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Abstract: Salinity is a major problem affecting crop production in many regions in the world including
Morocco. Agricultural practices such as fertilization could be useful to overcome this problem and
improve crop productivity. The objective of our study was to evaluate the combined effect of
phosphorus fertilization and irrigation water salinity on growth, yield, and stomatal conductance
of forage corn (Zea mays L.) cv. “Sy sincerro”. Field experiments were carried out for two years
testing four levels of irrigation water salinity (ECw = 0.7; 2, 4, and 6 dS·m−1) and three rates of
phosphorus (105, 126, and 150 kg P2O5·ha−1) fertilization conducted in a split-plot design with three
replications. The obtained results show that irrigation water salinity had a negative effect on all
monitored parameters. For instance, the dry matter yield reduced by an average of 19.3 and 25.1%
compared to the control under saline irrigation with an EC value equal to 4 and 6 dS·m−1, respectively.
The finding also showed that phosphorus applications tend to increase root weight, root length, stem
length, leaf stomatal conductance, grain yield and dry matter yield under salinity conditions. For
example, the addition of phosphorus with a rate of 126 and 150 kg P2O5·ha−1 respectively improved
dry matter yield by an average of 4 and 9% under low salinity level (ECw = 2 dS·m−1), by 4 and 15%
under medium salinity (4 dS·m−1), and by 6 and 8% under a high salinity level (6 dS·m−1). Our
finding suggests that supplementary P application could be one of the best practices to reduce the
adverse effects of high salinity on growth and development of forage corn.

Keywords: irrigation; biomass yield; stomatal conductance; silage; best practices

1. Introduction

Salinity is a major constraint that limits crop production in many regions of the
world. It is estimated that approximately 20% of cultivated land in the world and 33% of
irrigated land, are salt-affected and degraded [1]. Soil salinity is increasing in many parts
of the world and has become a serious economic and environmental constraint limiting
agricultural productivity and profitability, reducing water and nutrient-use efficiencies,
and causing land abandonment and desertification. It has been predicted that more than
50% of the arable land could be salinized by the year 2050 [2]. Salinization is the main
cause of soil degradation in irrigated areas induced by several factors: arid climate, use of
saline water for irrigation, poor drainage system, over-irrigation, and misuse of fertilizers
and phytosanitary products.

Soil salinity is a major problem in the Mediterranean region where 27.3 million ha of
soil have been salt-affected with 7.3 million ha in Morocco, Spain, Tunisia, and Turkey [3].
According to the Moroccan Department of Agriculture, soil salinization affects nearly
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500,000 ha and causes significant losses in agricultural productivity. Secondary salinization,
which is the fastest form of soil degradation in irrigated areas, affects around 160,000 ha or
around 16% of irrigated land in Morocco [4]. The Tadla is one of the main irrigated salt-
affected agricultural zones in Morocco, with a total arable land equal to 259,600 ha, where
49% is irrigated. According to ORMVAT [5], water salinity is highly variable around an
overall average of 2.76 dS·m−1 in the perimeter of Tadla. The highest electrical conductivity
(EC) is found at Beni Amir perimeter with a maximum value of 8.4 dS·m−1.

Salinity is a major abiotic stress that limits the growth and productivity of a wide
variety of crop species across the world [6–8]. Increased salinity leads to a reduction in the
plant biomass, leaf area, stem, and root length and ultimately crop yield [9]. Salinity causes
three major stresses on the plant growth: (a) it increases osmotic pressure in the soil solution,
which causes reduced water availability; (b) high concentration of toxic ions, especially
sodium (Na+) and chloride (Cl-) in the soil solution that leads to increased accumulation
of these ions in leaves; (c) it causes nutrient disorder and deficiency in plants [10]. Under
saline conditions, plants cannot tolerate the toxic amounts of solutes in their cytoplasm.
They either restrict a large amount of solutes in their vacuole or compartmentalize these
toxic ions in tissues to support their normal metabolic activities [11]. Salt tolerance of
a plant is controlled by several factors including soil, water, plant, and environmental
conditions [12]. There are several mechanisms and strategies that enable plants to survive
under salinity conditions including: ion vacuolation, accumulation of adaptive osmolytes,
osmotic adaptation and adjustment, selective transport and uptake of ions, salt exclusion,
ion homeostasis, and salt excretion in plant organs such as leaves [13].

