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Abstract: The mango is an important tropical fruit in the world, but it is easily perishable after harvest.
In order to investigate the effect of the compound preservation technology on the physiology and
quality of mangoes during transportation and storage, mangoes were treated with different packaging
and preservation methods. All mangoes were subjected to simulated transportation by a vibration
table for 24 h (180 r/min, 13 ◦C), and stored at 13 ◦C. The changes in the color, physicochemical
characteristics, quality, and antioxidant-related enzymes of the mangoes were measured. The results
show that the shelf life of inflatable bag packing (CK) was only 24 d, while the other treatments
could be 30 d. The inflatable bag packing with modified atmosphere packaging (MAP) treatment
(HPM) had the lowest yellowing degree (12.5%), disease index (34.4%), and mass loss (2.95%), at 30 d.
Compared with the CK, the compound treatment containing MAP prolonged the peak respiration of
the mangoes by 6 d and suppressed the increase in the total soluble solids and relative conductivity.
Meanwhile, the HPM could effectively maintain moisture content, firmness, titratable acid, vitamin C,
and the peroxidase and superoxide dismutase content, indicating that the treatment could maintain
the better quality and antioxidation ability of mangoes. In summary, the MAP compound treatment
better maintained the commercial characteristics of the mangoes, followed by the edible coating
compound treatment. The results provide a theoretical reference for mango cushioning packaging
and postharvest storage technology.

Keywords: Mangifera indica L.; simulated transport vibration; low-temperature storage; packaging
method; edible coating; modified atmosphere; quality

1. Introduction

Mango (Mangifera indica L.) is one of the most important tropical fruits in the world
because of its economic importance in international trade [1]. Mangoes have a sweet and sour
taste, unique flavor, high nutritional value, and are mostly consumed fresh [2,3]. However,
mangoes are perishable fruits, and fungal infestation (e.g., Colletotrichum gloeosporioides
Penz., and Botryodiplodia theobromae Pat.) is one of the main reasons for the loss of com-
mercial characteristics [4,5]. Nutrients, such as the vitamins, titratable acids, and total
soluble solids in mangoes, decline rapidly after the peak of respiration [6]. In addition,
mangoes need to be transported over long distances before being sold at the terminal. The
mechanical damage in this process accelerates the rate of ripening and aging, decreasing
the shelf life of mangoes [7,8].
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Adequate packaging can reduce the physical damage of the fruit during transportation
and ensure a better appearance [9]. At present, mangoes are packaged in polyethylene
foam mesh sleeves, and placed in polystyrene foam boxes, except for high-end consumer
products. However, according to our previous research, commercial sleeve wrapping has
limited protective effect on mangoes. It could not significantly reduce the damage to the
fruit, which is not conducive to the postharvest storage of mangoes.

Temperature is one of the most important factors in maintaining the characteristics
and quality of mangoes [10]. Low temperatures not only reduce the respiration rate of
climacteric fruits, such as mango and dragon fruit, but also inhibit the activity of spoilage
bacteria [11]. Thus, low temperatures can effectively extend the storage periods of fruits.
However, if the temperature is too low, the fruit will suffer damage and the different
symptoms of chilling injury will appear [12]. Most studies find that the temperature
threshold for chilling injury in mangoes is below 10–13 ◦C [13].

Fungicide treatment is another effective way to avoid fungal attacks on mangoes and
does not adversely affect their appearance [14], but the abuse of these drugs can lead to the
development of resistant populations of the fungi. In addition, there is a growing awareness
of the dangers these compounds pose to humans and the environment. The edible coating
is proven to be safe and environmentally friendly for the postharvest preservation of
fruits [15,16]. The substrates of these coatings contain polysaccharides, proteins, and
lipids. Among them, chitosan has been the most studied because of its good film-forming
ability and antimicrobial activity [17]. The addition of different bioactive substances (e.g.,
curcumin, natamycin, etc.), and the improvement of the film-forming performance of
the compound edible coatings, are the current research hotspots. The compound edible
coating has an obvious preservation effect in the application of pummelo [18], fig fruit [19],
apple [20], and other fruits.

