
plants

Review

Plants Metabolome Study: Emerging Tools and Techniques

Manish Kumar Patel 1,*,† , Sonika Pandey 2,†, Manoj Kumar 3 , Md Intesaful Haque 4, Sikander Pal 5

and Narendra Singh Yadav 6,*

����������
�������

Citation: Patel, M.K.; Pandey, S.;

Kumar, M.; Haque, M.I.; Pal, S.;

Yadav, N.S. Plants Metabolome Study:

Emerging Tools and Techniques.

Plants 2021, 10, 2409. https://

doi.org/10.3390/plants10112409

Academic Editor: Atsushi Fukushima

Received: 7 July 2021

Accepted: 1 November 2021

Published: 8 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center,
Rishon LeZion 7505101, Israel

2 Independent Researcher, Civil Line, Fathepur 212601, India; sonikapandey14@gmail.com
3 Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;

manojbiochem16@gmail.com
4 Fruit Tree Science Department, Newe Ya’ar Research Center, Agriculture Research Organization,

Volcani Center, Ramat Yishay 3009500, Israel; intesafulhaque@gmail.com
5 Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India;

sikanderpal@jammuuniversity.ac.in
6 Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
* Correspondence: patelm1402@gmail.com (M.K.P.); nsyadava2004@gmail.com (N.S.Y.)
† These authors have equally contributed: Manish Kumar Patel and Sonika Pandey.

Abstract: Metabolomics is now considered a wide-ranging, sensitive and practical approach to
acquire useful information on the composition of a metabolite pool present in any organism, including
plants. Investigating metabolomic regulation in plants is essential to understand their adaptation,
acclimation and defense responses to environmental stresses through the production of numerous
metabolites. Moreover, metabolomics can be easily applied for the phenotyping of plants; and thus,
it has great potential to be used in genome editing programs to develop superior next-generation
crops. This review describes the recent analytical tools and techniques available to study plants
metabolome, along with their significance of sample preparation using targeted and non-targeted
methods. Advanced analytical tools, like gas chromatography-mass spectrometry (GC-MS), liquid
chromatography mass-spectroscopy (LC-MS), capillary electrophoresis-mass spectrometry (CE-MS),
fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) matrix-assisted laser
desorption/ionization (MALDI), ion mobility spectrometry (IMS) and nuclear magnetic resonance
(NMR) have speed up precise metabolic profiling in plants. Further, we provide a complete overview
of bioinformatics tools and plant metabolome database that can be utilized to advance our knowledge
to plant biology.

Keywords: analytical tools; data analysis; genetically modified crops; mass spectrometry; metabolomics
databases; metabolomics software tools; omics; plant biology

1. Metabolomics: Plant Biology Perspective

Metabolomics is one of the fastest developing and attractive disciplines of the omics
field, with huge potential and prospects in crop improvement programs. It is vital to review
the abiotic/biotic stress tolerances and metabolomics-assisted breeding of crop plants [1].
Recent metabolomics platforms play a crucial role in exploring unknown regulatory net-
works that control plant growth and development [1]. Further innovative metabolomics
application, called ecological metabolomics, deals with studying the biochemical interac-
tions among plants across different temporal and spatial networks [2]. It describes the
biochemical nature of various vital ecological phenomena, such as the effects of parasite
load, the incidence of disease, and infection. It also helps to decode the potential impact
of biotic and abiotic stresses on any critical biochemical process through the detection of
metabolites [1]. Modern metabolomics platforms are being exploited to explain complex
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biological pathways and explore hidden regulatory networks controlling crop growth
and health.

The performance of metabolomics study relies on its methodologies and instruments
to comprehensively identify and measure each metabolite [3]. The complexity of the vari-
ous metabolic characteristics and molecular abundances makes metabolomics a challenging
task. Metabolomics or metabolite profiling terms are alternatively used to define three
types of approaches, such as untargeted metabolomics, targeted metabolomics, and semi-
targeted metabolomics [4,5]. Several integrated technologies and methodologies such as
mass spectrometry (MS) based methods, including gas chromatography-mass spectrometry
(GC-MS), liquid chromatography mass-spectroscopy (LC-MS), capillary electrophoresis-
mass spectrometry (CE-MS), fourier transform ion cyclotron resonance-mass spectrometry
(FTICR-MS) matrix-assisted laser desorption/ionization (MALDI), ion mobility spectrom-
etry (IMS) and nuclear magnetic resonance (NMR) are used for large-scale analysis of
highly complex mixtures of plant extracts [6]. In fact, these analytical methods have shown
their potential in many plant species, including halophytes, medicinal plants, and food
crops such as Salicornia brachiata, Cuminum cyminum, Plantago ovata, Solanum lycopersicum,
Oryza sativa, Triticum aestivum, and Zea mays [7–14] (Table 1). In the last decade, a signifi-
cant rise in the use of integrated metabolomics analysis methods has been reported over
individual analytical platforms, as the latter does not provide holistic aspects of a plant
metabolome [3].

Since the beginning of the 21st century, major developments in various ‘omics’ fields,
such as genomics, transcriptomics, proteomics, metabolomics, and phenomics, have been
seen. The various omics platforms have an endless potential to enhance the current under-
standing of complex biological pathways, allowing us to develop new approaches for crops
improvement [15]. Metabolomics is one of the most complex approaches among other
omics approaches and has received attention in agriculture science, especially for plant
selections in a molecular breeding program. Therefore, metabolomics is used to acquire
a vast amount of useful knowledge by accurate and high throughput peak annotation
through the snapshot of the plant metabolome for the novel genes and pathways elucida-
tion [16]. The combination of metabolomic integrated with transcriptomic analysis was
successfully used to find out several possible approaches such as breeding and genome
editing involved in activating metabolic pathways and gene expression [17]. Nevertheless,
plant metabolomics has become an effective tool for exploring different aspects of system
biology, greatly expanding our knowledge of the metabolic and signaling pathways in
plant growth, development, and response to stress for improving the quality and yield of
crops [18]. This review describes the plant metabolome (primary and secondary metabo-
lites), metabolomics in genetically modified (GM) crops, including different analytical
techniques, bioinformatics tools, and plant metabolome database.

1.1. Primary Metabolites

Primary metabolites are essential for plant growth and development as they are
involved in various physiological and biochemical processes [15]. Primary metabolites
include different classes of metabolites such as sugars, fatty acids, and amino acids, serving
as vital functions such as osmolytes and osmoprotectants in plants under biotic and abiotic
stresses [4,19]. Lipidomics is the comprehensive analysis of lipids in a biological system,
including quantification and metabolic pathways. Alteration in lipid metabolism and
composition are linked to changes in plant growth, development, and responses to a
variety of environmental stressors [20]. Lipidomics can be divided into shotgun and
targeted analysis. Shotgun lipidomics identifies all lipid species in a sample without prior
knowledge of their composition, whereas targeted lipidomics analyzes a specific group of
lipids [21]. LC-MS has been used widely in both global and targeted lipidomics [22–24].
Lipidomics is also utilized to understand better the function of genes involved in lipid
metabolism in transgenic plants and manipulate complex lipid metabolism to produce
long-chain fatty acids, especially omega-3 species in plants [25]. Yu et al. [26] utilized
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lipidomics analysis based on high-throughput and high-sensitivity mass spectrometry to
characterize membrane lipid responses, which also captures a variety of oxidized lipids.

The nutritional markers α-linolenic acid and linoleic acid were detected in the leaves
of P. ovata [10]. Linoleic acid predominated in the husk of P. ovata, followed by oleic acid,
palmitic acid, stearic acid, and cis-11,14-eicosadienoic acid [10]. Seed fatty acid composition
analysis of the Paeonia rockii, P. potaninii, and P. lutea revealed that α-linolenic acid was
the most abundant, followed by oleic and linoleic acids [27]. According to the fatty acid
content, all halophytes (non-succulent, succulent and shrubby halophytes) are high in
α-linolenic acid, followed by linolenic and palmitic acid [28]. Oil and oleic acid content
increased, while palmitic and linolenic acid content decreased during seed development
Jatropha curcas [29]. The total lipid and fatty acid levels were strongly linked with the
different developmental stages of the P. ovata fruit, according to principal component
analysis (PCA), and the heat map revealed the differential fatty acid composition [9].

The highest content of threonine followed by glutamic acid, tyrosine, and aspartic
acid were quantified in Amaranthus hypochondriacus and it is notable that amino acids,
glutamic acid, and aspartic acid were among the main contributors [30]. The content of
histidine, isoleucine, leucine, threonine, and lysine in leaves was considerably higher than
in seeds and husks of P. ovata [10]. Glucose-6-phosphate, xylose, 2-piperidine carboxylic
acid, monoamidomalonic acid, tryptophan, phenylalanine, histidine and carbodiimide
were found to be key metabolites play a vital role in the plant metabolism of Fritillaria
thunbergii [31]. Furthermore, the amino acid profile of Cuminum cyminum plants revealed
that the levels of most amino acids (except asparagine) increased in plants subjected to
salinity stress when compared to control plants [8]. Under salinity stress, two varieties of
Cicer arietinum (Genesis 836 and Rupali) showed increased levels of sugar alcohols, includ-
ing galactitol, erythritol, arabitol, xylitol, mannitol, and inositol, showing the importance
of these metabolites in salt tolerance [32]. Nitric oxide-induced accumulation of amino
acids, sugars, polyols, organic acids, and but not fatty acids and lipids in C. arietinum [33]
(Table 1).