Corn (Zea mays L.) is one of the three most important cereal crops (after wheat and rice)
that can be grown in a wide range of climates [14]. Several early studies have evaluated the
impact of salinity on maize, but only a few have reported the interactive effect of salinity
and fertilization. For instance, Rhoades et al. [15] reported that maize yield reduced by
50% under soil salinity with an EC value of 5.9 dS·m−1. They also reported that the salt
tolerance threshold value of maize (beyond which yield reduction occurs) is 1.8 dS·m−1

and maize is moderately sensitive to salinity. Other studies also found similar results, e.g.,
maize yield reduction by 0% at ECe 1.7 dS·m−1, 10% at 2.5 dS·m−1, 25% at 3.8 dS·m−1,
50% at 6 dS·m−1, and 100% at ECe 10 dS·m−1 [16]. Irrigation with water salinity below
3 g·L−1 reduced maize yield by 10% compared with freshwater irrigation [17]. However,
in the long-term even with the low concentrations of salt, a significant yield loss might
occur due to salt accumulation of salt in the root zone. The annual average yield and crop
water productivity of spring maize decreased by 5.3 and 2.6%, respectively under saline
irrigation water compared to freshwater irrigation [18].

The fertilizers supplied through irrigation water (fertigation) can reduce soil saliniza-
tion and mitigate salinity stress impacts as it improves fertilizer use efficiency and nutrient
availability [19]. In drip irrigation with fertilizer, the timing of application, fertilizer’s
concentration and rate can be easily controlled [1]. Phosphorus (P) is the primary nutrient
that restricts growth and development and ameliorates salt-induced reduction in crop
yield [20]. Phosphorus fertilization in salt-affected soils improved crop growth and yield in
34 out of 37 crops studied, but did not increase the salt tolerance of crops [21]. Phosphate
fertilization under saline conditions was shown to increase crop productivity. Such a
beneficial effect generally involves a positive phosphorus-salinity interaction, especially
when the salinity is moderate [21].

Phosphorus is a primary nutrient necessary for plant growth and development in-
volved in many metabolic processes including energy transfer, signal transduction, biosyn-
thesis of macromolecules, photosynthesis, and respiration [22]. Increasing P rate leads to
increased salt tolerance of various crops such as sesame [23], tomato [24], micro-propagated
potato [25], spinach [26], rice [27], pepper seedling [28], pistachio seedlings [29], barley [30],
wheat [31], cucumber [32], wild (Hordeum maritimum) and cultivated barley (Hordeum vul-
gare) [33], common bean [34], green beans [35], and sugar beet [36]. Belouchrani et al. [37]
reported that phosphorus application resulted in a remarkable improvement of sorghum
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growth and tolerance towards salinity, where it increased plant height, dry matter yield,
nitrogen and phosphorus uptake, and accumulation of osmolytes such as proline. Ma-
lik et al. [38] reported that there is a synergistic relationship between phosphorus and
other beneficial elements such as K+, Ca2+ and Mg2+, which stimulated an osmotic effect
and therefore resulted in salt tolerance to some extent. Hence, the main objective of this
study was to evaluate the interaction of phosphorus supply with different salinity of ir-
rigation water and its effect on growth and productivity of forage corn (Zea mays L.) cv.
“Sy Sincerro”.

2. Results
2.1. Analysis of Variance of Growth and Physiological Parameters

Table 1 summarizes the results of the ANOVA (analysis of variance) of measured
growth and physiological parameters as affected by irrigation water salinity and P rates
during 2019–2020. Salinity affected (p < 0.05) all parameters in both years except root
fresh weight in both years. Phosphorus fertilization also affected (p < 0.05) most of the
parameters except leaf number, plant height and leaf area in both years. The interaction
effect was significant for shoot fresh weight and plant dry weight in 2019 and for plant dry
weight, dry matter yield and grain yield in 2020.

Table 1. Results of ANOVA (analysis of variance) for all investigated parameters during 2019–2020.