Modified atmosphere packaging (MAP) is an effective method for extending the
storage periods of fruits. This technology inhibits the growth of microorganisms, delays
the rate of postharvest metabolism, and reduces the consumption of nutrients by changing
the ratio of gases in the storage environment [21]. Thus, it can extend the storage periods
of fruits and maintain their quality. However, earlier studies have shown that there is
a significant interaction effect between oxygen, carbon dioxide, temperature, and other
factors in the storage environment [22]. Therefore, it is necessary to find suitable gas
preservation conditions according to the characteristics of different products.

In our previous studies, we obtained better packaging methods, compound edible
coatings, and modified atmosphere packaging conditions [23] individually for mangoes
(same as the Materials and Treatment Section description). In this paper, we focused on
the protective effect of the above three compound preservation technologies on mangoes
during transportation and storage at a low temperature (13 ◦C), and the changes in the
physiology and quality parameters of the mangoes.

2. Results
2.1. Fruit Color and Disease Index

The control of the mangoes did not have edible value after 24 days of cold storage.
There was a significant difference in the yellowing degree of the different treatments. The
yellowing degree of mango fruits increased significantly (p < 0.05) at whole storage (Figure 1A).
The lowest yellowing degree was found in the HPM (12.5%), but it did not produce a
significant difference from the HM at Days 18 to 30.

The effect of the compound preservation treatments on the disease index of the
mangoes was significant (p < 0.05). As the storage time increased, the disease index of the
mangoes tended to increase (Figure 1B). The highest disease index (60.0%) was observed at
the end of storage in the CK. The disease index of the mangoes in the treatment was lower,
and the HPM (34.4%) was significantly lower than those of other treatments.
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Figure 1. Yellowing degree (A), and disease index (B), of mangoes with different treatments during 30 days at 13 ◦C.
Treatments: CK (Control): Inflatable bag packaging + Vibration; HF: Coating + Foam mesh sleeve packaging + Vibration;
HM: Foam mesh sleeve packaging + Vibration + MAP; HPF: Coating + Inflatable bag packaging + Vibration; and HPM:
Inflatable bag packaging + Vibration + MAP. Different letters indicate significant differences between treatments for the
same storage time by Duncan’s multiple range tests (p < 0.05).

The initial L*, a*, b*, and ∆E values (0 day) of the mangoes were 58.9 ± 0.48,
−4.65 ± 0.07, 45.2 ± 1.16, and 51.6 ± 1.23, respectively. During low-temperature stor-
age, the different treatments had a significant effect on the L* and b* values of the mangoes
(p < 0.05), with a decreasing trend. Mangoes treated with the HPM and HM had signifi-
cantly higher L* values than the CK on the 24th day of storage (Table 1). The highest b*
value was found in the pulp of mangoes treated with the HPM. The a* and ∆E values
gradually increased, with significant differences between the treatments. Mangoes from
different treatments showed a lower a* value compared to the CK. The ∆E value of the HF
and HM were significantly higher and lower than those of other treatments, respectively.

Table 1. Color characteristics of mango pulp with different treatments, stored at 13 ◦C, on the
24th day.

Treatments L* a* b* ∆E

CK 46.4 ± 0.78 c −0.36 ± 0.20 a 37.5 ± 1.09 d 59.8 ± 0.59 b

HF 46.8 ± 0.51 c −1.83 ± 0.25 c 40.8 ± 1.41 a,b 61.5 ± 1.14 a

HM 50.8 ± 0.89 a −0.73 ± 0.05 b 38.9 ± 0.89 c,d 57.2 ± 0.66 c

HPF 48.7 ± 0.75 b −1.71 ± 0.32 c 39.4 ± 0.46 b,c 59.2 ± 0.71 b

HPM 51.5 ± 0.56 a −0.68 ± 0.13 b 42.0 ± 1.61 a 58.7 ± 1.08 b

Different letters indicate significant differences between treatments for the same storage time by Duncan’s
multiple range tests (p < 0.05). ∆E indicates a total color difference. Treatments: CK (Control): Inflatable bag
packaging + Vibration; HF: Coating + Foam mesh sleeve packaging + Vibration; HM: Foam mesh sleeve packaging
+ Vibration + MAP; HPF: Coating + Inflatable bag packaging + Vibration; and HPM: Inflatable bag packaging
+ Vibration + MAP.

