The highest inference time was recorded for the
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VGG-16 model, which ranged from 349 to 355 milliseconds. There was no significant
difference in inference time during initial and severe stage disease infected strawberry
leaves. The AlexNet model recorded the second lowest inference time ranging from
212–222 milliseconds.

3.2. Performance of CNN Models in Real-Time Field Experiments
3.2.1. Field Experiment with Natural Lighting

The deep learning-based leaf scorch disease classification mobile system was tested in
a strawberry field under a natural lightening environment. In natural lighting situations,
the direct sunlight was influencing the image acquisition process that causes chromatic
color variations and affects the image quality. All four trained CNN models (AlexNet,
SqueezeNet, VGG-16, EfficientNet-B3) were implemented in the strawberry fields to iden-
tify initial symptoms and severe stages of leaf scorch disease in strawberry plants.

EfficientNet-B3 and VGG-16 performed better than AlexNet and SqueezeNet to
correctly identify the infected leaves in real-time during the field experiment (Table 3).
The EfficientNet-B3 and VGG-16 models showed significant performances for identifying
severe disease stage (leaf scorch) infected leaves and achieved high precision (0.83, 0.80),
recall (0.81, 0.78), and F1-score (0.81, 0.78) values. However, for the classification of the ini-
tial stage of leaf scorch infected leaves, the values of precision (0.73, 0.70), recall (0.70, 0.67)
and F1-score (0.71, 0.68) were considerably lower. SqueezeNet seemed to be unsuccessful
at identifying the initial disease stage infected leaves with lower values of precision (0.64),
recall (0.61), and F1-score (0.62). However, it showed significant performance for identify-
ing severe disease stage (leaf scorch) infected leaves and achieved better precision (0.73),
recall (0.71), and F1-score (0.71) values.

Table 3. CNNs models evaluation results in real-time for the classification of leaf scorch disease.

Model Disease Stage Precision Sensitivity F1 Score

VGG-16
Initial 0.70 0.67 0.68

Severe 0.80 0.78 0.78

AlexNet
Initial 0.66 0.63 0.64

Severe 0.75 0.73 0.73

SqueezeNet Initial 0.64 0.61 0.62

Severe 0.73 0.71 0.71

EfficientNet-B3
Initial 0.73 0.70 0.71

Severe 0.83 0.81 0.81

The EfficientNet-B3 model also achieved higher classification accuracy (0.82) for the
severe disease stage, while for initial disease symptoms, the model accuracy was reduced
to 0.72. Similarly, the VGG-16 model achieved a higher accuracy of 0.80 for the classification
of severe disease stage as compared to initial disease symptoms, with a 0.69 classification
accuracy (Figure 6). On the other hand, SqueezeNet gave the lowest accuracy values
with 0.64 and 0.71 for initial and severe disease stages, respectively. EfficientNet-B3 and
VGG-16 models performed well for the classification of severe stage leaf scorch infected
leaves in strawberry plants during the field experiment.

3.2.2. Field Experiment with Controlled Sunlight Environment

The performance of trained CNN models (AlexNet, VGG-16, SqueezeNet, EfficientNet-
B3) was evaluated in a real-world field experiment with artificial lighting arrangements
for better image acquisition and classification of diseased infected (leaf scorch) strawberry
plants. The disease classification values of precision, recall, and F1 score was higher in the
case of EfficientNet-B3 and VGG-16 as compared to AlexNet and SqueezeNet (Table 4).
The EfficientNet-B3 and VGG-16 model reported excellent classification values of precision
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(0.87, 0.85), recall (0.85, 0.83), and F1-score (0.85, 0.83) for severe disease stage (leaf scorch)
infected plants. However, the model performance decreased for the classification of the
initial disease stage.
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Figure 6. Accuracy of AlexNet, EfficientNet, VGG-16 and SqueezeNet for the classification of initial and severe stage of leaf
scorch disease.

Table 4. CNNs models evaluation results in real-time for the classification of leaf scorch disease in
strawberry plants.

Model Disease Stage Precision Sensitivity F1 Score

VGG-16
Initial 0.78 0.75 0.76

Severe 0.85 0.83 0.83

AlexNet
Initial 0.73 0.70 0.71

Severe 0.80 0.78 0.78

SqueezeNet
Initial 0.71 0.68 0.68

Severe 0.77 0.75 0.76

EfficientNet-B3
Initial 0.80 0.77 0.78

Severe 0.87 0.85 0.85

Similarly, the AlexNet model achieved higher precision (0.80), recall (0.78), and F1-
score (0.78) values for the classification of severe disease symptoms as compared to initial
disease symptoms (precision 0.73, recall 0.70 and F1-score 0.71). The SqueezeNet model
also achieved lower classification values as compared to other models.

