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Abstract: Baby leaf wild rocket cropping systems feeding the high convenience salad chain are prone
to a set of disease agents that require management measures compatible with the sustainability-own
features of the ready-to-eat food segment. In this light, bio-based disease resistance inducers able
to elicit the plant’s defense mechanism(s) against a wide-spectrum of pathogens are proposed as
safe and effective remedies as alternatives to synthetic fungicides, to be, however, implemented
under practical field applications. Hyperspectral-based proximal sensing was applied here to detect
plant reflectance response to treatment of wild rocket beds with Trichoderma atroviride strain TA35,
laminarin-based Vacciplant®, and Saccharomyces cerevisiae strain LAS117 cell wall extract-based
Romeo®, compared to a local standard approach including synthetic fungicides (i.e., cyprodinil,
fludioxonil, mandipropamid, and metalaxyl-m) and a not-treated control. Variability of the spectral
information acquired in VIS–NIR–SWIR regions per treatment was explained by three principal
components associated with foliar absorption of water, structural characteristics of the vegetation,
and the ecophysiological plant status. Therefore, the following model-based statistical approach
returned the interpretation of the inducers’ performances at field scale consistent with their putative
biological effects. The study stated that compost and laminarin-based treatments were the highest
crop impacting ones, resulting in enhanced water intake and in stress-related pigment adjustment,
respectively. Whereas plants under the conventional chemical management proved to be in better
vigor and health status than the untreated control.

Keywords: proximal sensing; Trichoderma; laminarin; yeast cell wall extract; mixed models

1. Introduction

Wild rocket (Diplotaxis tenuifolia (L.) DC) is a cruciferous perennial herb, spontaneous
in the Mediterranean Basin. In the last 25 years, Italy has become one of the major European
producers of wild rocket using the species in intensified cultivation systems devoted to
harvesting fresh-cut baby-leaf for the high convenience salad chain. It is sown with
precision seed drills on 1.8–2.2 m width beds under polytunnels, fertigated with sprinklers
and mechanically cut at complete foliar development. The harvested product quickly enters
the cold chain, is minimally processed by washing, wiping, and bagging, and distributed
through retail nets across several countries as ready-to-eat preparations. Packaged wild
rocket meets the consumer preferences for the characteristic pungent–aromatic flavor
associated with glucosinolates [1] and a few other nutraceutical properties (i.e., vitamins,
antioxidants, fibers, and low calories) [2].

Plants 2021, 10, 2575. https://doi.org/10.3390/plants10122575 https://www.mdpi.com/journal/plants

https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0001-8666-2424
https://orcid.org/0000-0002-2483-5884
https://orcid.org/0000-0003-2301-8118
https://doi.org/10.3390/plants10122575
https://doi.org/10.3390/plants10122575
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/plants10122575
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants10122575?type=check_update&version=1


Plants 2021, 10, 2575 2 of 17

This makes the market very sensitive to the sustainability levels of the production
process from field to shelf, conceived with a considerable reduction in the applied synthetic
fungicides [3,4]. Nevertheless, this vegetable crop as well as all the other baby leaf species
is susceptible to a plethora of both specific and non-specific pathogens that significantly
reduce yields and impair their quality. As a consequence, the deployment of non-traditional
effective control measures that include biological strategies is necessary [5].

Biologically-based disease resistance inducers may be biomimetic compounds or sub-
stances sourced from plants or microbes, or non-pathogenic microorganisms capable of
eliciting the plant’s own defense mechanism(s) through microbe/pathogen-associated
molecular patterns and/or the recognition of host-derived damage-associated molecular
patterns to enhance their innate defense response against upcoming broad-spectrum dis-
eases to varying degrees [6–8]. Therefore, innovative resistance activators can then be used
as biopesticides in plant protection protocols as a safer alternative to synthetic chemicals
to reduce the environmental disease management footprint and stimulate plant perfor-
mances [9]. However, they still need to improve their efficacy under field conditions [10].

Non-invasive technologies may be helpful to optimize the field applications of these
plant-targeted protectants [11]. Plants react to exogenous application of plant resistance
inducers by possibly activating many metabolic pathways involved in biochemical and
mechanical defense responses including shifts of cytosolic ion content, oxidative burst,
synthesis of enzymes, proteins, and other secondary metabolites related to the defense, in
addition to the activation of resistance-related hormones [12]. Changes in leaf composition
and plant health may be detected in the reflected electromagnetic radiation once it is
captured by optoelectronic sensors such as hyperspectral ones.