Season Salinity and
P Rates

Number
of Leaves

Plant
Height

Root
Length

Root
Fresh

Weight

Shoot
Fresh

Weight

Plant
Dry

Weight

Leaf
Area

Stomatal
Conductance

Dry
Matter
Yield

Grain
Yield

2019
Salinity 0.04 * 0.01 ** 0.03 * 0.10 0.05 * 0.04 * 0.01 ** 0.02 * 0.01 ** 0.03 *

Phosphorus 0.20 0.20 0.01 ** 0.04 * 0.03 * 0.01 ** 0.20 0.04 * 0.04 * 0.2
Interaction 0.40 0.60 0.07 0.15 0.02 * 0.04 * 0.40 0.2 0.2 0.3

2020
Salinity 0.03 * 0.02 0.01 ** 0.30 0.04 * 0.03 * 0.02 * 0.03 * 0.03 * 0.04 *

Phosphorus 0.18 0.40 0.02 * 0.01 ** 0.02 * 0.01 ** 0.40 0.01 * 0.04 * 0.01 **
Interaction 0.30 0.30 0.12 0.70 0.09 0.01 ** 0.60 0.13 0.005 ** 0.015 *

* and ** indicate significance level at p = 0.05 and 0.01, respectively.

2.2. Growth Parameters

Monitored plant growth parameters for both seasons are presented in Table 2. Under
high salinity level (6 dS·m−1) number of leaves, plant height, root fresh weight, shoot fresh
weight, and leaf area showed an average reduction by 12–26%. Conversely, root length
increased by 16 and 12% under moderate (4 dS·m−1) and high salinity (6 dS·m−1), respec-
tively (as an average of both seasons). Increasing P fertilization under salinity conditions
improved all growth parameters (p ≤ 0.05); the highest values of most parameters were
obtained when the plant was supplied with 150 kg P2O5·ha−1 of P fertilization.

2.3. Stomatal Conductance

The combined data over two years showed that salinity has a reduced stomatal
conductance (gs) by 30, 63 and 77% under saline irrigation with EC values 2, 4 and
6 dS·m−1, respectively compared to control (0.7 dS·m−1) (Figure 1). It is obvious from
the obtained results that increased P fertilization significantly improved gs under saline
conditions for both seasons. For example, an application of 150 kg P2O5·ha−1 resulted in an
average increase in gs by 32, 33 and 55% under 2, 4 and 6 dS·m−1, respectively compared
to control. The results indicate that the gs improvement was greater under high salinity
than under low salinity conditions.
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Table 2. Plant growth parameters under different irrigation water salinity and P rate. Values with the same letters under the
same salinity level are statistically equal.

Season

Irrigation
Water

Salinity
(dS·m−1)

P Rate
(kg P2O5·ha−1)

Number of
Leaves

Plant
Height

(cm)

Root
Length

(cm)

Root Fresh
Weight

(g·plant−1)

Shoot
Fresh

Weight
(g·plant−1)

Plant Dry
Weight (g)

Leaf Area
(cm2·plant−1)

20
19

0.7
105 13 ± 2 a 165 ± 15 b 22 ± 3 b 22 ± 4 b 279 ± 34 a 82 ± 39 b 25 ± 6 b
126 14 ± 2 a 181 ± 8 a 21 ± 4 b 23 ± 8 b 282 ± 60 a 87 ± 61 b 25 ± 5 b
150 14 ± 1 a 168 ± 14 b 22 ± 6 a 28 ± 11 a 284 ± 74 a 119 ± 43 a 26 ± 5 a

2
105 11 ± 2 c 166 ± 18 a 20 ± 5 b 30 ± 9 b 271 ± 70 c 110 ± 27 a 24 ± 6 b
126 12 ± 2 b 168 ± 14 a 22 ± 4 a 33 ± 12 a 284 ± 70 b 102 ± 45 a 25 ± 5 b
150 12 ± 2 a 166 ± 18 a 21 ± 3 b 32 ± 9 a 292 ± 77 a 103 ± 58 a 28 ± 4 a

4
105 12 ± 1 a 131 ± 10 c 22 ± 3 b 20 ± 7 b 209 ± 37 b 59 ± 35 c 19 ± 3 c
126 12 ± 1 a 153 ± 12 a 25 ± 3 a 26 ± 8 a 236 ± 51 a 83 ± 28 b 22 ± 5 b
150 13 ± 1 a 147 ± 12 b 25 ± 3 a 27 ± 8 a 241 ± 69 a 97 ± 43 a 22 ± 4 a

6
105 13 ± 1 a 150 ± 11 b 24 ± 6 b 18 ± 3 c 200 ± 29 b 55 ± 31 c 19 ± 4 b
126 13 ± 1 a 148 ± 6 b 24 ± 3 ab 19 ± 3 b 204 ± 28 b 76 ± 17 b 20 ± 2 b
150 12 ± 1 a 154 ± 16 a 25 ± 4 a 22 ± 7 a 223 ± 67 a 81 ± 35 a 21 ± 5 a