The EfficientNet-B3 and VGG-16 models also achieved higher accuracy values (0.86, 0.84)
for the classification of severe disease, and recorded lower accuracy values (0.80, 0.77)
for initial disease symptoms. SqueezeNet presented the lowest accuracy values, with
0.68 and 0.76 for initial and severe disease symptoms, respectively (Figure 7). The high-
est disease classification accuracy for EfficientNet-B3 makes it an excellent model for
real-time applications.
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Figure 7. Accuracy of AlexNet, EfficientNet, VGG-16 and SqueezeNet for the classification of leaf scorch disease in
strawberry plants.

4. Discussion

In this study, the applicability of four state-of-the-art CNN models for the classification
of diseased (leaf scorch) infected strawberry plants was carried out by using image datasets
for training and testing. This research aimed to compare the performance of CNN models
by evaluating the accuracy, precision, sensitivity, and F1-Score values in real-time field
experiments. A database containing 13,512 photographs of healthy and diseased (leaf
scorch) leaves of strawberry plants was used for the training and testing of the CNN
models. CNN models present an opportunity for the classification of plant diseases using
digital images.

All the image datasets were randomly subdivided into an 80:20 dataset splitting
ratio (80% dataset used for training, 13% for validation, and 7% for testing) for training
and testing of the object-classification CNNs models. Furthermore, four CNNs models
SqueezeNet, VGG-16, AlexNet, and EfficientNet-B3 were trained for the classification
of diseased strawberry plant leaves. The performance validation results of the CNN
models were calculated with different evaluation metrics, such as sensitivity, accuracy, F-
Score, and precision. Table 2 presents the validation results for all four CNN models for the
classification of the initial and severe stages of leaf scorch disease infected strawberry leaves.

CNN model validation results show that all the trained models achieved significant
values of accuracy, F1-score, precision and recall for the classification of the initial and
severe stages of leaf scorch disease infected strawberry leaves. It was also observed that the
severe stage of leaf scorch disease infected plants was mostly correctly identified compared
to the initial stage of leaf scorch disease. The validation results show that the EfficientNet-
B3 achieved the highest classification values of precision (0.98), recall (0.97), and F1-score
(0.97) for the classification of the severe stage of leaf scorch disease. Furthermore, for the
classification of the initial stage of leaf scorch disease, the highest values of precision (0.92),
recall (0.91), and F1-score (0.91) were recorded by EfficientNet-B3. The second-best model
was VGG-16, and the model achieved the highest classification values of precision (0.96),
recall (0.95), and F1-score (0.95) for the severe stage of leaf scorch disease. Additionally, the
model achieved the significant classification values of precision (0.91), recall (0.90), and
F1-score (0.90) for the classification of the initial stage of leaf scorch disease. SqueezeNet
was found to be less accurate in the classification of both disease stages and achieved low
precision, recall and F1-score when compared with other CNN models.

The performance of the CNNs models was also assessed by a test accuracy evalua-
tion metric. According to the performance results reported in Figure 5, the EfficientNet-
B3 model attained the highest accuracy among the other CNN models, while the second-
best accuracy values were achieved by the VGG-16 model for both stages of leaf scorch
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disease classification. The EfficientNet-B3 model classification rate is comparable with
the most famous ResNet18, ResNet50 models and other version EfficientNet-B4 mod-
els that were able to classify disease leaves with an accuracy of 96% [57,58] however,
the EfficientNet-B3 model classification rate is higher than the GoogLeNet model classifica-
tion accuracy values 0.90. Therefore, it can be concluded that the proposed EfficientNet-
B3 model is significant for the classification of plant diseases. The average inference time
for all the CNN models was also recorded. AlexNet performed better and recorded the
lowest inference time, ranging from 109 to 119 milliseconds, compared to other CNN
models. The EfficientNet-B3 and VGG-16 models recorded inference time ranging from
212–225 and 344–361 milliseconds, respectively. It also observed no significant difference
in inference time during initial and severe stage disease (Table 2).