In optics, reflectance measures the ability of a given surface or material to send back
part of the incident light on it. In particular, a hyperspectral sensor can record the part of
the electromagnetic radiation of a natural (sun) or artificial light source that is reflected by
a leaf at a very fine spectral resolution in the range of wavelengths between 350–2500 nm.
The spectrum is divided into three regions called, in sequence: Visible (VIS), between 350
and 750 nm; Near Infrared (NIR) until 1400 nm; and the Short-Wave Infrared (SWIR) region
until 2500 nm. Each region has been associated with many parameters describing the
plant status [13]. Hyperspectral data analysis represents a very effective and sustainable
tool for evaluating changes induced in the plant by abiotic and biotic stresses. Recently,
hyperspectral data have been adopted on a large scale in the detection of biotic stresses on
plants as in the case of the sudden spread of Xylella infection on entire olive cultivations in
the Mediterranean area [14–16]. Some vegetation indices based on reflectance data in the
VIS range have been used to assess changes occurring in the plant health status through the
related effect on pigments such as carotenoids, anthocyanins, and chlorophyll. However,
these variations might be due to either specific or non-specific infections [17–21], hence
further laboratory phytopathogenic analysis on the leaves remains necessary.

The transition from low reflectance values in the red to high values in the infrared
spectral range is very rapid: this portion of the spectrum, called Red Edge, is more indica-
tive of the chlorophyll content than that of water [22–25]. Moreover, it is influenced by the
cell structures of leaves that poorly absorb in the NIR because of the multiple scattering
of radiation by the mesophyll. As for SWIR, the overlap between information on water
content and organic compounds makes data interpretation more difficult. Statistical pro-
cessing [26], mathematical regressions [16], and radiative transfer models [27–29] have
been used for this purpose.

This leads to hyperspectral data being used as indicators of possible stress in the plant,
although a direct relationship between the alteration observed in the spectra and its cause
has not been discovered yet.

The analysis and interpretation of spectral data are further complicated by the way in
which agronomic trials are generally conducted. The purpose of the agronomic experiments
is to test whether the compared treatments (in this case the use of different plant resistance
inducers) have any effect on the supposed response variable. If one treatment is taken as a
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control (e.g., zero treatment), the experiment will consist of testing whether every other
treatment has an effect compared to the control treatment. The biggest challenge in an
agronomic trial is to be able to separate the intrinsic variation of the response variable from
that induced by the experimental treatments. In traditional agronomic trials, this is achieved
by replicating each treatment according to a well-defined experimental design. Traditional
statistical methods based on the design then allow for the determination of the probability
that any measured difference between treatments is due to chance (null hypothesis).

Many times, when the experiment is conducted in a confined space such as a green-
house, or on-farm, for purely practical reasons, there is a tendency to follow a more
systematic pattern, with one treatment, for example, assigned to a particular part of the
field. In addition, there may be too few plots per treatment (repetitions) to assess the
underlying variability, and furthermore, such variability may be correlated [30].

These experiments very often fail to meet the fundamental assumptions required
by classical statistical methods. It is therefore necessary to use more complex statistical
methods [31,32] that are based on a model-based statistical approach [33]. This consists
in describing both the variation and the correlations between the observations of the
response variable using a statistical model. In this regard, the theory of linear mixed
effects models (LMM) [34–36] allows for the total variance to be broken down into that
which is attributable to fixed effects, corresponding to the treatments, and that which is
attributable to random effects. The latter are linked to the intrinsic spatial variability of the
agronomic system, which cannot be described by fixed effects and can be estimated by the
covariance/correlation function of residuals.

Therefore, with a view to increasing sustainability in greenhouse cultivations of wild
rocket, the use of naturally derived products can be proposed, but their actual interaction
with the plants must be continuously monitored. For this purpose, among micro- and
macroorganisms, certain active components described as plant defense promoters can be
found and formulated in some successful experimental and commercial products to induce
resistance in the plants. These may differ in the level of purity of the active ingredients,
ranging from microorganisms to a single molecule, in the hormonal signaling pathways
involved in the elicited plant reactions (i.e., oxidative burst, cell-wall fortification, etc.)
and in the ranges of efficacy. Furthermore, proper organic soil management with compost
amendments that promote plant growth and development by improving soil chemical,
physical, and microbiological quality and fertility can synergize with inputs to the aerial
part, leading to greater beneficial effects.

The specific objective of the work is to characterize the hyperspectral response of
greenhouse-grown wild rocket to the application of three immunity-stimulating active in-
gredients (resistance inducers), split over plots amended and non-amended with green com-
post, using the mixed effect model theory to account for the actual experimental conditions.

2. Results
2.1. Principal Component Analysis (PCA)

Four principal components (PCs) with eigenvalues greater than 1 were extracted.
Among these, however only three PCs explaining a cumulative variance proportion greater
than 97% were retained (Table 1).