20
20

0.7
105 15 ± 1 a 154 ± 20 a 23 ± 4 a 22 ± 4 b 249 ± 74 b 97 ± 5 b 32 ± 15 a
126 15 ± 4 a 146 ± 23 a 22 ± 5 a 24 ± 8 b 249 ± 87 b 95 ± 4 b 21 ± 7 a
150 14 ± 3 a 137 ± 28 a 24 ± 8 a 25 ± 11 a 276 ± 80 a 113 ± 7 a 24 ± 8 a

2
105 12 ± 3 a 153 ± 18 a 21 ± 5 b 32 ± 9 b 288 ± 84 a 116 ± 5 a 26 ± 7 a
126 11 ± 1 a 156 ± 29 a 21 ± 4 b 34 ± 12 a 268 ± 100 a 114 ± 4 a 19 ± 8 a
150 13 ± 4 a 163 ± 24 a 22 ± 4 a 33 ± 15 a 285 ± 111 a 118 ± 7 a 26 ± 9 a

4
105 12 ± 4 b 134 ± 14 b 24 ± 3 b 22 ± 7 b 178 ± 44 b 74 ± 11 b 19 ± 4 b
126 13 ± 4 a 159 ± 16 a 26 ± 3 a 26 ± 8 a 266 ± 65 a 106 ± 7 a 24 ± 5 a
150 13 ± 2 a 152 ± 24 a 24 ± 4 a 26 ± 8 a 267 ± 105 a 107 ± 6 a 25 ± 8 a

6
105 13 ± 1 a 148 ± 12 b 23 ± 6 b 19 ± 7 c 169 ± 40 c 78 ± 9 c 18 ± 4 c
126 12 ± 2 a 152 ± 6 ab 25 ± 3 b 23 ± 3 a 222 ± 30 b 90 ± 4 b 21 ± 3 b
150 12 ± 2 a 167 ± 24 a 25 ± 4 a 22 ± 7 b 251 ± 82 a 97 ± 4 a 22 ± 6 a

Small letters (a, b and c) indicate the statistically homogenous groups.
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2.4. Dry Matter and Seed Yield

Figure 2 illustrates the variation of dry matter yield influenced by both salinity and
P fertilization rates. As expected, salinity decreased dry matter yield and the average
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reduction rate (over two seasons) was equal to 2, 17 and 23% compared to control un-
der irrigation water salinity with an EC value equal to 2, 4 and 6 dS·m−1, respectively.
However, the dry matter yield responded positively to the increased P rate, and this
improvement was more pronounced under salinity conditions compared to freshwater
irrigation conditions. For example, under low salinity level (2 dS·m−1) the application of
126 and 150 kg P2O5·ha−1 significantly increased dry matter yield by 4 and 9%, respectively
(averaged data over two seasons). While under moderate salinity (4 dS·m−1), the increment
rate was significant as it equaled to 4 and 15%, respectively. Conversely, the application
of 126 and 150 kg P2O5·ha−1 increased dry matter yield by 4 and 5%, respectively under
high level of salinity (EC 6 dS·m−1). The interaction between irrigation water salinity x P
rate was significant only for 2020, which indicates that grain yield responded differently to
phosphorus application under high salinity irrigation water. In fact, grain yield was not
affected by phosphorus application under freshwater irrigation (0.7 dS·m−1); contrarily, it
increased (p < 0.05) in high salinity level with increasing P rates.
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2.5. Grain Yield

Similarly to dry matter yield, grain yield of forage corn was significantly affected
by salinity level and P rate (Figure 3). The interaction between salinity x P rate on grain
yield was significant only for 2020 season. The results showed that grain yield responded
differently to phosphorus application and was not affected by phosphorus application
under low salinity level (2 dS·m−1) contrarily to other salinity levels where the phosphorus
effect was significant. Salinity caused a reduction in the grain yield by 5, 19 and 26% (as an
average of both seasons) compared to control under saline irrigation with an EC value equal
to 2, 4 and 6 dS·m−1, respectively. However, P fertilization helped the plant withstand
salinity and improved grain yield (p < 0.05), especially under moderate (4 dS·m−1) and
high (6 dS·m−1) salinity conditions. While under low salinity (2 dS·m−1), grain yield
was not affected (p > 0.05) by the P rate. Grain yield increment rate when the crop was
exposed to a P application of 126 and 150 kg P2O5·ha−1 was 11% under moderate salinity
(4 dS·m−1), and 3 and 15% under high salinity (6 dS·m−1), respectively.
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2.6. Correlation Matrix