2.2. Physicochemical Analysis

The variation in the moisture distribution of the mangoes with the storage time is
shown in Figure 2A. The moisture content was highest in the peel area, and the pulp
moisture was significantly reduced (red or yellow color disappeared) during storage.
Different treatments had significant effects on the free moisture distribution of the mangoes,
and the HPM retained more peel and pulp moisture at the end of storage.

The compound treatments had a significant effect (p < 0.05) on the free moisture
content of the mangoes. The free moisture content kept decreasing during the storage,
consistent with the trend of moisture distribution shown in Figure 2A. The HPM was
optimal, with 87.40% of free moisture at the end of storage, which was significantly higher
than that of the HPF (81.15%).
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Figure 2. Moisture distribution (A), free moisture content (B), mass loss (C), respiration rate (D), relative conductivity (E),
and total soluble solids (F) of mangoes with different treatments during 30 days at 13 ◦C. Treatments: CK (Control): Inflatable
bag packaging + Vibration; HF: Coating + Foam mesh sleeve packaging + Vibration; HM: Foam mesh sleeve packaging
+ Vibration + MAP; HPF: Coating + Inflatable bag packaging + Vibration; and HPM: Inflatable bag packaging + Vibration
+ MAP. Different letters indicate significant differences between treatments for the same storage time by Duncan’s multiple
range tests (p < 0.05).

The mass loss of mangoes increased significantly throughout the storage period
(p < 0.05). The HF had the highest mass loss (10.07%) at whole storage, and the HPF had a
higher mass loss than that of the CK on the 24th day. The rate of mass loss was significantly
reduced for the HM and HPM, with the HPM showing only 2.95% mass loss at the end of
storage (Figure 2C).

The effect of the compound treatments on the respiration rate of the mangoes is shown
in Figure 2D. The CK, HF, and HPF reached the peak respiration rate at the 12th day of
storage, but the respiration rate of the CK was, significantly, the highest, compared to those
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of the other treatments. The HM and HPM delayed the peak of mango respiration until
Day 18; however, the respiration rate was elevated compared to the CK.

The relative conductivity of the mangoes increased significantly (p < 0.05) during the
30-day storage period. The initial mean relative conductivity was 73.6%, all treatments
exceeded 97%, and the difference was not significant at the end of storage. However,
the different treatments inhibited the increase in the relative conductivity until Day 18 of
storage (Figure 2E).

The changes in the total soluble solids of the mangoes during storage are shown in
Figure 2F. The total soluble solids of the CK increased rapidly after the 6th day of storage
and reached a maximum value of 18.4% on the 24th day. The compound treatments were
able to suppress the increase in the total soluble solid content to varying degrees.

2.3. Quality Analysis

The compound treatments had a significant effect on the mangoes’ firmness (p < 0.05).
The HM and HPM compound treatments significantly maintained the firmness of the
mangoes, as seen in Figure 3A. The edible coating compound treatment had less effect on
fruit firmness and was even less effective than the CK in preserving firmness after 12 days.
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Figure 3. Firmness (A), malondialdehyde (B), titratable acid (C), and vitamin C (D) contents of mangoes with different
treatments during 30 days at 13 ◦C. Treatments: CK (Control): Inflatable bag packaging + Vibration; HF: Coating + Foam
mesh sleeve packaging + Vibration; HM: Foam mesh sleeve packaging + Vibration + MAP; HPF: Coating + Inflatable
bag packaging + Vibration; and HPM: Inflatable bag packaging + Vibration + MAP. Different letters indicate significant
differences between treatments for the same storage time by Duncan’s multiple range tests (p < 0.05).

The malondialdehyde (MAD) content of the mangoes increased with the increasing
storage time (p < 0.05). The treatments did not differ significantly in the effect of MDA
inhibition during the prestorage period. The HF and HPF showed a rapid increase in
MDA content after the 12th day, with the HF reaching the highest level on the 30th day
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(33.8 U g−1 FW). The MDA content of the HPM was lower than those of the other experi-
mental treatments (Figure 3B).