Table 1. Basic statistics of the PCs.

Variables Mean Median Std Deviation Skewness Kurtosis

PC1 −0.0455 −0.0594 0.697 0.358 0.230
PC2 −0.0641 0.0823 0.769 −1.183 2.185
PC3 0.011 0.0003 0.805 0.297 0.671

The most relevant bands for PC1 fell within the ranges 1405–1545 nm and 1855–2500 nm
with a small plateau at 1435–1475 nm, a peak at 1885 nm, and two other plateaus at
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2055–2105 and 2345–2385 nm. Since water peaks fall in SWIR regions (wavelengths cen-
tered at about 1450, 1940, and 2200 nm), PC1 appears to be related to foliar absorption of
water [29,37]. However, these absorbance bands may also be related to the characteristics
of chemical components such as cellulose, starch, and proteins. In particular, the peak at
1885 nm could be attributable to a stretch absorption mechanism of chemical groups such
as OH and CO in cellulose and hemicellulose, and the plateau at 2345–2385 seems to be
linked to a deformation mechanism of the CH bond [27]. The range 2055–2105 nm was
highly correlated with N content [38], while the range 1435–1475 nm overlapped with the
main absorbance peak of water at 1450.

PC1 could therefore be used as an indicator of the leaf water status as well as the
content of cellulose, starch, and proteins, whose variations might be caused by mechanisms
of action of the inducers through the biochemical pathways they influence (i.e., the closure
of stomata) [39–42]. It is worth noting that since the data refer to reflectance, the relationship
between PC1 and water, cellulose, starch, and protein contents is inverse.

Regarding PC2, the main loadings fell within the range 715–1375 nm. More specifically,
the subrange up to 935 nm was more related to the structural characteristics (LAI) of the
vegetation [22]. The secondary water absorption peak at 970 nm, often used to compute
vegetation indices of water content [43], fell into the next subrange, as did the other
peculiar water absorbance peak at 1200 nm [44]. PC2 can therefore be interpreted primarily
as an indicator of the structural characteristics of the leaf cells and only secondarily as an
indicator of the water content. Unlike PC1, the relationship between PC2 and LAI is direct
as it is well-known that better leaf vigor produces higher reflectance in the NIR [22].

PC3 was considered, despite the loadings not exceeding the established limit value of
80, because of the additional information it can provide regarding the spectral response of
wild rocket to the action of inducers. The path of its loadings (Figure 1) showed two peaks
between 365–695 nm in VIS. The first peak had a maximum at 495 nm, a value related
to the carotenoid content as an indicator of plant stress [45,46], while the second peak at
650 nm was related to chlorophyll content, as green plants have a main absorption peak
in the red. In fact, the two leaf contents are closely related and their Car/Chla ratio can
be used as an indicator of the ecophysiological state of leaves and plants [47]: a high ratio
denotes severe stress.
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Therefore PC3, despite the small portion of variance explained, can be taken as an
indicator of plant health as high reflectivity in this VIS range might be associated with a low
carotenoid content, intended as an indicator of stress, and efficient chlorophyll function.
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2.2. Linear Mixed Model (LMM)

Before any further processing, the first three principal components, standardized to
mean 0, were tested against the assumption of normal distribution. From the examination
of Table 2, only PC2 showed significant deviations from normality, as can be verified by the
results of the basic statistics and normality tests. It was therefore necessary to perform the
relative rank transformation only for PC2, since the pronounced skewness of its distribution
might affect the linearity of the mixed model to be estimated. From this point onward, all
statistical processing is understood to be carried out on the rank-transformed PC2 values
(rPC2) and the raw values of PC1 and PC3.

Table 2. Normality tests of the PCs.

Test Statistic PC1 PC2 PC3 p-Value PC1 PC2 PC3

Kolmogorov-Smirnov D 0.030 0.100 0.032 p > D >0.1500 <0.0100 >0.1500
Cramer-von Mises W-Qu 0.095 1.557 0.048 p > W-Qu 0.1352 <0.0050 >0.2500
Anderson-Darling A-Qu 0.701 8.887 0.393 p > A-Qu 0.0707 <0.0050 >0.2500

The results of the Levene’s test applied to the three variables are shown in Table 3. As-
suming a reference probability level of 0.05, the fixed effect COMPOST is non-homogeneous
only for PC1, while the effect TREATMENT is non-homogeneous for PC1 and PC3.

Table 3. Levene’s test of variance homogeneity for PC1, Gaussian transformed PC2 (rPC2) and PC3.