Table 1. Identification of key metabolites in various plant species using different analytical methods.

Plant Species Class Analytical
Tools Key Metabolites Reference

Primary metabolites

Plantago ovata Fatty
acids GC-MS α-linolenic acid, linoleic acid and palmitic acid [10]

P. ovata Fatty
acids GC-MS

Pentadecanoic acid, palmitic acid, heptadecanoic
acid, stearic acid, oleic acid, linoleic acid, γ-linolenic
acid and arachidic acid

[9]

Jatropha curcas Fatty
acids GC Oleic acid, palmitic acid and linolenic acid [29]

Paeonia rockii, P.
potaninii, and P. lutea

Fatty
acids GC-MS α-linolenic acid, oleic acid and linoleic acid [27]

Cicer
arietinum

Fatty
acids GC-MS

Pentadecanoic acid, palmitic acid, palmitoleic acid,
stearic acid, oleic acid, linoleic acid, α-linolenic acid
and arachidic acid

[33]

P. ovata Amino
acids HPLC Isoleucine, threonine, leucine, histidine and lysine [10]

P. ovata Amino
acids HPLC Aspartate, glutamine, glycine, alanine, arginine,

serine, proline, isoleucine and methionine [9]

Fritillaria thunbergii Amino
acids GC-MS Tryptophan, phenylalanine and histidine [31]
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Table 1. Cont.

Plant Species Class Analytical
Tools Key Metabolites Reference

C.
arietinum

Amino
acids GC-MS

L-glutamic acid, L-tryptophan, phenylalanine,
glycine, serine, L-threonine, L-valine, L-ornithine and
L-proline

[33]

C.
arietinum

Sugars
and Sugar
alcohols

GC-MS Sucrose, cellobiose, galactose, methylgalactoside,
myo-inositol [33]

C.
arietinum

Sugar
alcohols GC-QqQ-MS Galactitol, erythritol, arabitol, xylitol, mannitol and

inositol [32]

Secondary metabolites

Beta
vulgaris Terpenes HPLC-MS Oleanolic acid, hederagenin, akebonoic acid and

gypsogenin [34]

Ocimum gratissimum Terpenes GC-MS m-chavicol, t-anethole, germacrene-D, naphthalene,
ledene, eucalyptol, azulene and comphore [35]

Mentha piperita Terpenes GC-MS Menthone, menthol, pulegone and menthofuran [36]

M.
arvensis Terpenes GLC Menthol, isomenthone, L-methone and menthyl

acetate [37]

Achyranthes bidentata Terpenes HPLC Oleanolic acid and ecdysterone [38]

Arabidopsis
thaliana Phenolics UHPLC-MS Scopoletin, umbelliferone and esculetin, scopolin,

skimmin and esculin [39]

P. ovata Phenolics LC-MS Luteolin, quercetagetin, syringetin, kaempferol,
limocitrin, helilupolone and catechin [10]

P. ovata Phenolics LC-MS
Kaempferol
3-(2′ ′,3′ ′-diacetylrhamnoside)-7-rhamnoside and
apigenin 7-rhamnoside

[9]

P. ovata Alkaloids LC-MS Lunamarine, hordatine B and pinidine [10]

Dendrobium Snowflake
‘Red Star’ Alkaloids

1H and 2D
NMR

Dendrobine and nobilonine [40]

GC, gas chromatography; GC-MS, gas chromatography-mass spectrometry; GC-QqQ-MS, gas chromatography-triple quadrupole-mass
spectrometry; GLC, Gas liquid chromatography; HPLC, high-performance liquid chromatography; HPLC-MS, high-performance liquid
chromatography-mass spectrometry; LC-MS, liquid chromatography-mass spectrometry; 1H-NMR, nuclear magnetic resonance; UHPLC-
MS, ultra-high performance liquid chromatography-mass spectrometry.

1.2. Secondary Metabolites

Secondary metabolites (SMs) play a crucial role in protecting plants against various
environmental stresses. It has been estimated that approximately 100,000 SMs have been
reported within different plant species and are classified into multiple groups, nitrogen-
containing compounds, terpenes, thiols, and phenolic compounds [41]. In Scutellaria
baicalensis, the major flavonoids are accumulated in the roots before the full-bloom stage [42].
Two flavonoids, kaempferol 3-(2′ ′,3′ ′-diacetylrhamnoside)-7-rhamnoside and apigenin 7-
rhamnoside were found in all developmental stages of P. ovata [9]. The root of Achyranthes
bidentata, oleanolic acid and ecdysterone levels are increased during the vegetative growth
than in reproductive growth [38]. Nutraceutical flavonoids; luteolin, quercetagetin, sy-
ringetin, kaempferol, limocitrin, helilupolone and catechin/epicatechin/pavetannin B2 and
were identified in leaf extract, whereas alkaloids, lunamarine and hordatine B were identi-
fied in the seed extract and pinidine was detected in the husk extract [10]. The plant growth
regulators gibberellic acid (GA), indole -3-acetic acid (IAA) and 6-Benzylaminopurine
(BAP) show that the main terpenes (methyl chavicol and trans-anethole) and other ter-
penes (eucalyptol and azulene) undergo certain changes depending on the type of the
treatment of plant growth regulators in O. gratissimum [35]. The application of growth
regulators enhances the production of essential oils (menthone, menthol, pulegone, and
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menthofuran) in Mentha piperita, which is revealed to be rich in economically important
terpenes [36]. The foliar application of triacontanol significantly increased the amount of
active terpenes (menthol, L-methone, isomenthone, and menthyl acetate) in Mentha arven-
sis [37]. Lin et al. [43] conducted a phytochemical screening of Pteris vittata and identified
four flavonoids: quercetin, kaempferol, kaempferol-3-O-D-glucopyranoside and rutin [43].
Scoploletin, umbelliferone and esculetin, as well as their glycosides scopolin, skimmin, and
esculin were found in Arabidopsis thaliana [39] (Table 1).

2. Involvement of Metabolomics in Genetically Modified (GM) Crops

Metabolomic techniques are rapidly being used to analyze genetically modified organ-
isms (GMOs), allowing for a broader and deeper understanding of composition of GMO
than standard analytical methods. Metabolomics studies revealed that malic acid, sorbitol,
asparagine, and gluconic acid levels increased in O. sativa cultivated at different time points.
In addition, mannitol, sucrose, and glutamic acid had a significant increase in transgenic
rice grains as compared to non-genetically modified rice [44]. Metabolic profiling was per-
formed in Solanum tuberosum DREB1A transgenic lines rd29A::DREB1A (D163 and D164),
a 35S::DREB1A (35S-3) line, and non-transgenic [45]. Increased levels of the glutathione
metabolite, γ-aminobutyric acid (GABA), as well as accumulation of β-cyanoalanine, a
byproduct of ethylene biosynthesis, were observed in the DREB1A transgenic lines [45]
(Table 2).

Table 2. Identification of important metabolites in transgenic plants using different analytical tools.

Transgenic
Plants

Analytical
Techniques Key Metabolites References

Artemisia annua GC-TOF-MS Borneol, phytol, β-farnesene, germacrene D, artemisinic acid,
dihydroartemisinic acid, and artemisinin [46]

Lactuca
sativa NMR Asparagine, glutamine, valine, isoleucine, α-chetoglutarate,

succinate, fumarate, malate, sucrose, and fructose [47]

Lycopersicon
esculentum GC-MS

γ-aminobutyric acid, histidine, proline, pyrrol-2-carboxylate,
galactitiol/sorbitol, glycerol, maltitol, 3-phosphoglyceric acid,
allantoin, homo-cystine, caffeate, gluconate, ribonate, lysine,
threonine, homo-serine, tyrosine, tryptophan, leucine, arginine and
valine

[48]

Nicotiana tabacum NMR
Chlorogenic acid, 4-O-caffeoylquinic acid, malic acid, threonine,
alanine, glycine, fructose, β-glucose, α-glucose, sucrose, fumaric acid
and salicylic acid

[49]

N. tabacum GC-MS

4-Aminobutanoic acid, asparagine, glutamine, glycine, leucine,
phenylalanine, proline, serine, threonine, tryptophan, chlorogenic
acid, quininic acid, threonic acid, citric acid, malic acid and
ethanolamine

[50]

Oryza sativa GC-MS

Glycerol-3-phosphate, citric acid, linoleic acid, oleic acid,
hexadecanoic acid, 2,3-dihydroxypropyl ester, sucrose,
9-octadecenoic acid, 2,3-dihydroxypropyl ester, sucrose, mannitol
and glutamic acid

[44]

O. sativa LC-MS
Tryptophan, phytosphingosine, palmitic acid,
5-hydroxy-2-octadenoic acid 9,10,13-trihydroxyoctadec-11-enoic acid
and ethanolamine

[51]

Populus GC-MS, HPLC

Caffeoyl and feruloyl conjugates, syringyl-to-guaiacyl ratio,
asparagine, glutamine, aspartic acid, γ-amino-butyric acid,
5-oxo-proline, salicylic acid-2-O-glucoside, 2, 5-dihydroxybenzoic
acid-5-O-glucoside, 2-methoxyhydroquinone-1-O-glucoside,
2-methoxyhydroquinone-4-O-glucoside, salicin, gallic acid, and
dihydroxybenzoic acid

[52]
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Table 2. Cont.