The variation of the titratable acid (TA) content is shown in Figure 3C. The TA content
of the CK decreased rapidly from 0 to 6 days, followed by a smaller decrease. The com-
pound treatments significantly inhibited the decrease of TA, especially the HM and HPF.
The TA content of the HPM was significantly higher than those of other treatments on the
30th day (p < 0.05).

The vitamin C (VC) content of the mangoes declined continuously during the 30 days
of storage. The edible coating compound treatment effectively reduced the loss of VC
during low-temperature storage until the 24th day, and the MAP compound treatment was
the second most effective (Figure 3D).

2.4. Antioxidant-Related Enzyme Analysis

The initial superoxide dismutase (SOD) content of the mangoes was 679.3 U g−1 fresh
weight and increased during the experimental storage (Figure 4A). Both the HF and HPF
were significantly higher than the CK after Day 12. The HPM was significantly higher than
the CK at Days 6 and 24 (p < 0.05), and the SOD content of the HM was lower.
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for the same storage time by Duncan’s multiple range tests (p < 0.05).

The peroxidase (POD) content of the CK increased during the first 12 days and
decreased afterward (Figure 4B). The POD content of the treatments was reduced until
Day 12, compared to the CK. However, the POD content of the treatments increased after
Day 18, especially in the HF, which was significantly higher than those of other treatments
at Day 30 of the storage (p < 0.05).

3. Discussion

The appearance of fresh fruit is one of the most important factors for consumers
when purchasing. Mango is a tropical fruit that is usually harvested when their maturity
is between 60% and 70% [24]. As the fruit ripens, the color of the mangoes changes
accordingly. The yellowing degree of mangoes is due to changes in the pigmentation,
which is because of the degradation of the chlorophyll and the synthesis of substances,
such as carotenoids [1]. Su et al. reported that, during fruit ripening, chlorophyll was
degraded by respiration, light, and other factors. Meanwhile, substances, such as carotene,
lutein, and lycopene, were produced from precursor substances [25]. The significant
reduction in the yellowing degree of the treatments may indicate that the postripening
effect of the mangoes was slowed down throughout the storage period. The physiological
and biochemical retardation of the mangoes was caused by the interaction of the protection
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of the inflatable bag packaging, the edible coating, and the MAP treatments under low-
temperature conditions [26,27]. On the basis of the results in Figure 1A, the mangoes
treated with edible coating also turned more than 50% yellow at the end of storage. It was
found that the MAP compound treatment had a more significant effect on the maintenance
of the yellowing degree of the mangoes.

Mangoes are susceptible to fungal attack even before harvesting, which are present
in deep or nuclear tissues [28]. As the postripening process accelerates, fungi, such as
Colletotrichum gloeosporioides Penz. and Botryodiplodia theobromae Pat., can cause disease
spots (dark brown spots or mildew) on the surface of mangoes until they rot [29]. Trans-
portation and transfer processes can also damage the tissues and accelerate the fruit decay
process [30]. In the compound treatments, the chitosan matrix of the edible coating had
some fungal inhibitory effect. The added natamycin was able to bind to the ergosterol
moiety of the fungus, leading to cell membrane distortion and death [31]. The results in
Figure 2B also indicate that the edible coating compound treatment reduced the occurrence
of mango spots. However, the MAP compound treatment showed better results, with an
18.9% reduction in the disease index for the HPM compared to the HF. This may be because
the MAP treatment changed the gas ratio in the storage environment and inhibited the
growth of the fungi.

The color characteristics of the fruit flesh can allow for an evaluation of the maturity
and quality. It is also an important factor influencing consumer preference. Postripening
makes mangoes edible after harvest, and this process is accompanied by changes in the fruit
color, texture, and flavor. The color of the mango pulp was yellowish, and the brightness
of the pulp became darker, which confirmed that the fruit was ripening. This is consistent
with the study of Ebrahimi et al. [1]. In addition, the loss of moisture also affected the color
characteristics of the fruit [32]. The edible coating compound treatment reduced the fruit
respiration rate, but the loss of free moisture and fruit mass was more than those of the
MAP compound treatment. The low oxygen conditions adopted by the MAP inhibited
the activity of degrading enzymes, such as chlorophyllase, thereby achieving the effect of
preserving the green and delaying the ripening process of the fruit [25]. This is another
important reason why the HPM compound treatment has a better preservation effect.