Pearson’s correlation analysis was conducted for the two growing seasons separately
for all investigated agro-morphological parameters. The results obtained are shown in
Figure 4. For the first trial season (Figure 4a), except for the root length parameter which
had a significant positive correlation with salinity, a significant strong negative correlation
was observed among most of the parameters and especially for shoot fresh weight, leaf
area, stomatal conductance, dry matter yield, and grain yield. Results were confirmed
during the second season (Figure 4b). The analysis also revealed a positive and moderate
correlation of root, shoot and plant dry weight with the phosphorus application.

2.7. Principal Component Analysis (PCA)

Figure 5 displays the correlation circle of the investigated variables for each cropping
season. The quality of the representation of the variables was assessed by the squared cosine.
Results of PCA indicate that the first two principal components represent 82.5% and 63.2%
of the data variability respectively for the first (Figure 5a) and the second season (Figure 5b).
PC1 axis was explained by shoot fresh weight, dry matter yield, stomatal conductance,
and plant dry weight, while the number of leaves is the main variable that contributed
to the formation of the PC 2 axis. The projection of supplementary dependent variables
showed that the salinity was correlated negatively with all PC1 variables. Moreover, root
fresh weight is positively correlated with the phosphorus rate applied.
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3. Discussion
3.1. Effect of Salinity on Plant Growth and Yield

All growth and yield parameters of forage maize were affected in varying degrees
depending on salinity level and applied phosphorous rate. Yield reduction under salinity
is mainly explained by the reduction in photosynthetic activity. This study found that
stomatal conductance consistently decreased when corn plants were exposed to high salin-
ity (Figure 1). Soil salinity affects photosynthesis and thus the grain yield by reducing
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stomatal conductance [39]. The reduction in stomatal conductance reduces the photo-
synthetic rate and water uptake [40]. Salinity reduces photosynthetic activities in many
ways, for example by inhibiting photosystem II [41], downregulating photosynthesis by
stomatal closure, reducing photochemical and carbon metabolism [42], injuring chloroplast
and stomata structure [43], and reducing chlorophyll and carotenoid content [44]. Our
finding is consistent with previous findings in summer maize [45], bean and cotton [46],
wheat [47], and grapevine [48], where soil salinity decreased photosynthetic rate, crop
growth, and yield.

The lower yield under saline conditions can be explained by the reduced plant height
and leaf area (Table 2). Salinity stress reduces average grain weight and grain number per
cob as it limits sink size and reduces the enzyme invertase activity [49]. The low yield
under salinity stress might be due to the reduction of translocation of assimilates, which
consequently causes poor grain filling [50]. Moreover, salinity stress reduced grain weight
and number by affecting osmotic processes, causing ion toxicity or Na+ toxicity [51–53].

Saline water irrigation caused a significant reduction in growth parameters such as
shoot length, fresh and dry weights of the shoot, leaf number per plant, and leaf area.
In addition to the disturbance in physiological and metabolic processes, salinity stress
reduced root development by reducing nutrient and water uptake through increasing soil
osmotic potential [30]. Our results are consistent with the finding of Hussein et al. [54] who
reported that salinity reduced stem, leaf, and whole plant dry weights in maize. In maize,
salinity stress decreases the leaf area [55]; decreases biomass accumulation [54,56], stem
and root length, and grain yield [9]. Leaf growth rate rapidly reduces under salinity stress
due to a reduction in photosynthetic activity [56] and cell elongation [57]. The deleterious
effect of salinity stress can happen from the combination of water stress, ion toxicities, ion
imbalance, or a combination of all these factors [58]. Regarding root length, our study
found no effect of salinity on the root length of maize; this seems to contradict the results
reported by [55,59] in maize and sugar beet.

3.2. Effect of Phosphorus on Plant Growth and Yield

Phosphorus fertilization significantly increased dry matter and grain yield under
both saline and non-saline conditions. However, the positive effect of phosphorus was
more pronounced under saline conditions (Figure 2), indicating P application as a risk
minimization strategy under medium and high salinity conditions. Consistent with our
results, P fertilization improved the above and below-ground dry weight and yield of barley
by increasing crop tolerance against salinity [30,60]. Phosphorus application mitigates
partially the adverse effects of salinity on maize [51], mung bean [61], green bean [35],
chickpea [62], and wheat [31]. The increased crop yield under high salinity irrigation water
can be attributed to the role of P, which increased concentration and uptake of essential
plant nutrients such as N, and decreased the concentration and uptake of toxic ions. The
improvement of the yield of crops by P supply in saline conditions is justified by an increase
in plant height, nitrogen, and phosphorus uptake [37].

