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Abstract: Plant parasitic nematodes are a major problem for growers worldwide, causing severe crop
losses. Several conventional strategies, such as chemical nematicides and biofumigation, have been
employed in the past to manage their infection in plants and spread in soils. However, the search for
the most sustainable and environmentally safe practices is still ongoing. This review summarises
information on plant parasitic nematodes, their distribution, and their interaction with their host
plants, along with various approaches to manage their infestations. It also focuses on the application
of microbial and fermentation-based bionematicides that have not only been successful in controlling
nematode infection but have also led to plant growth promotion and proven to be environmentally
safe. Studies with new information on the relative abundance of plant parasitic nematodes in two
agricultural sites in the Republic of Ireland are also reported. This review, with the information it
provides, will help to generate an up-to-date knowledge base on plant parasitic nematodes and their
management practices.

Keywords: plant parasitic nematodes; microbial; fermentation; bionematicides

1. Introduction

There are nearly 4100 species of plant parasitic nematodes (PPN) reported to date that
are considered to be a serious constraint for global food security [1]. Considering economic
development and food preferences, the World Bank in 2008 estimated a 35% increase in
world population by 2050, which will correspond to a 75% increase in food demand [2].
Therefore, it has become an environmental concern for relevant stakeholders worldwide to
promote sustainable methods to enhance the efficiency of resource use [3].

The objectives of this review are to (1) report on the global PPN distribution along
with studies performed in two Irish agricultural sites, (2) summarise information on host-
parasite interactions and (3) discuss current PPN management strategies with an emphasis
on the benefits of microbial and fermentation based products.

2. Plant Parasitic Nematode Species and Their Distribution

In the UK alone, it is estimated that the cyst nematodes Globodera rostochiensis and
Globodera pallida are responsible for approximately 9% of the total UK potato production
losses [4]. Globodera pallida is the predominant potato cyst nematode (PCN) that is found
in more than 90% of the nematode-infested fields of England and Wales, with an overall
estimated cost of £26 million per year in crop yield [5] and an additional £10 million per
year in nematicides [6]. In tropical and sub-tropical climates, 14.6% crop losses primarily
occur due to nematodes, whereas these are estimated to be 8.8% in developed nations [1].
Fleming et al. [7] reported the prevalence and diversity of PPN in the cereals and grasslands
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of Northern Ireland; Meloidogyne spp., Heterodera spp. and Pratylenchus spp. were found
above the threshold levels for economic damage. This increase in nematode populations
was reported due to poor cropping practices and climate change [7]. Surveys conducted
in 35 states of the USA reported a total of 25% crop loss due to PPN [8]. Loss in crop
productivity due to soybean cyst nematodes have been calculated to be around $US1.5
billion each year in the USA alone [9]. Under favourable environmental conditions, cereal
cyst nematodes (CCN) can destroy 90% of crop fields [1]. Potato cyst nematodes cause
a 9% loss of total potato production worldwide [1]. These nematodes, originating from
South America, are currently major quarantine pathogens and have widely spread to all
the potato-growing regions of the world [10].

Nose and Shiraishi [11] have reported a total loss of 2 × 106 m3 of timber in Japan due
to Bursaphelenchus xylophilus which has the potential to infect and kill all the pine trees in
an infested area under favourable conditions. The Department of Agriculture, Food and
the Marine (DAFM) in Ireland reported B. xylophilus, G. pallida, G. rostochiensis, Meloidogyne
chitwoodi and Meloidogyne fallax as European Union quarantine pests [12].

3. Irish Case Studies

Previously there were reports on the occurrence of predatory nematodes [13] and
insect parasitic nematodes [14] across Ireland, but to the best of our knowledge there are no
reports on the occurrence/distribution of PPN in the Republic of Ireland. We have made
an effort to report on the abundance of PPN in two agricultural sites in Ireland (Figure 1a).
The findings in this review could predict the PPN species that could emerge as a potential
threat to Irish crops in the future. Hence, this information would help relevant stakeholders
and policy-makers to formulate policies on preventing the spread of these devastating
organisms in the future.