Low-field nuclear magnetic resonance (LF-NMR) technology can accurately detect dif-
ferent properties and the contents of the moisture based on the differences in the relaxation
times of the hydrogen atoms in a magnetic field [33]. The nuclear magnetic resonance imag-
ing technique can obtain information on the internal moisture distribution and structure
of the sample [34]. Transpiration and respiration are important causes of moisture loss in
fruits, and the moisture inside the fruit is constantly diffusing into the air from the surface
of the peel [35,36]. Figure 2A dynamically shows the continuous migration of moisture
from the mango pulp to the peel, a result corroborated by the trend of the mangoes’ free
moisture variation (Figure 2B). The HPM significantly inhibited the reduction of the free
moisture content in the early storage period, mainly due to the closed environment created
by the MAP treatment [37]. The free moisture content of the edible coating compound
treatment decreased more during the storage, which could be caused by the adsorption
of moisture by the film covering the skin surface that accelerates the moisture dissipation
from the fruit [38].

The mass loss of mangoes was influenced by the compound treatments and the storage
time. The loss of moisture during storage is the main reason for the mass loss. In addition,
the consumption of substances by the metabolic process of mango also decreases the
mass of the fruit [30,39]. Zainal et al. also showed that the reduction in the fruit mass was
associated with the softening of the peel and pulp [35]. The high mass loss of the CK and HF
in the 12 days of storage indicate that the packaging had a limited effect on the protection
of the mangoes during transportation, and that edible coating and MAP techniques had a
greater impact on maintaining the freshness and quality of the mangoes. In contrast, the
mass loss of the MAP-treated mangoes was significantly reduced throughout the whole
storage, which is consistent with the results of the earlier studies [40]. That the MAP and



Plants 2021, 10, 2432 8 of 15

low-temperature compound treatments could inhibit metabolic activities more effectively,
and reduce the dissipation of moisture and nutrients, were the main reasons [41].

Mangoes continue to respire autonomously after harvest; however, respiration con-
sumes substrates that cause irreversible changes in fruit nutrition, appearance, and fla-
vor [11]. Respiration also causes tissue softening and relaxation, which reduces the storage
characteristics of the fruit [42]. The higher the respiration rate of mangoes, the faster they
ripen and age, affecting their postharvest longevity [36]. The edible coating compound
treatment effectively inhibited the respiration rate during storage, and the results indicate
that the fruit metabolism was inhibited and that the treatments improved the quality of the
mangoes. The MAP compound treatment inhibited ethylene production and attenuated the
stimulation of ethylene on fruit ripening [43]. The delay in the time of the peak respiration
of the mangoes indicates that the MAP compound treatment delayed the aging process of
the mangoes and had a better effect on the fruit preservation in terms of fruit appearance.

The cell membrane is a semipermeable membrane capable of the selective transport
of substances [44]. Fruit cell membranes are subject to changes during storage by ex-
ternal and self-induced factors, and their selective properties can be compromised. The
functional activity of the cell membrane can be reflected by the changes in the relative
conductivity of the fruit, and the degree of injury and the resistance of the fruit to stress
can be evaluated [45]. The relative conductivity of the CK was significantly higher than
those of the other treatments in the prestorage period, indicating that the single packing
treatment had limited protective effect on the fruit. The different treatments effectively
suppressed the increase in the relative conductivity, mainly due to the low O2 and high
CO2 microenvironment created by the edible coating or the MAP compound treatment
for mangoes, which reduced or delayed the respiration rate of the fruit. At the same time,
the compound treatments enhanced the antioxidant capacity and reduced the attack of
free radicals on the cell membranes [46]. These effects resulted in the delay of the fruit
senescence process and the inhibition of the increase in cell membrane permeability [47].

The TSS is an important index for evaluating the nutritional value and the storage
characteristics of fruits containing sugars, organic acids, and minerals. The mangoes
used in the experiment were initially immature, and the postripening effect caused the
decomposition of organic matter in the mango fruit, which led to an increase in the TSS
content [48]. Sugars are continuously consumed as substrates during respiration, which
may cause the TSS to decline [49]. Controlling and maintaining the upward trend of the
TSS is the goal of fruit storage. Compared to the CK, the different treatments inhibited
the rise of the TSS in the mangoes during the storage, and the effect of the HM was more
significant in the first 24 days. The inhibition of mango respiration by the MAP compound
treatment slowed down the rate of fruit metabolism, which might be the reason for the
lower TSS [50].