Transgenic
Plants

Analytical
Techniques Key Metabolites References

Solanum
tuberosum LC-TOF-MS

Glutathione, γ-aminobutyric acid, β-cyanoalanine, 5-oxoproline,
sucrose, glucose-1-phosphate, glucose-6-phosphate,
fructose-6-phosphate, ethanolamine, adenosine, and guanosine

[45]

Triticum aestivum GC-MS Guanine and 4-hydroxycinnamic acid [53]

T. aestivum LC-MS

Aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine, tryptophan
glyoxylic, tartaric acid, oxalic acids, sucrose, galactose, mannitol,
leucine, valine, glutamate, proline, pyridoxamine, glutathione,
arginine, citrulline, adenosine, hypoxanthine, allantoin, and
adenosine monophosphate

[54]

Zea mays 1H NMR
Lactic acid, citric acid, lysine, arginine, glycine-betaine, raffinose,
trehalose, galactose, and adenine [55]

GC-MS, gas chromatography-mass spectrometry; GC-TOF-MS, gas chromatography-time of flight-mass spectrometry; HPLC, high-
performance liquid chromatography; LC-MS, liquid chromatography-mass spectrometry; LC-TOF-MS, liquid chromatography-time of
flight-mass spectrometry; 1H-NMR, nuclear magnetic resonance.

Metabolomic profiling also demonstrated that introduction of the cold and drought
regulatory-protein encoding CORA-like gene (SbCDR) from S. brachiata into tobacco could
enhance salt and drought tolerance by increasing the stress related metabolites such as
proline, threonine, valine, glyceric acid, fructose, 4-aminobutanoic acid, asparagine [50].
Overexpression of a native UGPase2 gene induced several metabolites related to amino
acid, phenolic glycosides such as asparagine, γ-amino-butyric acid, aspartic acid, glu-
tamine, 5-oxo-proline, 2-methoxyhydroquinone-1-O-glucoside, 2-methoxyhydroquinone-4-
O-glucoside, salicylic acid-2-O-glucoside, 2,5-dihydroxybenzoic acid-5-O-glucoside, salicin
in transgenic Populus lines [52]. Overexpression of GmDREB1 in T. aestivum substantially
impacts numerous metabolic pathways involved in the biosynthesis of amino acids [54].
Tryptophan, leucine phenylalanine, valine, and tyrosine were significantly changed [54].
Some urea cycle-related metabolites, such as adenosine, arginine, allantoin, citrulline,
adenosine monophosphate (AMP), hypoxanthine, and guanine, were significantly changed
in the transgenic T. aestivum line [54]. The combination of modern analytical methodologies
and bioinformatics tools in metabolomics provides extensive metabolites data that helps to
confirm the significant equivalency and incidence of unanticipated alterations caused by
genetic transformation (Table 2).

3. Significance of Sample Preparation in Plant Metabolites

In plant metabolomics study, plant samples are harvested, stored, metabolites extrac-
tion and quantification, followed by data interpretation. Sample preparation is a key step
in plant metabolomics as it significantly changes the quantity of the metabolites. Thus,
considering all the factors, harvesting and storage of plant samples should be quick as
to reduce the changes of biochemical reaction in the plant cells [56]. Inappropriate han-
dling during the sample collection is the most likely source of bias in plant metabolomic
studies [57]. Sample harvesting, storage, and extract preparation should ideally follow the
Metabolomics Standards Initiative (MSI) to justify plant metabolomics studies [58].

3.1. Sample Harvesting and Storage

Commonly, four major steps are involved in plant metabolomics; harvesting, storage,
extraction, and sample analysis (Figure 1). Plant sample harvesting must be carried out
with caution, as the metabolome of the plant is sensitive to enzymatic reactions that can
degrade different metabolites. In addition, metabolites vary with the different development
stages, plant age, and time of sample harvesting [6]. Mostly, 10–100 mg of plant samples
are required for each biological sample in metabolomics studies. Usually, immediately
after harvesting, the plant samples are snap-frozen in liquid nitrogen to prevent metabolic



Plants 2021, 10, 2409 7 of 24

changes. Similarly, various storage techniques, such as freeze-drying, oven-drying, and
air-drying, are essential for the processing of metabolomics [57,59].
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Figure 1. Schematic representation of the multi-step workflow of a plant metabolomics study. Sample preparation,
data acquisition, data processing and biological interpretation are key steps in plant metabolomics. Nowadays, for data
acquisition, different MS-based analytical tools (GC-MS, LC-MS CE-MS, FTICR-MS, MALDI, and IMS) and NMR are
available. The most important step in data processing and mining includes correction of baseline shifts, background noise
reduction, chromatograph alignment and peaks detection. Biological interpretation and integration include enrichment
analysis, networks, and pathways analysis for a comprehensive scope of the metabolome. GC-MS, gas chromatography-
mass spectrometry; IMS, ion mobility spectrometry; LC-MS, liquid chromatography mass-spectroscopy; CE-MS, capillary
electrophoresis-mass spectrometry; FTICR-MS, fourier transform ion cyclotron resonance-mass spectrometry; MALDI,
matrix-assisted laser desorption/ionization; NMR, nuclear magnetic resonance.
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3.2. Sample Preparation

Sample preparation plays a key role in metabolomic study, as it includes the extrac-
tion of metabolites using different extraction methods (Figure 1). Among the extraction
methods, quenching, mechanical and ultrasound extraction methods are promising in the
metabolomic analysis [60]. In addition, high quality, yield and chemical versatility can be
obtained by integrating ultrasound extraction method and mechanical grinding [61]. Apart
from extraction methods, the choice of solvents is also crucial, as a single solvent cannot
extract a variety of metabolites (e.g., polar or nonpolar). A wide variety of metabolites can
be isolated using a solvent system composed of chloroform: methanol: water [62,63]. This
solvent system is widely used for a wide variety of metabolites such as polar compounds,
nonpolar compounds, and hydrophilic metabolites. Diverse solvent systems were reported
for the plant metabolomics, such as extraction with pure methanol [64,65], the mixture of
methanol: water [66], and methanol: methyl-tert-butyl-ether: water [67]. A specific solvent
gradient extraction method was developed to recover almost all types of metabolites in
a single protocol [68]. In addition, hot methanol (70% v/v) was used to extract phenolic
compounds from Brassica oleracea using ultra-high-performance liquid chromatography–
diode array detector–tandem mass spectrometry [69]. Various methods are used for sample
preparation, such as microwave-assisted extraction [70], ultrasound-assisted extraction [71],
Swiss rolling technique [72], and enzyme-assisted extraction [73].

Targeted metabolite identification and quantification are the primary approaches for
metabolomics investigation [74]. Sample preparation for target metabolites extracted from
plant components such as leaves, stems, roots, etc., includes enrichment for metabolites of
interest and removal of contaminants such as proteins and salts that hamper the analysis.
Targeted metabolomics-based quantification aims for enhanced metabolite coverage by
analyzing the selected metabolites [75]. The targeted metabolites extracted using different
extraction methods such as different proportion of organic solvents [67], liquid–liquid
extraction [75], and solid phase extraction method [76]. To increase analytical reliability,
single or multiple internal standards can be spiked into the sample mixture during sample
preparation [77]. In the final step of sample preparation for LC-MS, the solvents were
evaporated, followed by re-dissolving the sample with a suitable solvent for LC-MS
analysis [75]. Targeted metabolite quantification has been considered as the key method
because of its reliable quantification accuracy, sensitivity and stability [78]. However,
this method is typically confined to measuring a small number of known pre-selected
analysts and is incapable of detecting unknown and novel metabolites. LC-multiple
reaction monitoring (MRM)-MS approach has been employed for targeted metabolomics
quantification analysis due to its rapid scan speed and good analytic stability [79]. New
techniques have been developed to broaden the choices for targeted metabolomics research,
using high-resolution equipment such as parallel reaction monitoring (PRM) [78]. In plant
metabolomics, new extraction methods are also developing day by day in line depending
on the nature of the compounds and selection of analytical systems.

4. Analytical Techniques Used for Plant Metabolome

Along with sample preparation, different MS-based analytical systems are available
for data acquisition. In plant metabolomics, single analytical tools cannot be used to
identify all the metabolites present in a sample; instead, a set of various techniques are
needed to provide the largest amount of metabolite coverage [1]. Various metabolomics
tools include MS-based techniques, namely GC-MS, LC-MS CE-MS, FTICR-MS MALDI,
IMS, and NMR for sensitive and specific qualitative and quantitative analyses of metabo-
lites (Figure 1) [6,80]. All seven mentioned analytical methods identifying metabolites in
plant tissue directly or indirectly have advantages and disadvantages (Table 3). Also, the
combination of analytical methods can be used to ensure the efficacy of metabolite profiling.
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Table 3. Advantages and disadvantages of common analytical techniques used in MS-based and NMR metabolomics.