Case study 1. Occurrence of PPN at Teagasc, Johnstown

The presence of PPN was recorded through field trials performed at Teagasc, John-
stown Castle, Wexford, Ireland (Figure 1b). This study was performed as a part of the
ReNu2Farm project (www.nweurope.eu/renu2farm, accessed on 6 January 2021), which
aims to increase the application of recycling-derived fertilisers (RDFs) on agricultural fields
in North-West Europe (NWE) (unpublished). The novel fertilisers were environmentally
risk-assessed using nematodes as bioindicators, and this study recorded the PPN reported
here. The sampling took place in July 2019 while the temperature was in the range of
17–24 ◦C.
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Total terrestrial nematode DNA was extracted from the soil subsamples using the Qia-
gen DNeasy PowerSoil Pro kit, as per the manufacturer’s instructions. The extracted DNA
from soil samples was sent for sequencing (Novogene Ltd., Singapore) for amplification
and identification. The data was obtained through amplicon sequencing on an Illumina
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paired-end platform of the nematode 18S V4 region using suitable primers from Bhadury
et al. [15]. The cleaned sequences were clustered into molecular operational taxonomic
units (MOTUs) based on a sequence similarity threshold of 97%. MOTUs are sequence clus-
ters used as units of taxonomic diversity. The SILVA (release 138 SSURef_NR99) database
was used for further taxonomic assignation of clustered MOTUs.

The sequences of the 18S rRNA gene have been determined for various nematode
taxa including PPN, which were found in the soil during the ecological risk assessment.
This gene is universal and comparable in all nematode species and is frequently used
to deduce deep phylogenetic relationships [16–18]. It has a relatively constant length,
meaning genes from disparate taxa can be aligned quite easily. The SSU gene is present in
50–100 copies per cell and is thus easier to isolate or amplify by PCR than single copy genes.
It contains a series of conserved and less-conserved regions. The less conserved regions
can be used to identify nematodes to genus, family or species, while universal primers
can be bioinformatically designed to this end in the conserved areas. There is a wealth of
SSU genetic information held in online databases, as the gene has been used in attempts to
establish a phylogeny for the Nematoda [17], and it can be used to aid the classification of
nematodes with uncertain or suspect phylogeny [19].

The obtained data expressed as MOTUs, was used to calculate the relative abundance
of identified nematode species present in the samples. The average relative abundance rep-
resenting PPN taxa is summarised in Table 1. Relative abundance is the relative percentage
quantity of the study organism in relation to the total number of organisms in a sample.
The overall number of identified nematode species were 45, out of which 16 belong to PPN.

Table 1. The mean relative abundance of PPN taxa found in the control group (n = 5) of site 1, including their standard
deviations in parenthesis.

Nematode Taxa Feeding Type Mean Relative
Abundance (±SD)

Family Genus

Dolichodoridae Merlinius Ectoparasites 6.90 ± (0.47)
Tylenchidae Aglenchus Epidermal/root hair feeders 6.05 ± (1.34)
Tylenchidae Neopsilenchus Epidermal/root hair feeders 2.07 ± (0.51)

Longidoridae Xiphinema Ectoparasites 1.39 ± (0.450)
Hoplolaimidae Helicotylenchus Semi-endoparasites 1.01 ± (0.31)

Paratylenchidae Pratylenchus Migratory endoparasites 0.98 ± (0.52)
Longidoridae Longidorus Ectoparasites 0.62 ± (0.24)

Meloidogynidae Meloidogyne Sedentary parasites 0.33 ± (0.03)
Tylenchidae Boleodorus Epidermal/root hair feeders 0.12 ± (0.01)

Meloidogynidae Meloidogyne Sedentary parasites 0.11 ± (0.01)
Tylenchidae Basiria Epidermal/root hair feeders 0.021 ± (0.00)

Paratylenchidae Pratylenchus Migratory endoparasites 0.015 ± (0.00)
Tylenchidae Tylenchus Epidermal/root hair feeders 0.008 ± (0.00)
Tylenchidae Lelenchus Epidermal/root hair feeders 0.002 ± (0.00)