Firmness is an important indicator for evaluating the storability characteristics of
fruits and is a quality attribute that affects consumer preferences. Fruit firmness usually
decreases after harvesting because of postripening and the aging of the fruit. Pectin is
a polysaccharide substance present in the cell wall and mesocosm layer of the fruit [51].
Protopectin is degraded by pectin methyl esterase, and other enzymes, at the postripening
stage, which softens the fruit tissue and causes a decrease in firmness [52]. In addition,
Zainal et al. reported a correlation between the reduction in moisture and mass and
the decrease in fruit firmness [35]. The HPM and HM had a significant effect on the
maintenance of the mangoes, such as the metabolism and moisture, so the firmness results
were better than those of other treatments. The inflatable bag packaging method reduced
the physical damage to the fruit, in comparison to the HPF and HF results.

The physiological metabolic activity of the fruit is still ongoing after harvest, and
the oxygen radicals generated during this process attack the biofilms and trigger lipid
peroxidation [53]. Some lipid peroxides cause cellular damage, affect metabolic processes,
and even trigger cell death [54]. Therefore, malondialdehyde, as a type of lipid peroxide,
can reflect the degree of lipid peroxidation in the organism and evaluate the damage
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suffered by cells. The compound treatments inhibited the increase in the MDA content
of the mangoes; however, the HF was not effective after 18 days of storage. The HF
treatment showed more spots and a rapid decrease in the fruit quality at the end of storage,
which may be an important reason for the rapid increase in the MDA content [55]. The
HPF aerated in the inflatable bag was significantly lower than the HF, indicating that this
packaging method reduced the transport damage to the fruit and improved the storability.
The MAP compound treatment inhibited the metabolic activity of the fruit and improved
the oxidative capacity of the organism (combined with antioxidant enzyme analysis).
Therefore, the increase in the MDA of the HPM was significantly lower than that of the CK
throughout the storage.

Titratable acid is the main factor affecting the flavor of the fruit, and medium acidity
with high sugar content is a characteristic of good quality and intense flavor [56]. Titratable
acids contain a variety of organic acids, which are substrates for the respiratory metabolism
of the fruit [52]. Therefore, the TA content decreased continuously with increasing storage
time. The TA content of the CK decreased rapidly during the first 6 days of storage;
however, the treatments significantly suppressed this trend and continued until the end of
storage. This is mainly due to the fact that the compound treatments reduced or delayed
the respiration rate and slowed down the process of maturation and senescence [15]. The
TA content of the HPF was 2.22 and 1.69 times that of the CK on the 6th and 12th days,
respectively, but the HPM and HM retained more of the TA content at the end of storage.
The rapid increase in the edible coating compound treatment spots made the fruit quality
decline rapidly at the end of storage, which was similar to the results of the disease index
and the MDA content. The MAP compound treatment retained a good appearance at the
end of storage, and the delayed respiratory peak may allow the fruit to consume less total
substrate and maintain a higher TA content [43].

Vitamin C is a necessary nutrient for humans and is mainly found in reduced form
(L-ascorbic acid) in fruits; thus, it has a highly effective antioxidant effect [57]. The VC
can scavenge oxygen free radicals, reduce cell damage, and slow down fruit aging [58].
At the same time, VC is easily oxidized during storage, and its content generally tends
to decline. The edible coating on the surface of mangoes could effectively reduce the
exposure to oxygen and decrease the oxidative enzyme activity in the organism, thus
delaying the decline of VC content [47]. The MAP treatment, on the other hand, directly
reduced the oxygen in the mango storage environment, thus decreasing the oxidative loss
of VC. Shi et al. reported that acidic conditions could increase the stability of VC [59]. The
HF and HPF maintained more VC content during storage but were lower than the MAP
compound treatment on the 30th day. The MAP aerobic environment may have resulted in
more VC loss than the edible coating compound treatment in the prestorage period, but
the inhibition of fruit metabolism by the MAP compound treatment resulted in less total
VC loss.

