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Abstract: In vitro seed germination is a useful tool for developing a variety of biotechnologies, but
cannabis has presented some challenges in uniformity and germination time, presumably due to
the disinfection procedure. Disinfection and subsequent growth are influenced by many factors,
such as media pH, temperature, as well as the types and levels of contaminants and disinfectants,
which contribute independently and dynamically to system complexity and nonlinearity. Hence,
artificial intelligence models are well suited to model and optimize this dynamic system. The
current study was aimed to evaluate the effect of different types and concentrations of disinfectants
(sodium hypochlorite, hydrogen peroxide) and immersion times on contamination frequency using
the generalized regression neural network (GRNN), a powerful artificial neural network (ANN). The
GRNN model had high prediction performance (R2 > 0.91) in both training and testing. Moreover, a
genetic algorithm (GA) was subjected to the GRNN to find the optimal type and level of disinfectants
and immersion time to determine the best methods for contamination reduction. According to the
optimization process, 4.6% sodium hypochlorite along with 0.008% hydrogen peroxide for 16.81 min
would result in the best outcomes. The results of a validation experiment demonstrated that this
protocol resulted in 0% contamination as predicted, but germination rates were low and sporadic.
However, using this sterilization protocol in combination with the scarification of in vitro cannabis
seed (seed tip removal) resulted in 0% contamination and 100% seed germination within one week.

Keywords: hydrogen peroxide; sodium hypochlorite; generalized regression neural network; genetic
algorithm; scarification; seed dormancy; plant tissue culture

1. Introduction

For centuries, Cannabis sativa L. has been widely used around the world for various
applications (e.g., textiles, food, cosmetics) [1]. These days, interest has been focused on
medicinal and recreational facets, furthering commercial expansion. With Canada recently
adopting the more globally appreciated view of cannabis, there exists an ever evolving,
multi-billion-dollar industry focused on vegetative propagation [2]. Despite the reliance
on clonal propagation, there is a continual need to germinate seeds to select new elite
genotypes, perform pheno-hunting, as well as supporting breeding programs. To select
new elite genotypes, plants are started from seed (technically achenes [3], but will be
referred to as seed henceforth). During the vegetative phase of growth, a cutting is taken
and maintained as a vegetative plant while the seedling is grown to maturity. Once the
elite genotypes are selected, the cutting is then used as a source to propagate the clonal line.
Maintaining the large population of cuttings during the phenotyping exercise represents
a significant cost to producers and leaves the cutting derived mother plants exposed to
insects and diseases.

To address the issues of insect, disease, and viral infections in mother plants, many
producers use plant tissue culture to ensure that they are starting with clean material. For
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this process, nodal segments are disinfected and established in culture, a time consuming
and relatively expensive endeavor. A potential alternative to the traditional approach is
to first establish the seed in tissue culture. Once the seedlings are established and multi-
plied, micropropagated clones can be transferred into the growth facility and cultivated
to maturity to identify elite genotypes. After selecting the elite genotypes, the in vitro
parent material would be available for clonal propagation. This approach would greatly
reduce the amount of space required for selecting new cultivars and provide a ready source
of clean planting material once elite genotypes are identified. However, this approach
requires an effective in vitro seed germination protocol with high germination speed and
frequency. An efficient in vitro seed germination system would also support downstream
biotechnologies (regeneration, transformation, etc.) in which seedling-derived tissues are
preferred [4–6].

We previously reported the effect of different types and strengths of media in addition
to carbohydrate types and levels as primarily important factors contributing to in vitro
cannabis seed germination indices and morphological seedling traits [5]. Our results
demonstrated that maximum germination percentage (82.67 ± 3.837%) was achieved with
0.43 strength mMS medium and 2.3% sucrose [5]. While the germination rate was over 80%,
this was after 40 days of culture. Typically, the cannabis seed germinates within several
days in the greenhouse/growth room, suggesting that something during the disinfection
process was interfering with subsequent germination. To improve our previous protocol,
we hypothesize that optimizing the disinfection protocol and seed scarification would
increase the speed and frequency of seed germination.

As with most aspects of a tissue culture system, in vitro disinfection is a complex and
non-linear process that is affected by numerous factors such as disinfectant and contaminant
types and levels, media pH, immersion time, temperature, and their interactions (Figure 1) [7].
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In the disinfection process, the concentration of disinfectants plays a conflicting dual
role relating to contamination frequency and seed viability [8]. Higher disinfectant con-
centrations generally lead to a greater control over contaminants; however, lower seedling
viability is often the trade-off [9,10]. Therefore, it is necessary to optimize the disinfec-
tion process.