Case study 2. Occurrence of PPN taxa at Teagasc, Oakpark

Another case study was performed with soil samples collected from the rhizosphere
of an oilseed rape (OSR, Brassica napus) crop, in Teagasc Oakpark, County Carlow, Republic
of Ireland (Figure 2). This study was performed while analysing the suitability of nematode
communities as bioindicators of OSR nickel bioremediation, by utilising a morphological
assessment [20]. The sampling took place in August 2014 with an average temperature
range of 10–18 ◦C. The soil was sampled from the environment, homogenised and divided
into four parts as replications. Each replication consisted of 400 cm3 of soil. The nematodes
were extracted from the soil using the decanting and sieving method. The nematodes were
then suspended in Ludox, a silica colloidal solution and collected on a 40 µm sieve [21].
The extracted nematodes were preserved in DESS (dimethyl sulphoxide, disodium EDTA)
and saturated with NaCl [22]. The preserved nematodes were mounted onto slides, and
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50 nematodes per replication were identified under a high-power light microscope using
the keys of Powers et al. [23]. The feeding types were assigned according to Yeates
et al. [24], and by using NINJA, the nematode monitoring programme [25]. The mean
relative abundance, a measure of species abundance (the number of individuals) relative
to the abundance of other species, which is measured on a log scale, was also assigned
(Table 2).
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Table 2. The mean relative abundance of PPN found in the study plot (n = 4) of site 2, including their standard deviations in
parenthesis.

Nematode Taxa Feeding Type Mean Relative Abundance
(±SD)

Family Genus

Telotylenchidae Amplimerlinius Herbivores–ectoparasites 1.00 ± (0.00)
Telotylenchidae Bitylenchus Herbivores–ectoparasites 0.50 ± (0.70)

Tylenchidae Cephalenchus Herbivores–epidermal/root hair feeders 1.00 ± (1.00)
Dolichodoridae Dolichodorus Herbivores–ectoparasites 1.00 ± (0.00)
Dolichodoridae Dolichorhynchus Herbivores–ectoparasites 1.00 ± (0.00)
Hoplolaimidae Helicotylenchus Herbivores–semi-endoparasites 1.25 ± (0.22)

Tylenchidae Malenchus Herbivores–epidermal/root hair feeders 1.33 ± (0.29)
Heteroderidae Meloidogyne Herbivores–sedentary parasites 1.00 ± (0.00)

Ironidae Ironus Predators 1.00 ± (0.00)
Pratylenchidae Pratylenchoides Herbivores–semi-endoparasites 1.00 ± (0.00)
Pratylenchidae Pratylenchus Herbivores–migratory endoparasites 9.40 ± (1.32)
Hoplolaimidae Rotylenchus Herbivores–semi-endoparasites 2.00 ± (0.26)
Trichodoridae Trichodorus Herbivores–ectoparasites 1.00 ± (0.00)

Belonolaimidae Tylenchorhynchus Herbivores–ectoparasites 4.00 ± (0.00)
Tylenchidae Tylenchus Herbivores–epidermal/root hair feeders 7.33 ± (1.11)

Longidoridae Xiphinema Herbivores–ectoparasites 1.33 ± (0.29)

4. Nematode Behaviour, Feeding and Host–Parasite Interactions

Plant parasitic nematodes demonstrate a wide variety of interactions with their host.
They can be categorized into ecto or endoparasites depending on the plant tissues they feed
on. Some PPN are migratory as they easily move from soil to plant tissues, whereas others
are sedentary with an adult female being completely immobile and stuck to the roots of the
plant. The sedentary endoparasites feed with the help of specialised cells present around
the female head. Most species of PPN have a needle-like protrusible oral structure called
a stylet, which helps to puncture the host plant tissues. They release specific enzymes
into the tissues that help in partially digesting the plant cells for easy ingestion into the
nematode gut [26]. The migratory adult female usually deposits its eggs in soil or plants,
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based on its position. On the other hand, the most economically important PPN, such as
root-knot (Meloidogyne spp.), cyst (Globodera spp., Heterodera spp.), reniform (Rotylenchulus
spp.), and citrus (Tylenchulus semipenetrans) species are biotrophic, sedentary in nature [27].
They lay a large cluster of eggs either inside their bodies or attached as masses to their body.
Within the egg after embryogenesis, first stage juveniles (J1) moult to form the second stage
infective juveniles (J2) that hatch from the eggs to infect the root tissues. The expanded
root parts appear as galls, containing root-knot nematode females, or as pathological nodes
on roots, induced by traumatic wounds done by the nematode stylets or spears puncturing
the root surface.