Phosphorus application increased parameters of growth and yield attributes such
as leaf number, plant height, root length, root and shoot weight, and leaf area of maize;
this increase was more pronounced in the high levels of P (150 kg P2O5·ha−1) (Table 2).
Its application under saline conditions reduced the adverse effect of salt stress in many
crops [31,33,35,37,61–63]. This improvement in crop tolerance to salinity can be explained
by the increase in P availability in soil, which indirectly improved absorption of Ca2+ and
Mn+ or Mn2+ as a result of reduced sodium absorption by the plant [64]. Moreover, P
application enhances the synergistic relationship between P and other beneficial elements
like K+, Ca2+ and Mg2+ and toxic ions which balances osmotic equilibrium and enhances
salt tolerance to some extent [38]. Similar to this result, under saline conditions, P fertil-
ization decreased sodium content in barley [60] and maintained the equilibrium between
beneficial (K+ and Ca2+) and toxic ion (Na+ and Cl-) in the roots and leaves of rice [27].
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In addition, P application increases N uptake efficiency under salinity conditions in corn,
mainly due to the improvement in P availability in the root zone and its uptake [63].

Application of P fertilizer at all salinity levels increased both above- and under-
ground plant parts. Our results confirm the previous findings of Belouchrani et al. [37] who
reported that increased P rate stabilized the plant height in saline soil. In a similar study,
Tang et al. [65] found that Maize biomass improved significantly (by twice) when the plants
were subjected to a high rate of P application under salinity compared to a low rate of P.
P application under saline conditions and has positive effects on shoot and root biomass,
root length, P concentration, and chlorophyll content in green beans [35,66]. Phosphorus
reduces the harmful effects of salt by increasing the fresh weight of roots and the shoot
lengths of barley [30].

4. Materials and Methods
4.1. Experimental Site

This research was conducted between May 2019 to July 2020 at an experimental farm of
the National Institute of Agronomic Research (INRA) in Tadla, Morocco (latitude = 32.2◦ N;
Y = 6.31◦ W; altitude = 450 m). The soil of the experimental site is classified as Chromic
Luvisols [67]. The climate is arid with high rainfall variability. The average annual plu-
viometry is 286 mm and the average temperature 18 ◦C, with the highest in August, which
often exceeds 45 ◦C and the lowest in January which can range up to −3 ◦C (Figure 6).
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4.2. Initial Soil and Water Characteristics

Before forage corn sowing. The sol analysis at two soil depths was performed follow-
ing the protocol described by Jackson [68] (Table 2). The electrical conductivity of the soil
was measured using the soil-saturated paste method with an EC meter (HI 9812, Hanna
Instruments, Casablanca, Morocco). As the ECe values were relatively low (Table 3), the
soil is non-saline [69].

Table 3. Initial soil characteristics in the experimental site Tadla, 2019.

Soil Depth
(cm)

Clay
(%)

Silt
(%)

Sand
(%)

Soil
pH

pH EC
(dS·m−1)

Organic
Matter (%)

Total N (Kjeldahl)
(g·kg−1)

P2O5 (Olsen)
(mg·kg−1)

K2O (Acetate of Na)
(mg·kg−1)Water KCl

0–20 28.1 52.8 19.1 7.92 8.24 7.36 0.1 1.45 2.34 43 459
20–40 43.1 18.7 38.2 8.09 8.38 7.24 0.22 0.59 3.44 22 405



Plants 2021, 10, 2608 10 of 14

Irrigation freshwater analysis is presented in Table 4 in terms of EC, pH cations
and anions.

Table 4. Irrigation freshwater chemical analysis.