The disinfection process cannot be represented by a simple stepwise algorithm, es-
pecially when the datasets are highly imbalanced and noisy [10]. Therefore, artificial
intelligence (AI) models combined with optimization algorithms (OAs) such as a genetic
algorithm (GA) can be employed as an efficient and reliable computational method to inter-
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pret, forecast, and optimize this complex system [10–14]. This strategy (AI-OA) has been
successfully used for modeling and optimizing different tissue culture systems, including
in vitro decontamination, shoot proliferation, androgenesis, somatic embryogenesis, sec-
ondary metabolite production, and rhizogenesis [7,15,16]. Ivashchuk et al. [17] employed
multilayer perceptron (MLP) and radial basis function (RBF) as two well-known artificial
neural networks (ANNs) for modeling and predicting the effect of different disinfectants
and immersion times for Bellevalia sarmatica, Echinacea purpurea, and Nigella damascene
explant decontamination. They reported that both algorithms were able to accurately
model and predict the disinfection process [17]. In another study, Hesami et al. [10] applied
a hybrid MLP and non-dominated sorting genetic algorithm-II (NSGA-II) for the modeling
and optimization of disinfectants and immersion times for chrysanthemum leaf segment
decontamination. It was reported that MLP-NSGA-II had a high performance to predict
and optimize the system [13]. A generalized regression neural network (GRNN) is another
type of ANNs that has successfully been used for modeling and predicting different tissue
culture processes [5,18–20]. Although there exist no reports using GRNN for the modeling
and optimization of disinfection process, we previously showed that GRNN has a higher
predictive performance than RBF, MLP, and the adaptive neuro-fuzzy inference system
(ANFIS) for cannabis micropropagation [5,18]. Therefore, in the current study, we used
GRNN-GA to model and optimize cannabis seed disinfection.

Mature seed germination can sometimes be more difficult than immature seed ger-
mination due to the increase in the seed coat’s impermeability and the accumulation of
inhibitors during seed maturation [21]. Hence, dormancy breaking plays a critical role
relating to the speed and frequency of seed germination due to morpho-physiological
dormancy [22,23]. Although there are no reports on the effects of scarification on cannabis
seed germination, the positive impact of dormancy breaking by scarification has previ-
ously been suggested in several plants, such as Limodorum [24], Salvia stenophylla [25], and
legumes [22]. Based on this evidence, studying the effect of scarification on cannabis seed
germination can pave the way for devising an in vitro seed germination protocol with
high speed and germination frequency. The current study uses GRNN-GA to model and
optimize cannabis seed disinfection, and investigates the effect of scarification on seed
germination. By combining these procedures, a superior in vitro cannabis seed germina-
tion protocol that limits contamination while allowing high germination rates in a short
timeframe was established.

2. Results
2.1. Effect of Different Disinfectants at Various Immersion Times on Contamination

Based on our results (Table 1), different contamination rates were observed in various
disinfection treatments.

As shown in Table 1, sodium hypochlorite was more successful than hydrogen perox-
ide in controlling contamination. Also, different levels of sodium hypochlorite at 15 min of
immersion resulted in no contamination (Table 1).

2.2. Data Modeling by Using GRNN

According to our results, GRNN displayed an excellent performance for modeling
and predicting contamination rates during in vitro sterilization (Table 2). Performance
indices (RMSE and MBE) of the developed GRNN demonstrated that the obtained result
was highly precise, and correlated in both training and testing sets (Table 2).

Additionally, R2 was within the acceptable range for both training and testing sets,
showing great prediction performance of the developed GRNN (Figure 2).

2.3. Optimization via GA and Validation Experiment

According to the optimization process (Table 3), 4.6% sodium hypochlorite along
with 0.008% hydrogen peroxide for 16.81 min would result in no contamination. The
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results of the validation experiment verified that there was no contamination using this
combination (Table 3).

Table 1. Effects of sodium hypochlorite and hydrogen peroxide (H2O2) concentrations and immersion
times on contamination percentages of cannabis seeds.

Sodium Hypochlorite (%) H2O2 (%) Time (min) Contamination (%) ± SE

0 0 0 100.0 ± 0.00
0 10 5 86.7 ± 6.67
0 10 10 86.7 ± 6.67
0 10 20 86.7 ± 6.67
0 20 5 86.7 ± 6.67
0 20 10 86.7 ± 6.67
0 20 20 73.3 ± 6.67
0 30 5 86.7 ± 6.67
0 30 10 80.0 ± 11.55
0 30 20 73.3 ± 6.67
5 0 5 53.3 ± 17.64
5 0 10 26.7 ± 6.67
5 0 15 0.0 ± 0.00
10 0 5 6.7 ± 6.67
10 0 10 0.0 ± 0.00
10 0 15 0.0 ± 0.00
15 0 5 6.7 ± 6.67
15 0 10 0.0 ± 0.00
15 0 15 0.0 ± 0.00

Table 2. Performance criteria of generalized regression neural network (GRNN) for contamination rate during cannabis
seed disinfection.