Effects DF
PC1 rPC2 PC3

F Value p > F F Value p > F F Value p > F

Compost 1 5.14 0.0238 0.47 0.4919 0.73 0.3931
Treatment 4 4.07 0.0030 1.08 0.3648 1.14 0.3352

Both Moran’s I test and Geary’s c test were significant at p < 0.05 for all three variables
(Table 4). However, these are overall tests: more information on the type and intensity of
the spatial association can be obtained from residual-fitted variogram models.

Table 4. Tests of spatial autocorrelation of the three PCs.

Variable Coefficient Observed Expected Std Dev Z p > |Z|

PC1
Moran’s I 0.094 −0.002 0.025 3.85 0.0001
Geary’s c 0.902 1.00 0.026 −3.73 0.0002

rPC2
Moran’s I 0.065 −0.002 0.025 2.69 0.0071
Geary’s c 0.932 1.00 0.026 −2.62 0.0089

PC3
Moran’s I 0.050 −0.002 0.025 2.08 0.0373
Geary’s c 0.941 1.00 0.026 −2.23 0.0256

Regarding the residual variogram models, a spherical model with nugget was fitted
for PC1 and PC3 and a pure nugget effect model for rPC2 (Table 5). Although the pa-
rameters of the variogram models were significantly different from zero, it can be seen
that the nugget effect for PC1 and PC3 was 87% and 96%, respectively, of the total sill
(nugget + partial sill). These results show that although spatial autocorrelation occurred
for PC1 and PC3, the structured component (partial sill) was only a small percentage
(13% and 4%, respectively) of the total spatial variance because the spatially uncorrelated
component (nugget effect) was highly prevalent. This can be explained based on the
particular experimental scheme in which an intrinsic variability of the plant–soil system
was superimposed on an artificial variability imposed by man through randomization
in treatment assignment. However, these variogram models were only used to initialize
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the iterative process for jointly estimating the random effects parameters and fixed effects
coefficients of the mixed effects models to be determined.

Table 5. LSE estimates of the variogram parameters for PC1, rPC2, and PC3.

PC1 rPC2 PC3

Parameter Value t Value p > |t| Value t Value p > |t| Value t Value p > |t|

Nugget 0.376 54.78 <0.0001 0.917 250.62 <0.0001 0.556 90.35 <0.0001
Partial sill 0.053 7.12 <0.0001 - - - 0.022 2.83 0.0115
Range (m) 6.41 11.98 <0.0001 - - 11.19 6.63 <0.0001

Table 6 shows the results of the mixed-effects model estimation for PC1, separated
between the estimates of the stochastic effect parameters (Table 6a) and the statistical
significance of the fixed effects (Table 6b). Regarding the variogram of the residuals,
two separate models were applied for the two levels of the COMPOST effect due to the
heteroscedasticity of variance. For the NO level. a pure nugget effect was fitted, revealing
a lack of spatial structure. For the YES level, it was possible to fit a spherical model, which,
when compared with the previous least squares model (Table 5), had a shorter interval
but a higher partial sill. In any case, it represents a short-range correlation with a spatially
uncorrelated component more than twice as large as the structured one.

Table 6. Results of the mixed effect model estimation for the PCs.

a. Random Effect

Variable
Variogram

Model
Parameters

Effect RML Estimate Standard Error z Value p > Z

PC1

Nugget Compost NO 0.259 0.059 4.42 <0.0001
Partial sill Compost YES 0.100 0.042 2.40 0.0081
Range (m) Compost YES 2.77 0.840 3.30 0.0005

Nugget Compost YES 0.256 0.034 7.62 <0.0001

rPC2
Partial sill 0.114 0.062 1.84 0.0332
Range (m) 7.25 3.03 2.39 0.0084

Nugget 0.898 0.064 14.09 <0.0001

PC3
Partial sill 0.062 0.042 1.48 0.0689
Range (m) 11.18 6.68 1.67 0.0470

Nugget 0.557 0.038 14.46 <0.0001

b. Fixed Effect

PC1 rPC2 PC3

Effect F Value p > F F Value p > F F Value p > F

Compost 13.40 0.0015 0.04 0.8507 6.33 0.0185
Treatment 3.17 0.0155 3.39 0.0106 4.92 0.0008

Compost × Treatment 4.42 0.0021 0.99 0.4145 3.87 0.0050

Unlike for the TREATMENT effect, it was not possible to fit five separate variogram
models due to insufficient degrees of freedom because of the small number of observa-
tions/replications.

Regarding the fixed effects, both main effects and their interaction were highly significant.
Only the most significant differences between the various levels of the two effects and

their interaction at p < 0.05 are shown in Table 7.
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Table 7. The most relevant significative LSE differences between the levels of each effect and the ones of interaction.