Analytical
Method Advantage Disadvantage

GC-MS

• Suitable for the identification of thermally stable
and volatile compounds

• Large commercial and public libraries
• Identification of low molecular weight

metabolites (~500 daltons)

• Sample pre-processing process and requires
derivatization

• Many metabolites are thermally unstable or
unsuitable for non-volatile compounds

LC-MS

• Easy sample preparation
• No derivatization
• Several separation modes are available
• Multiple MS detectors
• Large number of detectable metabolites

• Few commercial libraries
• Adduct ions are needed for metabolites

detection

CE-MS

• Evaluating ionic metabolites based on the
proportion of charge and size ratio

• Fast and high-resolution of charged compounds
• No derivatization

• Low sensitivity and reproducibility
• Poor migration time and lack of reference

libraries

FTICR-MS • Mass resolving power
• Mass accuracy and dynamic range

• Expensive
• Lack of detection for non-ionizable

compounds
• Slow MS/MS

MALDI-MSI

• Quantification by peak intensities
• Resolution up to 10 µm
• Direct on tissue identification by tandem–MS

fragmentation
• Mass range up to 20 kDa

• Unsuitable for higher molecular mass
compound

• Expensive equipment to purchase
• Time consuming
• Limited by size of the metabolites

IMS

• Ion fragmentation with high versatility
• Gold standard CCS values
• High resolution; IMSn (Ion mobility

spectrometry)

• Low ion mobility resolution
• Resolution depends on the number of passes
• Mass range depends on ion mobility

resolution

NMR

• Precise quantification and reproducibility
• Simple steps of sample preparation
• Separation is not required.
• Provide detailed information about the structure

of known and undiscovered metabolite
• Acceptable with liquids and solids samples

• Expensive cost of instrument
• Low sensitivity
• Inadequate bioinformatics platform
• A large amount of sample is required.
• Spectral analysis is a tough and

time-consuming process.

4.1. Gas Chromatography-Mass Spectrometry (GC-MS)

GC-MS is an ideal technique for the identification and quantification of small metabo-
lites (~500 Daltons). These molecules include amino acids, fatty acids, hydroxyl acids,
alcohols, sugars, sterols, and amines, which are identified mostly using chemical deriva-
tization to make them volatile enough for gas chromatography [81]. Moreover, different
methods of derivatization, such as alkylation, acylation, methoximation, trimethylsilylation,
and silylation, can also be used. Two derivatization steps are required for the extraction
and identification of metabolites using GC-MS. The first step requires the conversion of all
the carbonyl groups using methoxyamine hydrochloride into corresponding oximes. The
seconnhd step is followed by a trimethylsilylation reaction to increasing the volatility of the
derivative metabolites using derivatizing reagents such as N-Methyl-N-(trimethylsilyl) tri-
fluoroacetamide (MSTFA) and N,O-bis-(trimethylsilyl)-trifluoroacetamide (BSTFA) [82–84].
In this procedure, the hydrogen is replaced from the -NH, -SH, -OH and -COOH of spe-
cific metabolites with [-Si(CH3)3] and are converted into thermally stable, less polar and
volatile trimethylsilyl (TMS)-ether, TMS-ester, TMS-amine, or TMS-sulphide groups, re-
spectively [83]. Also, GC-MS is the preferable chromatographic technique for identifying
low molecular weight compounds that are either volatile or can be converted into volatile
and thermally stable metabolites by chemical derivatization prior to analysis [85]. The
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technique includes primary metabolites such as sugars, fatty acids, amino acids, long-chain
alcohols, amines, organic acids, and sterols.

There are two major forms of ionization used in GC-MS that comprises of electron
ionization (EI) and chemical ionization (CI). Till now, the majority of GC-MS methods in
metabolomics utilize EI. GC with EI detector equipped with single quadrupole (Q) mass
analyzer is the oldest and most advanced analytical tool with robustness, high sensitivity,
resolution and reproducibility, but suffers from sluggish scanning speeds and also poor
mass accuracy (~50–200 ppm). Therefore, GC with a time-of-flight mass spectrometry
(TOF-MS) analyzer is more preferred for metabolic profiling as it provides higher mass
accuracy, faster acquisition times, and improved deconvolution for complex mixtures [86].
Among all metabolomics techniques, GC-MS is one of the most standardized, efficient,
productive technique in plant metabolomics and it is considered a most versatile platform
for metabolites analysis [87]. In addition, GC-MS has the availability of the huge number
of well-established libraries of both commercial and in-house metabolite databases [88–90].
Metabolite profiling is utilized as an essential tool for screening of GM crops with regard
to quality and health requirements and in categorization to an investigation of potential
changes in metabolic contents, e.g., T. aestivum [53], O. sativa [44], and Z. mays [91].

4.2. Liquid Chromatography-Mass Spectrometry (LC-MS)

LC-MS is one of the most comprehensive analytical techniques in plant metabolome
research, which is used to measure a wide variety of complex metabolites. The LC-MS
approach is appropriate for high molecular weight (>500 kDa) plant metabolites, heat-labile
functional groups, chemically unstable functional groups, and high-vapor-point. It does not
require volatilization of the metabolites. LC-MS is also quite effective techniques in profiling
of SMs (e.g., alkaloids, phenolics, flavonoids and terpenes), lipids (e.g., phospholipids,
sphingolipids and glycerolipids) and sterols, and steroids [19,24,92,93].

LC-MS can also be used with various ionization methods and depending on the choice
of specific separating columns based on the chemical characteristics of both mobile and
stationary phases [94]. Currently, reverse-phase columns such as C18 or C8 are the most
widely used columns for LC gradient separation. In reverse-phase separations, organic
solvent/aqueous mixed mobile phases are often used, such as water: acetonitrile or water:
methanol. Atmospheric pressure ionization (API) and electron spray ionization (ESI) are
the most widely used ionization tools for LC-MS [94,95]. ESI and API have provided limited
structural information of the compound because they introduce less internal energy and
produce only a few fragments [95]. Structural information is typically obtained by number
of fragments using collision-induced dissociation (CID) on tandem MSn. Commonly, two
tandem MSn analytical tool configurations are commonly available with the LC-MS-based
metabolite analysis: tandem-in-time and tandem-in-space. The ion trap MS is used by
tandem-in-time instruments, such as quadruple ion traps (QIT-MS), FTICR-MS and orbitrap.
The tandem-in-space tool facilitates two sequential steps of mass spectrometric analysis
(MS2); it includes two mass analyzers separated by a collision cell [96,97]. Although LC-MS
requires standard reference compounds to identify and quantify SMs, this restricts the
analysis of metabolites that are not commercially available [98,99].

4.3. Capillary Electrophoresis-Mass Spectrometry (CE-MS)

CE-MS is a strong analytical technique for evaluating a large variety of ionic metabo-
lites based on the proportion of charge and size ratio [93]. It provides fast and high-
resolution of charged compounds from small injection volumes and enables the metabolites
characterization based on mass fragmentation [57]. The coverage of CE-MS metabolites
majorly overlaps with GC-MS, but requires no derivatization, thus this technique save time
and consumables. CE is performed in a fused silica capillary tube, the ends of which are
dipped in buffer solutions and across which high voltages (20–30 kV) are employed [84].
Furthermore, CE has low sensitivity and reproducibility, poor migration time and lack of
reference libraries; therefore, it is the least appropriate platform for studying metabolites
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from complex plant samples [100,101]. However, CE has some distinct rewards over other
metabolomics tools; primarily the fact that it uses low volume of separation, which is
especially appropriate for the study of plant metabolome [57,102].

4.4. Fourier Transform ion Cyclotron Resonance-Mass Spectrometry (FTICR-MS)

FTICR-MS provides the highest resolving power and mass accuracy among all kinds
of mass spectrometry [103]. Its specific analytical features have made FTICR an important
technique for proteomics and metabolomics. The ability of FTICR–MS to provide ultimate
high resolution and high mass accuracy data is now frequently used as part of metabolomics
procedures [84]. It’s also well compatible with multi-stage mass spectrometry (MSn)
analyzers. However, the instrument associated with a high magnetic field, complex ion-ion
interactions and high cost are major barriers to its widespread application and use in plant
metabolomics studies [56].

4.5. Matrix-Assisted Laser Desorption/Ionization (MALDI)

Recently, the applications of MALDI-Mass Spectrometry Imaging (MSI) and other
MSI tools use a non-target approach for the qualitative or quantitative imaging of a broad
variety of metabolites [104]. In plants, many studies have used MALDI-MSI to assess
the spatial distribution of lipids, sugars and other classes of metabolites from plant parts
such as flowers, leaves and roots [105,106]. In addition, MALDI-MSI has permitted the
simultaneous analysis of the distribution of many peptides and proteins actively from
a plant tissue section. This method involves coating a thin film of a matrix comprising
either sinapinic acid, α-Cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihdroxybenzoic
acid (2,5-DHBA) on the tissue surface. At each stage, a laser beam is inserted across the
matrix-coated tissue to obtain a mass spectrum. For protein/metabolites imaging, MALDI
is the most used method of ionization, combined with a wide variety of different mass
analyzers, namely ToF, ToF-ToF, QqToF (quadrupole time of flight), Fourier ICR transform
(FT-ICR), and ion-trap (both linear and spherical). All of these have their own merits and
have previously been addressed and reviewed [107]. Other different ionization techniques
such as secondary ion mass spectrometry (SIMS), desorption electrospray ionization (DESI)
and laser ablation electrospray ionization (LAESI) have been also investigated [108].