Criteria Training Set Testing Set

Histogram
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Table 3. The results of optimization process via genetic algorithm (GA) and validation experiment.

Optimal Level of
Input Variables Predicted Contamination (%) Contamination (%) in

Validation Experiment

4.6% sodium
hypochlorite + 0.008% hydrogen

peroxide for 16.81 min
0 0 ± 0.0

2.4. Effect of Scarification on In Vitro Seed Germination

The seed scarification experiment (Figure 3) resulted in enhanced speed and frequency
of in vitro germination of Finola seeds such that 100% germination was achieved within one
week, while only 82.7 + 0.67% germination was observed in intact seeds (un- scarified seeds)
after 40 days in our previous study. Moreover, we assessed the efficiency of the developed
protocol on 10 drug-type cannabis genotypes (i.e., Bubba Island Kush, Glueberry OG,
Critical Orange Punch, Frisian Dew, Banana Blaze, Blueberry, Durban Poison, Skunk #1,
Passion #1, and Strawberry Cough; Dutch Passion, NL). The results showed more than 90%
germination in these genotypes within one week when scarified.
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3. Discussion

In vitro seed germination of cannabis has great potential to improve the efficiency of
elite cultivar selection, pheno-hunting, phenotyping, and to support various in vitro culture
methods as initial explant materials [5]. In orthodox seeds, germination typically initiates
with the passive uptake of water by the dry mature seed, and terminates with radicle
protrusion through the seed envelope [23]. Different abiotic factors (e.g., temperature, light,
medium composition, sterilization procedures, and scarification) affect seed germination,
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mainly through regulating the signaling and metabolism pathways of abscisic acid (ABA)
and gibberellic acid (GA) [21]. Although cannabis seeds easily germinate within several
days under greenhouse or field conditions, in vitro cannabis seed germination tends to
be more difficult, with lower germination rates spread over a longer period of time. The
cause of this difference is unknown, but is likely related to the disinfection protocol that
may stress the developing embryo or potentially eliminate microbes that play a role in the
germination process. As such, optimizing sterilization and scarification protocols can be
considered the two most important procedures for successful in vitro seed germination [25].

The surface sterilization of initial source material, including seeds, is a prerequisite for
the success of the culture [10]. Therefore, it is vital to optimize the sterilization protocol
while allowing it to remain simple, cheap, environmentally friendly, and efficient [8]. Al-
though various disinfectants and immersion times can be employed to sterilize the explants,
each species and even explant type necessitates a particular sterilization protocol [10]. The
hybrid of machine learning—optimization algorithm procedures offer promising computa-
tional methodology that is well suited to model and optimize in vitro culture systems such
as sterilization [10].

Based on our results, GRNN-GA accurately predicted and optimized the in vitro
surface sterilization of cannabis seed. According to the optimization process through
GRNN-GA, 4.6% sodium hypochlorite along with 0.008% hydrogen peroxide for 16.81 min
would result in no contamination. Similar to our results, previous studies showed that
sodium hypochlorite was more successful than hydrogen peroxide in controlling con-
tamination [10,25]. Additionally, the results of the validation experiment confirmed no
differences between the optimized predicted and observed results, showing the robustness
of GRNN-GA. In line with our results, previous studies showed that GRNN-GA can be
considered a reliable computational method with high prediction performance for the
modeling and optimizing of in vitro culture systems [5,18–20].

While the optimized seed disinfection protocol resulted in 0% contamination, germi-
nation was still slow and sporadic. The second experiment was performed to evaluate
the effect of scarification on the speed and frequency of in vitro seed germination. The
speed at which in vitro cannabis seeds germinate is remarkably slow in comparison to
field germination. One possible explanation for this difference is the presence of different
microbes (e.g., bacteria) that aid in the digestion of the seed coat or micropyle plug, thereby
facilitating higher rates of imbibition, and thus, higher/quicker field germination rates.
Since micropropagation is performed in sterile conditions, it seems that an additional
step (i.e., seed scarification) should be considered to achieve a high germination rate [25].
When a viable seed is not able to germinate under appropriate conditions, the seed is
considered to be dormant [26]. While cannabis seed is generally not thought to exhibit
dormancy, it would appear that under these unusual circumstances, it demonstrates some
physical dormancy. Following water uptake by the quiescent, dry, mature seed, germi-
nation occurs once the embryo can prevail over the constraints imposed by the testa and
associated tissues [27]. As shown in Figure 4, the main constraints exerted by the cover-
ing seed structures include (i) the mechanical prevention of radicle protrusion, (ii) water
uptake interference, (iii) interference with gas exchange, especially carbon dioxide and
oxygen (iv) light filtration, and (v) inhibitor leakage restraint from the embryo [26–30].
The removal of the seed coat had an important role in breaking seed dormancy, which
ultimately resulted in higher germination speed and frequency. Our results showed that
seed scarification by removing the seed tips significantly increased the speed and frequency
of seed germination. In line with our results, Pérez-Jiménez et al. [31] reported that seed
scarification (i.e., removal of the seed coat) significantly increased the in vitro seed germi-
nation of Prunus persica L. Batsch. For the first time, we have demonstrated this method
with respect to the micropropagation of cannabis.
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4. Materials and Methods
4.1. Sterilization Procedure