The genus Meloidogyne consists of nearly 98 species with a wide host range and can
parasitize many vascular plants [28]. Second stage juveniles adopt both physical and
enzymatic approaches to penetrate the host. With the help of a stylet, they damage the
plant cell wall and then release cellulolytic and pectolytic enzymes to completely digest it.
Conversely, the cyst nematodes display an upward intercellular movement within the root
cells and try to reach the zone of differentiation, via the root tip, the apical meristems and
the vascular cylinder. The giant cells, generated due to repeated nuclear divisions, in this
region act as permanent feeding sites for the sedentary J2, where they undergo third and
fourth stage moults to form reproductive male and female adults [29].

De Waele, D. and Elsen [30] have reported the difficulty in mitigating the damage
caused by Meloidogyne species due to their short life cycle and broad host range. Due
to short life cycles, these organisms spread faster and infect nearby crop plants within
a short time. These nematode species are well adapted to flood conditions, with the
potential to attack both upland and lowland rice [31] and can cause up to 85% crop
loss [32]. Meloidogyne incognita have a unique set of putative genes that reduce plant
immunity, detoxification and defence mechanisms and that help them to survive inside the
plant host [33]. The plant parasitic lifestyle of root-knot nematodes is mainly due to the
abundance of plant-cell-wall-degrading genes in their genomes [34]. Meloidogyne species,
being obligate biotrophs, have to continuously suppress host defence mechanisms for
the survival of their feeding structures. Meloidogyne incognita have a defence mechanism
similar to that of plant pathogenic bacteria, in which they secrete calreticulin, which
helps in sequestering free calcium ions and therefore curbs calcium ion influx [35]. Root
knot nematodes also interact with other pathogens like Fusarium wilt, Rhizoctonia solani
and Thielaviopsis basicola, leading to complex plant diseases [36]. Meloidogyne species
have a gene that mimics the rhizobial NodL gene, which induces nodular formation in
legumes [37]. Though the nematode exudates potentially alter nodulation signalling in
legumes, some mutant legumes that do not support normal nodulation are tolerant to
nematode infections [38].

Cyst nematodes are obligate biotrophs, and the most devastating species among
them are: soybean cyst nematodes (SCN; H. glycines), PCN (G. pallida and G. rostochiensis)
and CCN (including Heterodera avenae and Heterodera filipjevi). It is nearly impossible to
eradicate potato cyst nematodes due to their prolonged survival of up to 20 years in the soil,
even in the absence of a host, and their tolerance to extremely low temperatures [39]. The
dormant second-stage juveniles (J2) hatch from the eggs in the presence of a host-derived
chemical that is abundant in root diffusates [40]. The released second-stage juveniles
invade the host intercellularly and reach the inner cortex. This juvenile has a peculiar
behaviour; it keeps inserting its stylet into various cells until it finds a cell that does not
collapse its protoplast and does not cover the stylet with a layer of callose- like material.
Finally, it finds a suitable cell that becomes the initial syncytial cell (ISC). Subsequently,
the cell walls of the ISC surrounding cells are dissolved and protoplasts fuse to form the
large multinucleate feeding cell called the syncytium [29]. All the cells surrounding the
ISC cells contribute to the formation of the syncytium, where DNA is synthesised and
metabolism is enhanced to provide a nutrient-rich medium to the infecting nematode [41].
The nematode remains attached to the feeding site for several weeks, wherein it undergoes
two further moults to form a complete adult [42]. The male adults remain vermiform and
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leave the root cells, whereas the female adults grow, get fertilised and finally die to form a
tanned body wall that converts into a cyst, which bears the next generation of eggs [43].
Besides proteins that modify the host cell wall, many nematodes are reported to have
effector molecules that suppress the host defensive mechanisms [44] and modify the host
nucleus [43]. Significant efforts have been made to understand syncytium formation in
the biology of cyst nematodes. These nematodes initiate the production of a peptide that
has complete similarity with the plant peptide CLAVATA3 (CLE3). The stem cells in shoot
and floral meristems of Arabidopsis secrete CLV3, which is the founding member of the
CLE protein family, which eventually restricts the size of the stem cell population [45].
Therefore, indirect nematode manipulation of the CLAVATA signalling pathway induces
the feeding site [45]. In addition, an effector that modulates the auxin flow pattern into
the feeding structures has been identified [46]. Moreover, various genes expressed within
the syncytia have been studied through microarray analysis to understand the basis of the
feeding site formation [47].