Variables Effect Compost Treatment Compost Treatment Estimates Standard Error t Value Pr > |t|

PC1

Compost NO YES 0.305 0.083 3.66 0.0015
Treatment CER CTR 0.221 0.111 1.99 0.0486
Treatment TRI CTR 0.298 0.110 2.71 0.0076
Treatment CHE CTR 0.376 0.111 3.37 0.0010

Compost × Treatment NO LAM YES TRI 0.4803 0.1630 2.95 0.0041
Compost × Treatment YES LAM NO TRI −0.6451 0.1630 −3.96 0.0002
Compost × Treatment NO CHE YES CTR 0.396 0.163 2.43 0.0170
Compost × Treatment YES CHE NO CTR 0.356 0.163 2.18 0.0318
Compost × Treatment YES CHE YES CTR 0.548 0.168 3.27 0.0019

rPC2

Treatment CER CHE −0.604 0.166 −3.64 0.0003
Treatment LAM CHE −0.357 0.160 −2.24 0.0262
Treatment TRI CHE −0.332 0.157 −2.12 0.0356
Treatment CHE CTR 0.346 0.160 2.17 0.0321

PC3

Compost NO YES −0.259 0.103 −2.52 0.0185
Treatment CER CHE −0.367 0.126 −2.92 0.0040
Treatment LAM CHE −0.351 0.121 −2.90 0.0041
Treatment TRI CHE −0.500 0.119 −4.18 <0.0001
Treatment TRI CTR 0.264 0.122 2.17 0.0313

Compost × Treatment YES LAM NO TRI 0.5532 0.1842 3.00 0.0034
Compost × Treatment YES LAM YES TRI 0.5248 0.1760 2.98 0.0033
Compost × Treatment YES CHE NO CTR 0.365 0.182 2.01 0.0478
Compost × Treatment YES CHE YES CTR 0.423 0.169 2.51 0.0131
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For the COMPOST effect, the mean of the NO level for PC1 was larger than the mean
of the YES level. Recalling the meaning attributed to PC1, it can be stated that plants treated
with compost might have a higher water content.

For the effect of TREATMENT, CTR mean was significantly lower than that of the
CER, TRI, and CHE levels and therefore might be associated with higher water content.

For rPC2, it was possible to fit a spherical model with nugget for the random effect
(Table 6), in contrast to the least squares model (Table 5), which was the pure nugget effect.
However, once again, this was short-range variability (<3 m) and with a spatially structured
component that was only 14% of the spatially uncorrelated.

Regarding the fixed effects, only TREATMENT was significant, and in Table 7, only
the differences between the TREATMENT levels that were significant are shown. Based on
the interpretation of rPC2, which correlated positively with LAI, we can state that CHE
treatment showed better leaf vigor than all remaining levels.

For PC3, there was sufficient agreement between the least squares estimates (Table 5)
of the random effect and the RML estimates (Table 6a). However, in the latter case, there
was a slight increase in the spatially structured component, which remained a small part
(11%) of the spatially uncorrelated component. Both fixed effects and their interaction were
highly significant (Table 6b).

Based on the interpretation of PC3, plants treated with compost appeared to be
healthier than untreated plants and the same was true for plants under CHE treatment
compared to those in the other levels (Table 7). These results are consistent with those
obtained with rank transformed PC2.

In summary, the above analysis showed that the compost-treated plants had a higher
water content than untreated plants. Similarly, the plants in level CTR of TREATMENT
appeared wetter than those in the remaining levels.

In contrast, the plants in CHE appeared to be more luxuriant and healthier than those
in the other levels. Statistical analysis showed that the apparently winning combination
(YES-CHE) differed significantly for both PC1 and PC3 from the combinations YES-CTR
and NO-CTR, resulting in lower water content but lower stress level (Table 7).

The results of the traditional analysis of variance, assuming that the residuals were
spatially uncorrelated, are also shown for comparison in Table 8. Indeed, there were no
significant differences and this was quite consistent with what was expected, given the
small proportion of the structured component of the variance compared to the spatially
uncorrelated component. However, the values of the F statistic tended to be higher than
those of the mixed effects models, underlining the risk of committing type I errors if the
spatial correlation is neglected [48].

Table 8. Results of the mixed effect model estimation for the PCs.

PC1 rPC2 PC3

Effect F Value p > F F Value p > F F Value p > F

Compost 25.17 <0.0001 0.53 0.4686 18.64 <0.0001
Treatment 4.91 0.0007 2.41 0.0484 5.18 0.0004

Compost × Treatment 6.34 <0.0001 1.64 0.1640 4.13 0.0027

3. Discussion

The statistical results obtained are consistent with a biological interpretation, which
reinforces the idea that the spectral response of the plant can be used as an effective and
reliable indicator of its health. PC1 summarizes information about N content and other
biochemical compounds, which to date, has come from several studies regarding the SWIR
region on potato and other mapped vegetation [49,50]. As far as PC2 is concerned, the
main loadings fell in the ranges more related to the LAI as confirmed by recent studies on
rice and maize in both proximal and remote sensing [51,52], and to the water absorption
peaks that are used to calculate new vegetation indices associated with water content in
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different plant species [53]. Finally, PC3 can explain the ratio Car/Chla as an indicator of
plant stress [54].