The proposed models can be integrated with handy devices with minimal computational
resources, such as the raspberry pi device or mobile phone. Several researchers also pre-
sented real-time object identification with the deep neural network model. Zainab et al. [59]
trained tiny yolov2 models implemented in an android mobile phone for real-time work
with minimal computational resources. The proposed model achieved 66.3 mean aver-
age precision. Ramcharan et al. [60] developed a mobile-based deep learning model for
real-time disease identification. A Single Shot Multibox (SSD) model with the MobileNet
detector and classifier was used. The model achieved 0.70 accuracy for real-time disease
identification. Another researcher developed a Single Shot Multibox Detector for real-time
identification, the model was able to identify nine different tomato diseases and pests [43].
All four trained CNN models (SqueezeNet, AlexNet, VGG-16, and EfficientNet-B3) were
applied in the strawberry field for the classification of the initial and severe stage of leaf
scorch disease in real-time under two different lighting conditions (natural and artificial)
for image acquisition. All models (SqueezeNet, AlexNet, VGG-16, and EfficientNet-B3)
performed better under controlled lightening circumstances, and model performance de-
creased during natural sunlight situations. Several researchers also reported similar results
that controlled lightening arrangements can avoid false recognition, decrease noise in the
image acquisition zone and reduce the effect of fluctuating natural illumination circum-
stances in the field for better performance [61,62]. In the field experiment with controlled
lightening arrangements, EfficientNet-B3 achieved the highest classification accuracy with
0.80 and 0.86 for initial and severe disease stages, respectively. The second-best model
was VGG-16, which achieved the highest classification accuracy with 0.77 and 0.84 for
initial and severe disease stages. AlexNet achieved slightly lower accuracy (0.72, 0.79) in
comparison with VGGNet and EfficientNet-B3. Overall, EfficientNet-B3 achieved better
results in all experiments than the other three (SqueezeNet, AlexNet, VGG-16) architectures,
proving to be more suitable for disease classification in real-time.

5. Conclusions and Future Work

Deep learning approaches have recently become well-known for image data pro-
cessing and target recognition in real-time applications. This paper focuses on identi-
fying the initial and the severe stage of leaf scorch disease in strawberry plants with
four trained CNNs models (SqueezeNet, EfficientNet-B3, VGG-16, AlexNet). The CNNs
(SqueezeNet, EfficientNet-B3, VGG-16, AlexNet) models were trained at 80:20 images
dataset ratios (for training and testing) and tested for the identification of leaf scorch
disease infected plants.

The study validation results show that all the trained CNN models attained significant
classification values of accuracy, F1-score, precision and recall. The performance accuracy
of EfficientNet-B3 and VGG-16 was higher for the initial and severe stage of leaf scorch
disease when compared with AlexNet and SqueezeNet. EfficientNet-B3 achieved 0.92,
0.97 classification accuracy for initial and severe stage leaf scorch disease, respectively.
SqueezeNet recorded the lowest disease classification accuracy values in comparison with
AlexNet, VGG-16 and EfficientNet-B3. It was also noticed that the severe stage of leaf
scorch disease was more correctly classified than the initial stage of leaf scorch disease.
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The field experiment results show that the EfficientNet-B3 and VGG-16 CNN model
achieved significant disease classification performance with artificial lighting arrangements
for better image acquisition in the strawberry field. Real-time field performance evaluation
of CNN models results reported that the EfficientNet-B3 model achieved the highest values
of recall (0.77, 0.85), precision (0.80, 0.87), and F-measure (0.78, 0.85) for the classification of
the initial and severe stage of leaf scorch disease, respectively, during controlled lightening
arrangements. However, there is a noticeable drop in CNN model performance in natural
sunlight environments. The EfficientNet-B3 model performed best by achieving higher
accuracy values in real-world field experiments, proving that more accurate deep learning
systems can help better diagnose leaf scorch disease in strawberry crops. Furthermore,
growers will quickly estimate the disease severity and take the essential precautions by
applying appropriate pesticides. The proposed CNN models will make a significant
contribution to better agriculture production.

The trained CNNs models will be used for targeted variable rate agrochemicals spray-
ing systems in the strawberry crop for disease control. In future work, the number of image
datasets will be increased so that the models can make more precise predictions in complex
situations. We will also train CNN models on other leaf diseases. Additionally, CNN
models will be trained for the identification of nutrient deficiency in strawberry plants.
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