Industrial hemp seed (Cannabis sativa cv. “Finola”; CSGA No.1 Certified seed, Lot #:
1908-18637-17-KKF-01) was employed in the first phase of this study. Different sterilants
(sodium hypochlorite and hydrogen peroxide) at various immersion times (Table 1) were
used for controlling contamination. The disinfection experiment was performed based on
a completely randomized design with a factorial arrangement with 3 replications, each
replication containing 5 seeds. For in vitro seed germination, the treated seeds were cul-
tured in a previously optimized medium [5]. All media had 0.6% agar (Thermo-Fisher
Scientific, Waltham, MA, USA) and the pH of the media was adjusted to 5.8 before au-
toclaving for 20 min at 120 ◦C. Thirty mL of media were poured into a Magenta GA7
box (Fisher Scientific, Hampton, NJ, USA). All culture boxes were placed in the growth
chamber at 25 ± 2 ◦C under 16-h Photoperiod with 40 ± 5 µmol m−2 s−1 light intensity.
Light was provided by multi-spectrum LEDs emitting only photosynthetically active ra-
diation (400–700 nm). The obtained data was then used for modeling and optimizing the
sterilization process using machine learning methods.

4.2. Modeling Procedure

In the current study, GRNN was used to develop a predictive model for contamination
rate (Figure 5). To construct the model, sodium hypochlorite, hydrogen peroxide, and
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immersion time were considered as inputs, while the contamination rate was considered
as the output (Figure 5).
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Figure 5. A schematic representation of generalized regression neural network (GRNN) used in
this study.

Different performance criteria including Root mean square error (RMSE), mean bias
error (MBE), and the coefficient of determination (R2) were used to assess the efficiency of
the developed predictive model.

4.3. Optimization Procedure and Validation Experiment

After data modeling, the developed GRNN model was linked to a GA (Figure 6) to find
the optimal level of sterilants and immersion time for minimizing the contamination rate.
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Figure 6. A schematic representation of genetic algorithm (GA).

In this study, initial population, generation number, mutation rate, mutation func-
tion, selection function, cross-over fraction, and cross-over function were, respectively,
considered as 200, 1000, 0.05, uniform, Roulette Wheel, 0.6, and Two-point crossover.

To assess the performance of the developed model, the predicted-optimized result of
GRNN-GA was experimentally evaluated with 3 replications, each replication containing
4 seeds.

4.4. Scarification Procedure

To assess the effect of seed scarification, the micropyle and its surrounding tissue
were removed by scalpel, without injury to the embryo (Figure 7). This experiment was
performed based on a completely randomized design with two treatments (scarified seeds
and intact seeds) with three replications. Each replication contained four seeds.
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Figure 7. A schematic representation of the scarification methodology for in vitro cannabis seed germination.

To assess the efficiency of the developed protocol, 10 drug-type genotypes of cannabis
(i.e., Bubba Island Kush, Glueberry OG, Critical Orange Punch, Frisian Dew, Banana Blaze,
Blueberry, Durban Poison, Skunk #1, Passion #1, and Strawberry Cough) were employed,
and an in vitro seed germination rate on these genotypes was studied.

5. Conclusions

The present study was performed to establish an efficient in vitro seed germination
protocol for Cannabis sativa. This was accomplished by optimizing an in vitro sterilization
protocol for cannabis seeds using GRNN-GA, and to assess the effect of seed scarification
on the speed and frequency of in vitro germination. The GRNN-GA model was able to
precisely predict and optimize the disinfection process, but germination was still slow
and sporadic. The result of the scarification experiment showed that seed scarification
resulted in the reduction of in vitro germination time, while enhancing germination rate.
Although we tested our protocol on different cannabis genotypes, future studies can
evaluate the efficiency of the developed method on additional genotypes and further
study the underlying mechanisms involved in seed dormancy and scarification in cannabis.
Furthermore, we also suggest other methods, such as using sulfuric acid to evaluate
scarification for in vitro cannabis seed germination; this development would improve
the efficiency of the system. Due to the recalcitrant nature of Cannabis to in vitro culture,
in addition to the much-needed refinement of in vitro seed disinfection techniques, the
research presented offers opportunity to prepare micropropagated specimens with high
efficiency. Our protocols can be implemented to reduce contamination and increase the
germination rate of large-scale pheno-hunting and breeding programs for this economically
important crop.
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