Many taxa of nematodes produce specific secretions that contain effectors and cell-wall
degrading enzymes, such as cellulases [48], pectate lyases [49] and xylanases [48]; these
degrade the cell walls of infected cells. The effectors also have the potential to suppress
the host immune system by altering its defence mechanisms. The species Ditylenchus
dipsaci cause malformations in the infected plant tissues by withdrawing the cell contents
through the nematode stylet [50]. This nematode has the unique property of resistance to
dry conditions and freeze tolerance, due to the outer lipid layer of the fourth generation
juvenile, which prevents water loss from its body [51]. The reniform nematodes have a
unique way of interacting with their host plant. Initially, the adult female inserts one-third
of its anterior body into the host root and establishes a feeding site to form a syncytium.
After continuous feeding for about 2–3 days, the posterior part of the body outside the
roots starts swelling near the vulval region to attain a kidney shape. Subsequently, within
7–9 days of thriving in environmentally favourable conditions, 40–100 eggs are laid within
the gelatinous matrix produced by the uterine glands [52]. Under favourable conditions,
PPN also interacts with other soil-borne pathogens like bacteria, fungi and viruses to
suppress plants defence mechanisms or to cause a breakdown of plant resistance against
infection [43].

5. Plant Responses to Nematode Infection

Based on plant cultivar and species, different plants react differently to nematode
infections. Temperature, soil moisture content, nematode type, soil characteristics and
crop rotations also affect the damage levels. Typical and most peculiar plant symptoms
range from premature wilting, chlorosis, nutrient deficiency leading to stunted growth,
fragile roots and swollen root areas due to gall formation. The Pratylenchus species cause
lesions in roots leading to cell necrosis, browning and death, and root rotting due to
secondary attachment by fungi and bacteria that thrive in soil. Infected plant roots undergo
discolouration, and become stubby and stunted, making the plant susceptible to water
stress conditions [53]. Some Radopholus spp. manifest as toppling disease in infected
banana host plants [54]. Reduction in crop yield is often monitored as a sign of nematode
infestation, both in terms of quality and quantity [55]. The threshold level for nematode
infestation could be one nematode egg per 100 cm3 of soil [56]. The rice-stem nematodes,
Ditylenchus angustus, feed ecoparasitically on the leaves and stems of rice and cause ufra
disease in rice plants [54]. Ditylenchus dipsaci primarily infects onion and garlic, leading
to the discoloration of the infected bulbs and the stunted growth of the host plants [50].
Ditylenchus dipsaci is a migratory endoparasite, whereas Ditylenchus angustus is a migratory
ectoparasite. The host plant resistance (HPR) mode can be easily incorporated in the case
of endoparasites, as they spend more than half of their life-cycle within the host. However,
ectoparasitic nematodes cannot be strongly selected to develop HPR, due to their reduced
specific feeding requirements. Different types of PPN and their mode of action are listed in
Table 3.
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Table 3. Classification of PPN groups according to genus, feeding type, physical manifestations and mode of action.

Nematode Groups Genus Feeding Type Physical Manifestations Mode of Action

Root-Knot Meloidogyne spp. Obligate Forms galls (root-knots) on infected roots Feeds on giant cells of the root and suppresses the host
defence mechanisms

Cyst Heterodera and Globodera
spp. Obligate biotrophs

Forms cysts (enclosing eggs) due to a large
multinucleate feeding structure called the

syncytium

Dissolves plant cell walls and fuses protoplasts
Effectors target the host cell nucleus and suppress

plant defence mechanisms.

Root lesion Pratylenchus spp.
Polyphagous, migratory,

intercellular root
endoparasites

Formation of lesions, necrotic areas, browning and
plant cell death, often followed by root rotting.

Secretions from pharyngeal glands have effectors that
degrade plant cell walls.

Burrowing Radopholus similis Migratory endoparasite Weakens the root system, forms dark lesions, root
rotting and causes toppling disease

The effectors contain plant-cell-wall-degrading
enzymes like cellulases, pectate lyases and xylanases.

Stem and bulb Ditylenchus dipsaci Migratory endoparasite Causes stunted growth, twisted stems and the
discoloration of bulbs

Feeds on the parenchymatous cells of the cortex and
produces cell-wall-softening enzymes

and effectors such as
expansins

Pine wilt Bursaphelencus xylophilus Migratory endoparasite Completely infects and kills all the pine trees
growing in an area

Parasitizes plants with the help of cellulose-degrading
proteins like glycoside hydrolase

It is carried with the help of insect vector, Monochamus
beetles.