The SOD and POD can scavenge superoxide anion radicals generated during the
physiological activities of mango, thus reducing the oxidative effects of free radicals on
tissue cells [60]. In addition, POD is also beneficial to maintaining the balance of hydrogen
peroxide in the cell wall and enhancing the defense ability of the fruit against external
adverse factors [61]. Therefore, these two antioxidant enzymes can slow down the process
of fruit peroxidation and maintain the integrity of the membrane structure and postharvest
quality [62]. The higher contents of SOD and POD indicate that the compound treatments
improved the ability of mangoes to scavenge oxygen radicals and reduced the damage of
free radicals on the macromolecules [10]. The edible coating, or MAP compound treatment,
inhibited physiological and biochemical reactions, and delayed fruit senescence, which was
why the fruits still had a strong antioxidant capacity in late storage [63]. However, more
studies of the defense enzyme systems are needed in order to determine the differences
that cause the different treatments to behave differently on the SOD and POD contents.
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4. Materials and Methods
4.1. Materials and Treatment

Mangoes were sourced from Shanghai Daozhi Agricultural Products Co., Ltd., Shang-
hai, China. The fruits were selected as test materials with uniform maturity, no disease
spots, and no physical damage. The mangoes were wiped of surface dirt, the pedicles were
trimmed, and they were cleaned of secretions and subsequently prechilled for 12 h at 13 ◦C.
Then, these mangoes were randomly divided into 5 groups, each with 30 mangoes, and
they were treated with different compound preservation treatments (Table 2).

Table 2. Different compound preservation treatments.

Groups Treatments

CK Inflatable bag packaging + Vibration + Cold Storage
HF Coating + Foam mesh sleeve packaging + Vibration + Cold Storage
HM Foam mesh sleeve packaging + Vibration + MAP + Cold Storage
HPF Coating + Inflatable bag packaging + Vibration + Cold Storage
HPM Inflatable bag packaging + Vibration + MAP + Cold Storage

The polyethylene foam mesh sleeve was a commercial packaging method with limited
effect on mango protection, and an inflatable bag was a better vibration mitigation pack-
aging method in our preliminary study. The formulation of the edible coating was 2.5%
chitosan (200–400 mPa.s, Shanghai Aladdin Biochemical Technology Co. Ltd., Shanghai,
China), 0.3% zein from corn (Tokyo Chemical Industry Co. Ltd., Chuo-ku, Tokyo, Japan),
and 0.2 g kg−1 natamycin (Shanghai Aladdin Biochemical Technology Co. Ltd., Shanghai,
China). A simulated transport shaker (LX-100VTR, ASTM compliant, Shanghai Luxuan
Instrument and Equipment Factory, Shanghai, China) was used for the 24-h transporta-
tion treatment, which was set at 180 r min−1 of rotation speed, and 3 Hz of vibration
frequency in the vertical direction. The better treatment conditions in our previous study,
7% CO2 + 3% O2 + 90% N2, were used for the MAP conditioning (JY-500, Shanghai Jiyi
Machinery Co., Ltd., Shanghai, China). All mangoes were treated according to Table 2,
and then stored in a cold room at 13 ◦C. The start of storage was recorded as Day 0 and,
subsequently, samples of 6 fruits at a time were measured every 6 days.

4.2. Fruit Color and Disease Index

The packaging and edible coating were removed and dried before scoring by a pro-
fessional scoring team. The yellowing degrees and disease indexes of the mangoes were
obtained by scoring the percentage of the yellowing and disease spots on the peel, and the
evaluation criteria were performed according to Xiao et al. [53] and Esquivel-Chávez et al. [64],
respectively. The pulp of each treatment of mangoes was taken out homogenized, and
then the pulp color characteristics were measured using a colorimeter (CR-400, Konica
Minolta Co., Ltd., Tokyo, Japan). The total color difference (∆E) was calculated according
to Equation (1) [65].