It is generally recognized that the incorporation of compost into the soil increases the
water available to plants [55], delaying the possible wilting associated with drought [56]
and thus protecting and/or enhancing photosynthetic activity [57]. On the other hand, the
lack of statistical significance of the COMPOST effect for rPC2, which was associated with
plant vigor, can be explained on the basis of the reduced nutrient supply capacity shown by
green composts in the presence of a large fraction of non-labile carbon, whose degradation
implies the net immobilization of N [58]. In addition, compost in combination with LAM
and TRI had a positive effect on the water content (PC1) and in combination with LAM
and CHE on the general health of the plant (PC3). In contrast, compost in combination
with CER did not produce any positive effects in terms of either water content or LAI.

However, the resistance inducers used in this study, on the basis of their specific char-
acteristics, might be implicated in the physiological processes underlying the interpretation
of the PCs. Antagonistic fungi belonging to the genus Trichoderma have been reported to
induce a resistance response into plants through multiple hormonal signaling pathways
that modulate jasmonic acid, ethylene, and salicylic acid levels toward a wide-spectrum of
pathogens [59]. Their biocontrol efficacy might result in the modulation of plant growth
and yield improvement [60]. Kumar and Kumar [61] reported that root colonization of
Trichoderma sp. can induce the production of stress enzymes such as peroxidase and glu-
tathione reductase, which may be responsible for decreasing disease incidence in Brassica
juncea. In a different way in cabbage, Trichoderma treatments increased the transcript levels
of genes related to photosynthesis and sucrose transport, PR proteins, chitinases, and
oxidases [62]. Yeast cell-wall extract, which carries polysaccharidic and peptidic polymers
and oligomers of highly variable molecular mass, acts as MAMPs in inducing defense-
related events through SA signaling [40–42,63]. However, there is no evidence in the
literature that it has an impact on the reflectance of plants. On the other hand, concerning
laminarin, which is a water-soluble glucan storage polysaccharide extracted from brown
algae (i.e., Laminaria digitata Hudson, Lamouroux), it has been shown that it can elicit
defense reactions in several plant species [64] via salicylic acid and reactive oxygen species
pathways [65]. This is most likely due to the association with bound β-1,3–1,6 glucosyl
residues [39]. It is also worth pointing out that in this study, the LAM effect on TRI was
significantly higher in all pairwise COMPOST × TREATMENT interactions relative to PC3
associated with indicating stress occurrence. Consistently, laminarin has been reported as
an unconventional elicitor of plant secondary metabolites [66]. In Arabidopsis, this molecule
increased chloroplast stability by activating the antioxidant system under stress condi-
tions [67]. Consequently, with regard to PC3, the current hyperspectral study indicated
that LAM treatment associated with the compost effect is linked to the improved plant
health status.

4. Materials and Methods
4.1. Experimental Design

The trial was conducted under a multi-tunnel greenhouse located at the CREA-
Research Center for Vegetable and Ornamental Crops (Pontecagnano Faiano, Italy,
40◦38′54.0′′ N 14◦53′21.4′′ E). Wild rocket cv Yeti (Maraldi Sementi, Italy), suitable for the
winter–spring cropping cycle, was precision sown on 19 November 2019 (2500 seeds m−2)
and grown on 1.3 m wide beds under two polyethylene tunnels (20 × 7.2 m) with four
beds each equally spaced by 0.5 m.

The experimental design was a two-way split-plot with the external effect (COM-
POST) represented by the application or not of green compost as an amendant (two levels:
Yes/No). The internal effect (TREATMENT) was represented by the application of in-
ducers including five treatments: (1) two applications (at seeding and pre-emergence)
of Trichoderma atroviride strain TA35 from CREA Collection [68] at a dose of 1000 L ha−1