4.6. Ion Mobility Spectrometry (IMS)

Ion mobility spectrometry (IMS), which separates gas ions based on their size-to-
charge ratio, has become a robust separation method. IMS has been widely employed
in a variety of research fields ranging from environmental to pharmaceutical applica-
tions [109–114]. The use of ion mobility has gained significance in bioanalysis due to the po-
tential improvement of the sensitivity and the ability of the technique to distinguish highly
related molecules based on conformational differences of molecules [115]. The IMS-derived
collision cross-section indicates the effective area for the interaction between a particular ion
and gas through which it travels [116]. Initially, IMS was utilized largely as a stand-alone
technique; however, in recent years, the IMS coupling with MS (IMS-MS) has developed
rapidly into a robust and extensively used separation technique with applications in many
fields across the biological sciences, including the glycosciences [117]. IMS-MS developed
quickly into a ready-to-use technique that became commercially accessible, particularly for
glycan analysis [118]. The biological applications of IMS-MS for biomolecules include the
analysis of oligonucleotides carbohydrates, steroid, lipids, peptides, and proteins [119–123].
Furthermore, IMS-MS may be hyphenated with front-end liquid chromatography (LC)
separation to increase peak capacity and separation capabilities [123]. LC–IMS-MS tech-
nique has numerous significant benefits over other technologies in terms of increased peak
capacity, isomer separation, and metabolite identification [123,124].

IMS-MS derived collision cross-section (CCS) value is high reproducible characteristic
of metabolite ion, allowing for metabolite identification [125]. Therefore, the most essential
aspect of metabolite identification in IMS-MS is the curation of the CCS database. Many
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in silico CCS databases, such as LipidCCS [126], MetCCS [127], and ISiCLE [128], have
been curated and include over one million CCS values. Zhou et al. [129] developed the
ion mobility new CCS atlas, namely, AllCCS for metabolite annotation using known or
unknown chemical structures [129]. The AllCCS atlas included a wide range of chemical
structures with >5000 experimental CCS records and ~12 million predicted CCS values
for >1.6 million chemical molecules [129]. McCullagh et al. [130] used the TWCCSN2
library to screen the steviol glycosides in 55 food commodities. Schroeder et al. [131]
identified 146 plant natural compounds, 343 CCS values, and 29 isomers annotated (various
flavonoids and isoflavonoids) in Medicago truncatula based on CCS, retention time, accurate
mass, and molecular formula. The combination of a large-scale CCS database and different
MS/MS spectra will assist in the discovery of new metabolites.

4.7. Nuclear Magnetic Resonance (NMR)

NMR is another popular analytical tool for investigating the varied metabolome in
plants, involving the structure, content, and purity of molecules in the sample. As a
result, metabolic profiling can provide qualitative and quantitative data from biological
extracts [132]. The basic principle of NMR-based metabolite identification is to capture
the radio frequency electromagnetic radiations emitted by atomic nuclei that have an odd
atomic number (1H) or an odd mass number (13C) when placed in a strong magnetic field.
Because there is no requirement for chromatographic separation or sample derivatization,
the use of NMR has grown dramatically in recent years [94,133,134]. Furthermore, easy
sample preparation procedures and excellent repeatability, non-destructive nature enables
high throughput and quick analysis in NMR metabolomics but has less sensitivity than
MS [135,136]. NMR is pH sensitive, buffered solutions are usually needed to keep the
pH stable. A combination of methanol and aqueous phosphate buffer (pH 6.0, 1:1 v/v)
or ionic liquids such as 1-butyl-3-methylimidazolium chloride has been shown to be the
most effective in providing a comprehensive overview of both primary and secondary
metabolites [137]. 1H NMR is quick and easy, it has been the leading metabolites profiling
technique, but it suffers from signal overlapping in the complex mixture of plant extracts
during metabolites profiling. However, other advanced 2D NMR-based techniques in-
cludes two-dimensional (2D) 1H J-resolved NMR, heteronuclear single quantum coherence
spectroscopy (HSQC), heteronuclearmultiple quantum coherence (HMBC), total correla-
tion spectroscopy (TOCSY) and nuclear overhauser effect spectroscopy (NOESY) [137].
High-resolution magic angle spinning (HRMAS)-NMR is particularly well suited for solid
lyophilized tissue without the need for chemical extraction, which is essential for both MS
and liquid state NMR practices [86]. The acquisition time for 2D NMR (2D J-resolved spec-
troscopy) is around 20 min, whereas for one-dimensional (1D) NMR it is approximately
1 min. However, due to the dispersion of the resonance peaks in a second dimension,
spectral overlapping can be reduced in 2D NMR J-resolved spectroscopy to detect sig-
nals in crowded spectral regions [138]. Using advanced NMR, glycine-betaine, citric acid,
trehalose and ethanol levels were higher in Cry1Ab gene transformed maize plants than
non-transgenic maize plants showed [55]. Transgenic maize plants showed lower levels of
pyruvic, isobutyric, succinic, lactic, and fumaric acids than non-transgenics [55]. During
seed germination in chickpea, the exogenous uptake of glucose in presence of nitric oxide
donor was quantified by using 1H-NMR [33].

5. Metabolomic Data Processing, Annotation, Database and Bioinformatics Tools for
Plants METABOLOME Analysis

GC-MS, LC-MS CE-MS, FTICR-MS MALDI, IMS and NMR are perhaps the most im-
portant techniques within the context of natural product discovery. Metabolomics generate
a huge amount of metabolic data using wide range of analytical instruments. During
the last decade, different software tools (web-based programs) have been designed for
metabolomics raw data processing, data mining, data assessment, data interpretation, and
statistical analysis as well as mathematical modelling of metabolomic networks (Figure 1).
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5.1. Data Processing and Annotation

Several software programs are available for in silico data analysis of a large quantity
of spectrum data of metabolites generated by various analytical instruments. The web-
based programs were used for raw data processing, mining, and integration of metabolites.
In general, acquired data is processed for the correction of baseline shifts, background
noise reduction, peak detection and alignment, and finally, deconvolution of mass spectra
(Figure 1, Table 4). Many bioinformatic tools are designed for the data pre-processing,
including XCMS (https://xcmsonline.scripps.edu, accessed on 29 June 2021), METLIN
(http://metlin.scripps.edu, accessed on 29 June 2021) AMDIS (Automated Mass Spectral
Deconvolution and Identification System), MeltDB, MetaboAnalys, MetAlign, MZmine 2,
and AnalyzerPro for different analytical techniques (Table 1). XCMS is an online bioinfor-
matics platform that facilitates the direct uploading of raw data and assists the user in data
processing and statistical analysis [139]. For LC-MS experiments, XCMS has been devel-
oped for programmed data transfer that has reduced data processing time and improved
the effectiveness of an online system [140]. METLIN is another online database, which has
been used in various studies related to plant metabolic profiling of stress response. It is
useful for plant metabolic profiling of specific metabolites, and it is not time-consuming for
data processing, mining, and annotation [141].

MeltDB (https://meltdb.cebitec.uni-bielefeld.de, accessed on 29 June 2021) is an im-
portant web-based platform used for data assessment, processing, and statistical analysis in
plant metabolomics [142]. In addition, MetaboAnalyst online platform also includes a flexi-
ble enrichment analysis tool including some topological and visualization possibilities [143].
Global natural product social molecular networking (GNPS; http://gnps.ucsd.edu, ac-
cessed on 29 June 2021) is web-based mass spectrometry (MS/MS) for processing and
annotation of metabolites [144]. GNPS assists with the identification and discovery of
metabolites throughout the data, from data acquisition/analysis to post-publication [144].
Finally, the MZmine 2 is a publicly accessible data processing module that supports high-
resolution spectral analysis. MZmine 2 is suitable for both targeted and non-targeted
metabolomic studies, and it is well suited for processing large batches of data [145]. Vari-
ous computational web-based, statistical and online bioinformatics tools are commonly
used for data analysis in plant metabolomics (Table 4).

Table 4. Available/accessible bioinformatics and statistical tools for metabolite identification.