∆E =

√
(∆a)2 + (∆b)2 + (∆L)2 (1)

4.3. Physicochemical Analysis

The physicochemical properties, including the moisture distribution, mass loss, res-
piration rate, relative conductivity, and total soluble solids (TSS) of the mangoes were
determined during the storage. Three mangoes were randomly selected from each treat-
ment, and a pulp piece of approximately 5 cm × 3 cm × 1 cm was taken at the equator. The
pulp moisture distribution was examined in a low-field NMR analyzer (MesoMR23-060H-I,
Suzhou Niumag Analytical Instrument Corporation, Suzhou, Jiangsu, China) according
to the description by Kirtil et al. [66]. The transverse relaxation time, T2, was determined
using the CPMG sequence. The weight of the mangoes was measured at the initial and each
evaluation period, and calculated as a percentage of the mass loss to the initial weight [67].
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The respiration rate was measured according to Sheng’s method and the results were
expressed as CO2 mg kg−1 h−1 [68]. Before the relative conductivity measurement, a total
of 30 discs, with a diameter of 5 mm and a thickness of 2 mm, were removed from each
treatment of mangoes. To determine the relative conductivity of the mangoes during stor-
age, the values after 30 min of shaking were calculated (conductivity meter, Mettler-Toledo
Instruments (Shanghai) Co., Ltd., Shanghai, China) as a percentage of that after 30 min of a
boiling water bath [69]. The TSS content was determined using a portable refractometer
(LB30T, Guangzhou Mingrui Electronic Technology Co., Ltd., Guangdong, China) and the
results were expressed as Brix%.

4.4. Quality Analysis

Mango fruits from different treatments were evaluated for the firmness, titratable acid
(TA), vitamin C, and malondialdehyde (MDA) contents. To determine the firmness of the
mangoes, six loci were measured for each mango using the texture analyzer (TA-XT Plus C,
Stable Micro Systems Co., Ltd., Surrey, United Kingdom) SMS-P/2 cylinder [23]. The mean
values of all the measurement points in each treatment were calculated and the results were
expressed in g. The MDA content in the mango fruit pulp was determined by kit (Nanjing
Jiancheng Institute of Bioengineering, Nanjing, China), and the results were expressed as
nmol g−1. The TA content was determined using acid–base titration and the results were
expressed as a percentage of the citric acid [58]. The vitamin C content in the mango pulp
was determined using 2,6-dichloroindophenol, according to the method of Chen et al. [70].
The results were expressed as g 100 g−1 fresh weight (FW).

4.5. Antioxidant-Related Enzyme Analysis

The superoxide dismutase (SOD) and peroxidase (POD) contents in the mango pulp
were determined using POD and SOD enzyme kits (Nanjing Jiancheng Institute of Bioengi-
neering, Nanjing, China), respectively, according to the instructions. The results are all
expressed as U g−1 FW.

4.6. Statistical Analysis

All data were repeated at least three times, except for special instructions, and the
means ± standard deviation were taken. Analysis of variance (ANOVA) was performed
using IBM SPSS Statistics 25.0 (Version 25.0, IBM SPSS Statistics, New York, NY, USA),
and significance was performed using Duncan’s multiple range tests, with significant
differences when p < 0.05. Data statistics were performed by Microsoft Excel 2019 (Microsoft
Corporation, Redmond, WA, USA), and figure legends were drawn using Origin 2019b
(Version 2019b, OriginLab Corporation, Northampton, MA, USA).

5. Conclusions

The compound treatments retained more free moisture, TA, and VC content of the
mangoes, and maintained the fruit firmness and superior quality characteristics. Antioxi-
dant enzymes enhanced the fruit resilience, reduced cell damage, and inhibited the increase
in the MDA, relative conductivity, and TSS. The compound treatments also significantly
reduced the yellowing degree, disease index, and mass loss. The use of inflatable bag
packaging for transportation reduced the physical damage to the fruit, and the interaction
of the edible coating, MAP, and low-temperature treatments reduced the respiration rate
and slowed down the aging process. Fruits with the compound preservation treatments,
especially the HPM, had significantly better overall visual acceptability and quality than
the CK. Therefore, the HPM compound treatments can be used to extend the shelf life
and commercial characteristics of mango fruits. The edible coating compound treatment
can also be used as a green means of fruit preservation, but further enhancement of fruit
disease control is needed.
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