(105 cells mL−1) (TRI); (2) four weekly spray applications of commercial laminarin-based
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product (Vacciplant®, Arysta Lifescience s.a.s., France) at dose of 1 L ha−1 (LAM); (3) four
weekly spray applications of Saccharomyces cerevisiae strain LAS117 cell wall extract-based
commercial product (Romeo®, Agrauxine, France) at a dose of 750 g ha−1 (CER); (4) local
standard approach including one spray with Cyprodinil, Fludioxonil, Mandipropamide,
and Metalaxil-M (CHE); and (5) no treatment (CTR) used as reference control. Main plots
were not-amended or amended with green compost (10 t ha−1 dry matter) (COMPOST).
The experimental design consisted of four blocks (each one including a single bed but
split into two tunnels North/South); each block was split longitudinally into two halves
randomly assigned to one level of COMPOST; each half of the block was randomly split
into the five levels of the internal effect. The trial then consisted of 40 experimental units
(plots) with a size of 3.0 × 1.3 m (Figures 2 and 3).
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4.2. Hyperspectral Reflectance Measurements

Leaf spectral measurements were performed in the spectral range 350–2500 nm, using
a portable non-imaging spectroradiometer (FieldSpec® 4 Hi-Res, ASD Inc., Boulder, CO,
USA) through a fiber-optic contact probe (ASD Plant Probe; ASD Inc., USA) with a spectral
resolution of 3 nm in VIS-NIR and 8 nm in SWIR, a 10 mm field of view, and an integrated
halogen reflector lamp. The instrument was warmed up for 90 min before measurements
to increase the quality and homogeneity of acquired data. Calibration was obtained with
the pre-calibrated white 99% spectral reference panel. Each sample scan represents a mean
of 10 reflectance spectra.

Within each plot, 12 spots spaced 50 cm apart were selected based on the orientation
of the leaves in sunlight, with preference given to the top and most exposed leaves; the
reflectance measurement for each spot was obtained as an average of three replicates. The
reflectance data were then averaged over 10-nm intervals, thus reducing the number of
wavelengths from 2151 to 215, smoothing the spectra and keeping the risk of over-fitting
low [69]. Pre-processing methods were applied to reduce the impact of multiplicative and
additive effects of possible backscattering within the instrument [70]. The pre-processing
first involved the splice correction, in order to minimize the inconsistency recorded at
the spectral intervals among the three detectors of the spectroradiometer: the VIS-NIR
range 350–1000 nm, which is characterized by a sampling interval of 1.4 nm and the two
ranges in the NIR-SWIR, 1000–1800 nm and 1800–2500 nm, with a sampling interval of
2 nm. After that, two pretreatments were performed on the reflectance spectra: (1) multiple
scattering correction (MSC); and (2) smoothing/denoising with Savitzky–Golay polynomi-
als [71]. Multiple scattering correction (MSC) works mainly when the scattering effect is the
dominant source of variability and removes additive and multiplicative components [72].

The first order Savitzky–Golay (SG) polynomial algorithm reduces the random noise
of the measurements. The algorithm is based on a moving polynomial fit of any order and
the filter size consists of (2n + 1) points, where n is the half-width of the smoothing window
(w). The polynomial fit interpolates the points between the 2n’s. A window size (w) of 11
(w = 2n + 1) and the second polynomial order were applied here [73].

Splice correction was achieved using ViewSpecPro software (Analytical Spectral
Devices Inc., Boulder, CO, USA). The other preprocessing methods were performed using
ParLeS software [74].
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4.3. Principal Component Analysis

Principal component analysis is a widely used dimensionality reduction technique
that allows for the extraction of principal components (PCs), expressed as a linear combina-
tion of variables [75,76]. The PCs found in this way do not represent directly observable
variables and must therefore be interpreted from a scientific-rational perspective. Mathe-
matically, PCA works on the correlation matrix and extracts a few PCs equal to the number
of measured variables, but only a part of them is useful.

The number of PCs was fixed by selecting the PCs with eigenvalues greater than
or equal to 1 (Kaiser’s criterion) [77]. The eigenvalues refer to the share of variability
“explained” by the PC and take on descending values as the first PC moves toward the
last one. The result can then be subjected to rotation by various methods. Methods using
orthogonal rotations preserve the independence of the PCs. The VARIMAX procedure was
used in this study.

The most important parameters to evaluate were:
The amount of variance “explained” by both the set of the retained PCs (cumulative)

and by each PC individually;
PC loadings, which describe the strength of the relationship between the PC and the

variable being measured.
PCA was performed with the SAS/FACTOR procedure of the statistical software

package SAS/STAT (release 9.4 SAS ANALYTICS U software).
For each PC, the loading values were multiplied by 100. The value of 80 was chosen

as a limit above which to select the most relevant wavelengths.
The raw spectral data were preferred over the pretreated ones because with the same

number of PCs, they explained a greater proportion of variance, probably due to the specific
measurement modalities of the plant probe that reduced the random error.

4.4. Statistical Analysis

The assumption of univariate normality for each PC was checked with three non-
parametric tests (Kolmogorov–Smirnov, Cramer-von Mises, and Anderson–Darling) [78].