Database
Name Website (URL, Accessed on 29 June 2021) Data Input Major

Function Reference

ADAP http://www.du-lab.org/software.htm/ GC/TOF-MS Data
processing [146]

AllCSS http://allccs.zhulab.cn/ DTIM-MS
TWIM-MS

Metabolite
prediction and

annotation
[129]

AMDIS http://www.amdis.net/ GC-MS Data
processing [147]

BinBase
http://fiehnlab.ucdavis.edu/db

or
https://fiehnlab.ucdavis.edu/projects/binbase-setup

GC-MS Metabolite
annotation [148]

FiehnLib
http://fiehnlab.ucdavis.edu/db

or
https://fiehnlab.ucdavis.edu/projects/fiehnlib

GC-qTOF-MS Metabolic
profiling [149]

GMDB https://jcggdb.jp/rcmg/glycodb/Ms_ResultSearch MALDI-TOF Metabolite
annotation [150]

https://xcmsonline.scripps.edu
http://metlin.scripps.edu
https://meltdb.cebitec.uni-bielefeld.de
http://gnps.ucsd.edu
http://www.du-lab.org/software.htm/
http://allccs.zhulab.cn/
http://www.amdis.net/
http://fiehnlab.ucdavis.edu/db
https://fiehnlab.ucdavis.edu/projects/binbase-setup
http://fiehnlab.ucdavis.edu/db
https://fiehnlab.ucdavis.edu/projects/fiehnlib
https://jcggdb.jp/rcmg/glycodb/Ms_ResultSearch
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Table 4. Cont.

Database
Name Website (URL, Accessed on 29 June 2021) Data Input Major

Function Reference

GNPS https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp GC-MS-EI
LC-MS

Data
processing,

visualization
and

metabolite
annotation

[144]

KEGG http://www.genome.jp/kegg/ – Metabolic
models [151]

KNApSAcK http://kanaya.naist.jp/KNApSAcK/ FT/ICR-MS Metabolite
database [152]

MarVis http://marvis.gobics.de/ LC-MS Metabolite
annotation [153]

MassBase http://webs2.kazusa.or.jp/massbase/ MS Metabolite
annotation [154]

MAVEN https://maven.apache.org/ LC-MS Data
processing [155]

MeltDB 2.0 https://meltdb.cebitec.uni-bielefeld.de GC-MS &
LC-MS

Data
processing [142]

MetaboAnalyst www.metaboanalyst.ca/ GC-MS &
LC-MS

Statistical
analysis [156]

Metabolome
Express https://www.metabolome-express.org GC-MS

Data
processing,

visualization
and statistical

analysis

[157]

MetaboSearch http://omics.georgetown.edu/metabosearch.html MS Data
annotation [158]

Metabox https://github.com/kwanjeeraw/metabox MS Analysis
workflow [159]

MetAlign www.metalign.nl GC-MS &
LC-MS

Data
processing &

Statistical
analysis

[160]

metaP-server http://metabolomics.helmholtz-muenchen.de/metap2/ LC-MS/MS Data analysis [161]

MetAssign http://mzmatch.sourceforge.net/ LC-MS Data
annotation [162]

MetFrag https://ipb-halle.github.io/MetFrag/ MS Metabolite
annotation [163]

MET-IDEA http://bioinfo.noble.org/gateway/index.php?option=
com_wrapper&Itemid=57

GC-MS &
LC-MS

Data
processing [164]

MetiTree http://www.metitree.nl/ MS Data
annotation [165]

METLIN https://metlin.scripps.edu/ LC-MS &
MS/MS

Metabolite
annotation [141]

MMCD

http://mmcd.nmrfam.wisc.edu/
or

https:
//www.g6g-softwaredirectory.com/bio/metabolomics/

dbs-kbs/20670-Univ-Madison-WI-MMCD.php

MS Metabolite
annotation [166]

https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp
http://www.genome.jp/kegg/
http://kanaya.naist.jp/KNApSAcK/
http://marvis.gobics.de/
http://webs2.kazusa.or.jp/massbase/
https://maven.apache.org/
https://meltdb.cebitec.uni-bielefeld.de
www.metaboanalyst.ca/
https://www.metabolome-express.org
http://omics.georgetown.edu/metabosearch.html
https://github.com/kwanjeeraw/metabox
www.metalign.nl
http://metabolomics.helmholtz-muenchen.de/metap2/
http://mzmatch.sourceforge.net/
https://ipb-halle.github.io/MetFrag/
http://bioinfo.noble.org/gateway/index.php?option=com_wrapper&Itemid=57
http://bioinfo.noble.org/gateway/index.php?option=com_wrapper&Itemid=57
http://www.metitree.nl/
https://metlin.scripps.edu/
http://mmcd.nmrfam.wisc.edu/
https://www.g6g-softwaredirectory.com/bio/metabolomics/dbs-kbs/20670-Univ-Madison-WI-MMCD.php
https://www.g6g-softwaredirectory.com/bio/metabolomics/dbs-kbs/20670-Univ-Madison-WI-MMCD.php
https://www.g6g-softwaredirectory.com/bio/metabolomics/dbs-kbs/20670-Univ-Madison-WI-MMCD.php
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Table 4. Cont.

Database
Name Website (URL, Accessed on 29 June 2021) Data Input Major

Function Reference

Molfind http://metabolomics.pharm.uconn.edu/Software.html HPLC/MS Metabolite
annotation [167]

Mzcloud https://www.mzcloud.org/ MS/MS &
MSn

Metabolite
annotation [168]

MZedDB http://maltese.dbs.aber.ac.uk:8888/hrmet/index.html MS Data
annotation [169]

MZmine2 http://mzmine.github.io/ LC-MS Data
processing [145]

NIST

http://www.nist.gov/srd/nist1a.cfm
or

https:
//www.nist.gov/srd/nist-standard-reference-database-1a

GC-MS,
LC-MS &
MS/MS

Metabolite
annotation [170]

PRIMe http://prime.psc.riken.jp/
GC-MS,

LC-MS &
CE-MS

Metabolite
annotation [171]

XCMS https://xcmsonline.scripps.edu GC-MS,
LC-MS & MS2

Data
processing [139]

CE-MS, capillary electrophoresis-mass spectrometry; DTIM-MS, drift tube ion mobility–mass spectrometry; EI, electrospray ionization;
FTICR-MS, fourier transform ion cyclotron resonance-mass spectrometry; GC-TOF-MS, gas chromatography-time of flight-mass spectrome-
try; GC-MS, gas chromatography-mass spectrometry; HPLC, high-performance liquid chromatography; LC-MS, liquid chromatography-
mass spectrometry; MALDI-TOF, matrix-assisted laser desorption/ionization- time of flight; TWIM-MS, traveling wave ion mobility–
mass spectrometry.

5.2. Network Analysis

The basic goal of pathway analysis is to combine biochemical information with col-
lected metabolomics data to recognize metabolite patterns that match with metabolic
pathways [172]. It is possible to consider metabolic pathways as groups of metabolites that
share a common biological process and are related by one or more enzymatic reactions.
A broad set of metabolic pathways are covered by comprehensive metabolic pathway
databases, such as the KEGG database [173], MetaCyc [174], AraCyc [175] and the small
molecule pathway database (SMPDB) [176] (Table 5). A number of software, such as,
metabolite set enrichment analysis (MSEA), MPEA, IMPaLA, MBRole, VANTED, Metabo-
Analyst, Paintomics, ProMeTra, Metscape2, and MetaMapRR can perform statistical and
other metabolite enrichment analyses (Table 5). MSEA methods can be methodically distin-
guished into over-representation (ORA), single-sample profiling (SSP) and quantitative
enrichment (QEA) analysis [177]. Metscape2 [178], which is an add-on to the common Cy-
toscape software [179] that allows data on metabolites, genes, and pathways to be displayed
in the scope of metabolic networks. In addition, platform-independent online resources
such as Paintomics [180], ProMeTra [181] and MetaMapRR [182] are also accessible.

Table 5. Database for metabolite enrichment analysis and pathway visualization.

Database Website (URL, Accessed on 29 June 2021) References

AraCyc https://www.plantcyc.org/typeofpublication/aracyc [175]

Cytoscape http://www.cytoscape.org/ [183]

IMPaLA http://impala.molgen.mpg.de [184]

iPath http://pathways.embl.de/ [185]

http://metabolomics.pharm.uconn.edu/Software.html
https://www.mzcloud.org/
http://maltese.dbs.aber.ac.uk:8888/hrmet/index.html
http://mzmine.github.io/
http://www.nist.gov/srd/nist1a.cfm
https://www.nist.gov/srd/nist-standard-reference-database-1a
https://www.nist.gov/srd/nist-standard-reference-database-1a
http://prime.psc.riken.jp/
https://xcmsonline.scripps.edu
https://www.plantcyc.org/typeofpublication/aracyc
http://www.cytoscape.org/
http://impala.molgen.mpg.de
http://pathways.embl.de/
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Table 5. Cont.