EC
(dS/m) pH

Cations (meq/L) Anions (meq/L)

Ca2+ Mg2+ Na+ K+ Cl− SO42− CO32− HCO3− NO3−

0.7 7.4 2.4 3.9 2.290 0.001 2.25 0.54 1.2 4.3 0.12452

4.3. Experimental Design and Treatments

The field experiment was conducted over an area of about 1000 m2 in a split-plot
design with three replicates applying four salinity level irrigation water and three phos-
phorus fertilization rates. The tested salinity levels were freshwater with an EC value
of 0.7 dS·m−1 and three levels of saline water with an EC of 2, 4 and 6 dS·m−1. Salinity
levels were achieved by adding salt (NaCl) to freshwater. The P fertilization rate consisted
of 105 (the recommended rate used by farmers), 126 (plus 20%), and 150 kg P2O5·ha−1

(plus 40% of recommended rate). The area of each plot was 20 m2 (4 m × 5 m), and each
consisted of six rows with a 75 cm interline. A 1 m distance was kept as buffer area between
plots. For P, triple superphosphate (45% of P2O5) was applied, which is commonly used
in the region. Phosphorus fertilizer was incorporated into the soil before sowing during
the soil preparation which consisted of a deep ploughing using disc plough followed by
a superficial ploughing using cover crop. P fertilizer was applied during the superficial
soil preparation.

Other fertilizer requirements were applied equally for all treatments through fertiga-
tion with a drip irrigation system using integrated drippers with a discharge of 2 L·h−1

and a distance of 40 cm between drippers. Irrigation with saline water started 35 days after
planting, and the crop was irrigated daily until harvest (20 August 2019 for the first season
and 15 July 2020 for the second season). The amount of irrigation matched with the amount
of potential evapotranspiration. Saline irrigation solutions were prepared in a separate
tank of 1 m3 before each irrigation and irrigation water EC was monitored using EC meter.
Forage corn was sown on 10 May 2019 and harvested on 20 August 2019 for the first season,
while in the second season, it was sown on 15 April 2020 and harvested on 15 July 2020.
The recommended seed rate of 100,000 seeds per ha was used with an inter-row distance
equal to 75 cm and inter-plant distance equal to 13 cm. Thinning of plants (two per hole)
was performed prior to the treatment application. The soil was supplemented with a total
quantity of 162 kg of N·ha−1. About 42 kg−1 of N was applied at soil preparation using
ammonium sulfate and 120 kg N·ha−1 using ammonium nitrate was applied through
fertigation system during the growing period.

4.4. Observations
4.4.1. Growth and Yield

The dry matter yield was measured at harvest using the whole plot area (20 m2) and
then extrapolated to t·ha−1. Yield components, including root weight and length, plant
height, shoot fresh weight and leaf number and area were determined using the values
from six representative plants per plot. The sun-dried grain yield was measured at harvest
using the half plot area (10 m2). The cobs harvested were sun-dried. Corn shelled and
grain weight was measured one month after harvest of corn silage.

4.4.2. Stomatal Conductance

Stomatal conductance was measured using the SC-1 Leaf Porometer (Decagon Devices, Inc.,
Pullman, WA, USA). It was determined between 10 am and 13 pm on the upper leaf surface
well exposed to sunlight. One measurement per plant was carried out for four plants per
plot once for each season.
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4.5. Statistical Analysis

Statistical analysis was carried out using SPSS software version 17.0. A two-way
analysis of variance (ANOVA) was used to assess the effects of both salinity and phosphorus
rate monitored parameters. Before conducting the ANOVA, the normality of the data
distribution was examined for dry matter and grain yield using the Shapiro–Wilk test.
ANOVA combined over the season was performed as the season x treatment effect was not
significant. The level of significance was set to p < 0.05. The treatment mean differences
were analyzed using Tukey’s test (p ≤ 0.05).

Correlation and multivariate analysis were performed using the statistical program-
ming language R 4.0.5. The “corrplot” package was used to display the Pearson cor-
relation matrix values among variables, the level of significance was set to p < 0.05.
Principal component analysis (PCA) was performed using “ggplot2”, “factoextra” and
“FactoMineR” packages.

5. Conclusions

Due to increased salinization problem in the world in general and specifically in
Morocco, practices such fertilization could be a judicious solution to alleviate the adverse
effect of salinity on crop productivity. The findings of our study reveal that phosphorus
supply has a positive effect on growth parameters and the yield of forage corn under saline
conditions. Thus, it improves the tolerance to salinity. In the light of results obtained, and
in order to achieve a satisfactory yield, it is recommended to apply a phosphorus rate of
126 kg of P2O5 ha−1 under moderate salinity (4 dS·m−1) and 150 kg of P2O5 ha−1 under
high salinity conditions (6 dS·m−1).
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