If the variable showed large departures from normal distribution, to improve the
linearization of the mixed effect model, PC was transformed to normal scores (yi) using
Blom’s formula [79]:

yi = Φ−1 (ri − 3/8)
(n + 1/4)

where Φ−1 is the inverse cumulative normal (PROBIT) function; ri is the rank of the ith
observation; and n is the number of observations that have non-missing values for the
ranking variable.

The spatial association of the residuals from the OLS models, obtained assuming
independence of the residuals, was verified in two ways:

(1) By calculating the spatial autocorrelation statistics of Moran (1950) [80] and
Geary [81] and comparing them to the null hypothesis statistics of completely random
spatial model; and

(2) By fitting an authorized mathematical model to the experimental variogram of the
OLS residuals, according to the least squares estimation (LSE) technique and testing the
statistical significance of its parameters.

4.5. Linear Mixed Effect Model (LMM)

A LMM can be written in the form:

z = Mβ + ε

where z is a vector of length n corresponding to the measurements of the response variable;
and M is the fixed effects design matrix of size n × t, where t is the total number of
different experimental treatment levels. In the case under study, there are two levels for the
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COMPOST effect, five for the TREATMENT, and 10 for the interaction effect. β is the vector
of length t of the coefficients of the fixed effects and ε the vector of length n of the random
effects. The product Mβ represents the fixed effects. All entries of the matrix M (Mij) can
assume the values 0 or 1. The entries of the first column (M1j) are all equal to 1 while the
other Mij entries are 1 if observation i corresponds to the treatment level j, otherwise they
are 0. Therefore, β1 corresponds to the overall mean and the other βj correspond to the
adjustment of this mean concerning each treatment level j. The elements of the vector ε
(ei), also known as residuals, are assumed to follow a normal distribution with mean 0
and covariance matrix Cov[ei, ej]. This matrix may differ from the identity matrix, and the
random effects may also be spatially correlated.

Usually, the covariance is assumed to be a function of the distance between the
locations xi and xj. If by h we denote the distance between xi and xj, the covariance model
takes the general form:

Cov[ei, ej] = c(h) = σ [f(h)]

where σ is known as the partial sill and with the symbol f, one of the authorized mathemat-
ical functions used to represent a covariance function, is indicated. The models, for which
f(h) is the same for all pairs of observations equally distant in a given direction, are called
stationary models (of the second order if the average, assumed constant, is known). If f(h)
does not depend on direction, then the covariance structure is said to be isotropic. Many
isotropic covariance models exist, however, in this study, we used the spherical model:

c(h) = σ 0 + σ [1 − 1.5(h/ρ) + 0.5(h/ρ)3] if h< ρ

c(h) = 0 if h≥ ρ

This model has three parameters that must be determined from the data: the nugget
variance (σ 0), the partial sill (σ)m and the range ρ. These spatial models are drawn from
geostatistics and refer to one of the numerous manuals [82–84] for an interpretation of
these parameters. It is commonly preferred to use the variogram instead of the covariance
function given by the formula:

γ (h) = σ 0 + σ − c(h)

Furthermore, complexity in determining the covariance model may arise from the
heteroscedasticity of the variance relative to the individual PCs tested, as this may result in
heterogeneity in the covariance function. The homogeneity of the variance was tested with
Levene’s test [85].

The method of fitting the spherical model to the values of mean covariance for each
class of distance, h, is based on an iterative procedure, aimed at maximizing the log likeli-
hood of the residuals using the restricted maximum likelihood method (REML) [86]. Once
the spatial covariance function is estimated, the fixed effects coefficients are obtained as
generalized least squares estimates [86]. For comparison, traditional models (OLS), which
assume residuals are normally distributed with zero mean but not correlated spatially,
were also determined.

All statistical analyses were performed using statistical software package SAS/STAT
(release 9.4 SAS ANALYTICS U software) and in particular, LMMs were estimated using
the procedure MIXEDe.

5. Conclusions

This study demonstrated that hyperspectral proximal sensing of the wild rocket crop
is suitable for tracking the field performance of canopy treatments with resistance inducers,
based on their specific interactive mechanisms with the plant. Compost and laminarin-
based treatments had the greatest impact on the crop, resulting in increased water uptake
and in stress-related pigment regulation, respectively. Ultimately, the plant under the
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conventional chemical management proved to be more vigorous and healthier than the
untreated control.

Furthermore, in order to produce reliable results in agronomic trials that are actually
useful to farmers, knowledge of the spatial variability of the response variable can no
longer be ignored. Otherwise, there is a risk of assigning to the experimental factor an
effect that is instead attributable to the intrinsic variation of the crop–soil system. It is
hoped that the theory of mixed effects models will become increasingly familiar in the
agronomic community.
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