Database Website (URL, Accessed on 29 June 2021) References

KEGG http://www.genome.jp/kegg/ [173]

MapMan http://mapman.gabipd.org/web/guest/mapman [186]

MBRole http://csbg.cnb.csic.es/mbrole/ [187]

Metabolonote http://metabolonote.kazusa.or.jp/ [188]

MetaCrop http://metacrop.ipk-gatersleben.de [189]

MetaCyc http://www.metacyc.org [174]

MetPA http://metpa.metabolomics.ca/MetPA/ [190]

MPEA http://ekhidna.biocenter.helsinki.fi/poxo/mpea/ [191]

MSEA
http://www.msea.ca.

or
http://www.metaboanalyst.ca

[177]

Pathcase http://nashua.case.edu/PathwaysMAW/Web/ [192]

PathwayExplorer http://genome.tugraz.at/pathwayexplorer/
pathwayexplorer_description.shtml [193]

SMPDB http://www.smpdb.ca [176]

VANTED https://immersive-nalytics.infotech.monash.edu/vanted/ [194]

WikiPathways http://wikipathways.org [195]

6. Conclusions

Metabolomics has achieved a prominent role in plant science research. It has wide
applications ranging from investigating the stress-specific metabolites for different climatic
stresses, evaluating candidate metabolic gene functions to analyzing the biological mecha-
nism in plant cells, and dissecting the genotype-phenotype relationship in response to the
various biotic and abiotic stresses. This review provides an overview of different sample
collection, harvesting methods, storage, and sample preparation in the plant metabolomics
experiments. Furthermore, the most widely used analytical tools in metabolomics for
agriculture research viz. GC-MS, LC-MS, CE-MS, FTICR-MS, MALDI, IMS, and NMR with
new development in their applications. In addition, we discussed computational software
and database employed for metabolomics data processing in plant science. The integration
of comprehensive bioinformatics tools with omics strategies professionally dissects novel
metabolic networks for crop improvement. Metabolomics has excelled classical approach
for novel metabolites discovery and simultaneously explores the complexity and enormous
chemical diversity of metabolites in any crop plant. The integration of metabolomics with
other “omics” technologies, e.g., genomics, transcriptomics, proteomics, can deliver novel
insights into crop plants’ genetic regulations in the context of their cellular function and
metabolic network. The complete elucidation of physio-biochemical and molecular mecha-
nisms underlying plant developmental and stress-responsive biology primarily depends
on the comprehensive investigations using omics techniques that make metabolomics
more applicable in agriculture sciences. Metabolomics has tremendous potential in plant
research, as metabolites are more appropriate to the plant phenotype than DNAs, RNAs,
or proteins. Therefore, studies in this field will effort on both ways, one is the systematic
study of the biochemical and genetic mechanisms of metabolic variations in crop plants
using both targeted and non-targeted methods; other is metabolomic platform can be
used for metabolic profiling of genome-edited plants using CRISPR/Cas9 system for risk
evaluation and regulatory affairs related with genetically modified crops [196]. Thus, we
can say metabolomics will be able to contribute a lot to agriculture science, such as crop
breeding and genome editing for crop improvement, better grain yield, and elucidating
their unknown and novel metabolic pathways.

http://www.genome.jp/kegg/
http://mapman.gabipd.org/web/guest/mapman
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34. Mikołajczyk-Bator, K.; Błaszczyk, A.; Czyżniejewski, M.; Kachlicki, P. Characterization and identification of triterpene saponins
in the roots of red beets (Beta vulgaris L.) using two HPLC–MS systems. Food Chem. 2016, 192, 979–990. [CrossRef] [PubMed]

35. Hazzoumi, Z.; Moustakime, Y.; Joutei, K.A. Effect of gibberellic acid (GA), indole acetic acid (IAA) and benzylaminopurine
(BAP) on the synthesis of essential oils and the isomerization of methyl chavicol and trans-anethole in Ocimum gratissimum L.
SpringerPlus 2014, 3, 321–327. [CrossRef] [PubMed]

36. Santoro, M.V.; Nievas, F.; Zygadlo, J.; Giordano, W.; Banchio, E. Effects of growth regulators on biomass and the production of
secondary metabolites in peppermint (Mentha piperita) micropropagated in vitro. Am. J. Plant Sci. 2013, 4, 49. [CrossRef]

37. Naeem, M.; Khan, M.M.A.; Idrees, M.; Aftab, T. Triacontanol-mediated regulation of growth yield, physiological activities and
active constituents of Mentha arvensis L. Plant Growth Regul. 2011, 65, 195–206. [CrossRef]

38. Li, J.T.; Hu, Z.H. Accumulation and dynamic trends of triterpenoid saponin in vegetative organ of Achyranthus bidentata. J. Integr.
Plant Biol. 2009, 51, 122–129. [CrossRef]

39. Perkowska, I.; Siwinska, J.; Olry, A.; Grosjean, J.; Hehn, A.; Bourgaud, F.; Lojkowska, E.; Ihnatowicz, A. Identification and
quantification of coumarins by UHPLC-MS in Arabidopsis thaliana natural populations. Molecules 2021, 26, 1804. [CrossRef]

40. Morita, H.; Fujiwara, M.; Yoshida, N.; Kobayashi, J. New picrotoxin-type and dendrobine-type sesquiterpenoids from Dendrobium
snowflake ‘Red Star’. Tetrahedron 2000, 56, 5801–5805. [CrossRef]

41. Zagorchev, L.; Seal, C.E.; Kranner, I.; Odjakova, M. A central role for thiols in plant tolerance to abiotic stress. Int. J. Mol. Sci. 2013,
14, 7405–7432. [CrossRef] [PubMed]

42. Xu, J.; Yu, Y.; Shi, R.; Xie, G.; Zhu, Y.; Wu, G.; Qin, M. Organ-specific metabolic shifts of flavonoids in Scutellaria baicalensis at
different growth and development stages. Molecules 2018, 23, 428. [CrossRef]

43. Lin, L.; Huang, X.; Lv, Z. Isolation and identification of flavonoids components from Pteris vittata L. SpringerPlus 2016, 5, 1649.
[CrossRef] [PubMed]

44. Zhou, J.; Ma, C.; Xu, H.; Yuan, K.; Lu, X.; Zhu, Z.; Wu, Y.; Xu, G. Metabolic profiling of transgenic rice with cryIAc and sck
genes: An evaluation of unintended effects at metabolic level by using GC-FID and GC–MS. J. Chromatogr. B. 2009, 877, 725–732.
[CrossRef]

45. Iwaki, T.; Guo, L.; Ryals, J.A.; Yasuda, S.; Shimazaki, T.; Kikuchi, A.; Watanabe, K.N.; Kasuga, M.; Yamaguchi-Shinozaki, K.;
Ogawa, T.; et al. Metabolic profiling of transgenic potato tubers expressing Arabidopsis dehydration response element-binding
protein 1A (DREB1A). J. Agric. Food Chem. 2013, 61, 893–900. [CrossRef]

46. Ma, C.; Wang, H.; Lu, X.; Wang, H.; Xu, G.; Liu, B. Terpenoid metabolic profiling analysis of transgenic Artemisia annua L. by
comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Metabolomics 2009, 5, 497–506. [CrossRef]

47. Sobolev, A.P.; Testone, G.; Santoro, F.; Nicolodi, C.; Iannelli, M.A.; Amato, M.E.; Ianniello, A.; Brosio, E.; Giannino, D.; Mannina, L.
Quality traits of conventional and transgenic lettuce (Lactuca sativa L.) at harvesting by NMR metabolic profiling. J. Agric. Food
Chem. 2010, 58, 6928–6936. [CrossRef]

48. Roessner-Tunali, U.; Hegemann, B.; Lytovchenko, A.; Carrari, F.; Bruedigam, C.; Granot, D.; Fernie, A.R. Metabolic profiling of
transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit
development. Plant Physiol. 2003, 133, 84–99. [CrossRef] [PubMed]

http://doi.org/10.3390/metabo2010019
http://www.ncbi.nlm.nih.gov/pubmed/24957366
http://doi.org/10.1007/s00216-015-8536-2
http://doi.org/10.1007/s11306-011-0318-z
http://doi.org/10.1105/tpc.104.026070
http://doi.org/10.3389/fpls.2020.00001
http://www.ncbi.nlm.nih.gov/pubmed/32117356
http://doi.org/10.3389/fpls.2018.00106
http://doi.org/10.1016/j.biombioe.2019.03.007
http://doi.org/10.1016/j.indcrop.2015.09.025
http://doi.org/10.1016/j.foodchem.2012.04.057
http://doi.org/10.1016/j.jfda.2016.10.003
http://doi.org/10.1016/j.jchromb.2015.07.002
http://doi.org/10.1093/jxb/erz185
http://doi.org/10.1016/j.foodchem.2015.07.111
http://www.ncbi.nlm.nih.gov/pubmed/26304438
http://doi.org/10.1186/2193-1801-3-321
http://www.ncbi.nlm.nih.gov/pubmed/25045609
http://doi.org/10.4236/ajps.2013.45A008
http://doi.org/10.1007/s10725-011-9588-8
http://doi.org/10.1111/j.1744-7909.2008.00764.x
http://doi.org/10.3390/molecules26061804
http://doi.org/10.1016/S0040-4020(00)00530-5
http://doi.org/10.3390/ijms14047405
http://www.ncbi.nlm.nih.gov/pubmed/23549272
http://doi.org/10.3390/molecules23020428
http://doi.org/10.1186/s40064-016-3308-9
http://www.ncbi.nlm.nih.gov/pubmed/27722067
http://doi.org/10.1016/j.jchromb.2009.01.040
http://doi.org/10.1021/jf304071n
http://doi.org/10.1007/s11306-009-0170-6
http://doi.org/10.1021/jf904439y
http://doi.org/10.1104/pp.103.023572
http://www.ncbi.nlm.nih.gov/pubmed/12970477


Plants 2021, 10, 2409 19 of 24

49. Choi, H.K.; Choi, Y.H.; Verberne, M.; Lefeber, A.W.; Erkelens, C.; Verpoorte, R. Metabolic fingerprinting of wild type and
transgenic tobacco plants by 1H NMR and multivariate analysis technique. Phytochemistry 2004, 65, 857–864. [CrossRef]

50. Jha, R.K.; Patel, J.; Patel, M.K.; Mishra, A.; Jha, B. Introgression of a novel cold and drought regulatory-protein encoding
CORA-like gene, SbCDR, induced osmotic tolerance in transgenic tobacco. Physiol. Plant 2021, 172, 1170–1188. [CrossRef]

51. Chang, Y.; Zhao, C.; Zhu, Z.; Wu, Z.; Zhou, J.; Zhao, Y.; Lu, X.; Xu, G. Metabolic profiling based on LC/MS to evaluate unintended
effects of transgenic rice with cry1Ac and sck genes. Plant Mol. Biol. 2012, 78, 477–487. [CrossRef] [PubMed]

52. Payyavula, R.S.; Tschaplinski, T.J.; Jawdy, S.S.; Sykes, R.W.; Tuskan, G.A.; Kalluri, U.C. Metabolic profiling reveals altered sugar
and secondary metabolism in response to UGPase overexpression in Populus. BMC Plant Boil. 2014, 14, 1–14. [CrossRef] [PubMed]

53. Stamova, B.S.; Roessner, U.; Suren, S.; Laudencia-Chingcuanco, D.; Bacic, A.; Beckles, D.M. Metabolic profiling of transgenic
wheat over-expressing the high-molecular-weight Dx5 glutenin subunit. Metabolomics 2009, 5, 239–252. [CrossRef]

54. Niu, F.; Jiang, Q.; Sun, X.; Hu, Z.; Wang, L.; Zhang, H. Metabolic profiling of DREB-overexpressing transgenic wheat seeds by
liquid chromatography–mass spectrometry. Crop J. 2020, 8, 1025–1036. [CrossRef]

55. Piccioni, F.; Capitani, D.; Zolla, L.; Mannina, L. NMR metabolic profiling of transgenic maize with the Cry1A(b) gene. J. Agric.
Food Chem. 2020, 57, 6041–6049. [CrossRef]

56. Tanna, B.; Mishra, A. Metabolomics of seaweeds: Tools and techniques. In Plant Metabolites and Regulation Under Environmental
Stress; Ahmad, P., Ahanger, M.A., Singh, V.P., Tripathi, D.K., Alam, P., Alyemeni, M.N., Eds.; Academic Press: Cambridge, MA,
USA, 2018; pp. 37–52.

57. Salem, M.A.; Perez de Souza, L.; Serag, A.; Fernie, A.R.; Farag, M.A.; Ezzat, S.M.; Alseekh, S. Metabolomics in the context of plant
natural products research: From sample preparation to metabolite analysis. Metabolites 2020, 10, 37. [CrossRef]

58. Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.;
et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics
Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [CrossRef] [PubMed]

59. Harbourne, N.; Marete, E.; Jacquier, J.C.; O’Riordan, D. Effect of drying methods on the phenolic constituents of meadowsweet
(Filipendula ulmaria) and willow (Salix alba). LWT—-Food Sci. Technol. 2009, 42, 1468–1473. [CrossRef]

60. Parida, A.K.; Panda, A.; Rangani, J. Metabolomics-guided elucidation of abiotic stress tolerance mechanisms in plants. In Plant
Metabolites and Regulation Under Environmental Stress; Ahmad, P., Ahanger, M.A., Singh, V.P., Tripathi, D.K., Alam, P., Alyemeni,
M.N., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 89–131.

61. Gong, Z.G.; Hu, J.; Wu, X.; Xu, Y.J. The recent developments in sample preparation for mass spectrometry-based metabolomics.
Crit. Rev. Anal. Chem. 2017, 8347, 1–7. [CrossRef]

62. Silva-Navas, J.; Moreno-Risueno, M.A.; Manzano, C. Flavonols mediate root phototropism and growth through regulation of
proliferation-to differentiation transition. Plant Cell 2016, 28, 1372–1387. [CrossRef]

63. Corrales, A.R.; Carrillo, L.; Lasierra, P. Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and
abiotic stress responses in Arabidopsis. Plant Cell Environ. 2017, 40, 748–764. [CrossRef]

64. Sánchez-Parra, B.; Frerigmann, H.; Pérez Alonso, M.-M. Characterization of four bifunctional plant IAM/PAM-amidohydrolases
capable of contributing to auxin biosynthesis. Plants 2014, 3, 324–347. [CrossRef] [PubMed]

65. Lehmann, T.; Janowitz, T.; Sánchez-Parra, B. Arabidopsis NITRILASE 1 contributes to the regulation of root growth and develop-
ment through modulation of auxin biosynthesis in seedlings. Front. Plant Sci. 2017, 8, 36. [CrossRef] [PubMed]

66. T’Kindt, R.; Morreel, K.; Deforce, D. Joint GC–MS and LC–MS platforms for comprehensive plant metabolomics: Repeatability
and sample pre-treatment. J. Chromatogr. B 2009, 877, 3572–3580. [CrossRef]

67. Giavalisco, P.; Li, Y.; Matthes, A. Elemental formula annotation of polar and lipophilic metabolites using (13) C, (15) N and (34) S
isotope labelling, in combination with high-resolution mass spectrometry. Plant J. 2011, 68, 364–376. [CrossRef]

68. Yuliana, N.D.; Khatib, A.; Verpoorte, R.; Choi, Y.H. Comprehensive extraction method integrated with NMR metabolomics: A
new bioactivity screening method for plants, adenosine a1 receptor binding compounds in Orthosiphon stamineus, Benth. Anal.
Chem. 2011, 83, 6902–6906. [CrossRef]

69. Gratacós-Cubarsí, M.; Ribas-Agustí, A.; García-Regueiro, J.A.; Castellari, M. Simultaneous evaluation of intact glucosinolates and
phenolic compounds by UPLC-DAD-MS/MS in Brassica oleracea L. var. botrytis. Food Chem. 2010, 121, 257–263. [CrossRef]

70. Teo, C.C.; Chong, W.P.K.; Ho, Y.S. Development and application of microwave-assisted extraction technique in biological sample
preparation for small molecule analysis. Metabolomics 2013, 9, 1109–1128. [CrossRef]

71. Altemimi, A.; Watson, D.G.; Choudhary, R.; Dasari, M.R.; Lightfoot, D.A. Ultrasound assisted extraction of phenolic compounds
from peaches and pumpkins. PLoS ONE 2016, 11, e0148758. [CrossRef]

72. Velickovic, D.; Chu, R.K.; Myers, G.L.; Ahkami, A.H.; Anderton, C.R. An approach for visualizing the spatial metabolome of an
entire plant root system inspired by the swiss-rolling technique. J. Mass Spectrom. 2020, 55, 4363. [CrossRef]

73. Zuorro, A.; Lavecchia, R.; Medici, F.; Piga, L. Enzyme-assisted production of tomato seed oil enriched with lycopene from tomato
pomace. Food Bioprocess Tech. 2013, 6, 3499–3509. [CrossRef]

74. Zhou, J.; Yin, Y. Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry.
Analyst 2016, 141, 6362–6373. [CrossRef]

75. Cajka, T.; Fiehn, O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics.
Anal. Chem. 2016, 88, 524–545. [CrossRef] [PubMed]

http://doi.org/10.1016/j.phytochem.2004.01.019
http://doi.org/10.1111/ppl.13280
http://doi.org/10.1007/s11103-012-9876-3
http://www.ncbi.nlm.nih.gov/pubmed/22271304
http://doi.org/10.1186/s12870-014-0265-8
http://www.ncbi.nlm.nih.gov/pubmed/25287590
http://doi.org/10.1007/s11306-008-0146-y
http://doi.org/10.1016/j.cj.2020.02.006
http://doi.org/10.1021/jf900811u
http://doi.org/10.3390/metabo10010037
http://doi.org/10.1007/s11306-007-0082-2
http://www.ncbi.nlm.nih.gov/pubmed/24039616
http://doi.org/10.1016/j.lwt.2009.05.005
http://doi.org/10.1080/10408347.2017.1289836
http://doi.org/10.1105/tpc.15.00857
http://doi.org/10.1111/pce.12894
http://doi.org/10.3390/plants3030324
http://www.ncbi.nlm.nih.gov/pubmed/27135507
http://doi.org/10.3389/fpls.2017.00036
http://www.ncbi.nlm.nih.gov/pubmed/28174581
http://doi.org/10.1016/j.jchromb.2009.08.041
http://doi.org/10.1111/j.1365-313X.2011.04682.x
http://doi.org/10.1021/ac201458n
http://doi.org/10.1016/j.foodchem.2009.11.081
http://doi.org/10.1007/s11306-013-0528-7
http://doi.org/10.1371/journal.pone.0148758
http://doi.org/10.1002/jms.4363
http://doi.org/10.1007/s11947-012-1003-6
http://doi.org/10.1039/C6AN01753C
http://doi.org/10.1021/acs.analchem.5b04491
http://www.ncbi.nlm.nih.gov/pubmed/26637011


Plants 2021, 10, 2409 20 of 24
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