Reniform Rotylenchulus reniformis Sedentary
Semi-endoparasite

Leads to moisture and nutrient deficiency
in infected host along with root necrosis, chlorosis

and stunted growth

Feeds on pericycle and endodermal root cells by
inserting 1/3 of their anterior body

Cell walls break to form a two-cell-deep syncytium.
Large plant parasitic

species Xiphinema index Ectoparasite Infection retards root extension, causes swelling
and gall formation

Have feeding mechanisms similar to root-knot
nematodes

False-root knot Nacobbus aberrans Migratory juveniles
Sedentary adult female

Causes cavities and lesions on root tissues; root
galls are formed around feeding sites

Induces the partial dissolution the of cell wall and the
fusion of

protoplasts to form a syncytium

White tip disease variety Aphelenchoides besseyi Ecto/endo parasite
Fungivorous

Infected plants have stunted growth, and other
symptoms include chlorotic white tips on leaves,

leaf necrosis, reduction in rice grain size and
number

Does not induce re-differentiation of plant cells
Local cell damage, tissue disintegration and browning

in epidermal cells and palisade parenchyma

(Modified from Jones et al. [43]).
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6. Current Management Strategies and Their Limitations

Simply identifying the nematodes and applying the appropriate nematicide is not a
permanent/long-lasting solution for nematode management. Many chemical nematicides
are expensive; carcinogenic; and toxic to humans, animals and the environment. They are
also known to contaminate groundwater and deteriorate soil quality eventually. Moreover,
unfavourable climatic conditions can make the applied nematicide ineffective against
nematodes [43]. Therefore, many of the chemical nematicides have already been banned
or highly restricted worldwide [57]. A few chemical nematicides have been gaining a lot
of importance in recent times due to their reduced toxicity on non-target soil organisms.
Fluensulphone (heterocyclic fluoroalkenyl sulphone nematicide) is one such product that
is reported to lack many of the drawbacks evident in other chemical controls [58]. Feist
et al. [59] reported on the inhibitory effects of fluensulphone on G. pallida hatching and
compared its efficacy with that of aldicarb, fluropyram and abamectin. Fluensulphone
was also found effective against M. javanica, M. incognita and M. arenaria [58]. However,
the long-term effects of this chemical have not been studied yet, and further research is
essential to validate its non-toxic effects on the environment and human health.

Various conventional management practices include the biofumigation of affected crop
fields, the use of clean plant material and agricultural equipment, heat treatment and crop
rotation. The disinfection of seeds and bulbs in hot water or formaldehyde is also practised
by many growers [60]. Multiple management strategies such as organic amendments,
soil solarisation and chemical control have also been adopted to protect tomato plants
against devastating Meloidogyne species [61]. Among these strategies, chemical fumigants
such as Paladin (dimethyl disulfphide or DMDS), Telone II, Vapam (metam sodium) and
chloropicrin were found successful to a certain extent but were very difficult to apply,
had long re-entry periods, were very expensive and needed buffer zones [62]. Vegetable
growers in Georgia, USA, found the application of chemical fumigants, combined with
non-fumigant nematicides such as Vydate, Nimitz, Velum prime, Mocap, Movento, Salibro
and Counter 20 G, to be very effective against Meloidogyne species [62]. Douda et al. [63]
recently reported on the application of ethanedinitrile (EDN) as a promising fumigant
controlling the spread and infection of Meloidogyne hapla and improving carrot yield in
Litol, Czech Republic. The efficacy of the fumigant was found to be affected by various
environmental conditions, such as temperature, humidity and soil properties. Moreover,
due to the acute toxicity of EDN, untrained farmers were not allowed to fumigate the soils
on their own [63]. It is expected that health and environmental issues would restrict the
use of these chemicals in the long term.

Youssef and Eissa [64] have studied the role of biofertilisers in the management
of PPN. These biofertilisers, in comparison to chemical fertilisers, have demonstrated
a better effect on the control of RKN, as well as improving the plant growth and yield.
Velasco-Azorsa et al. [65] recently characterised the nematicidal and phytotoxic activities of
seven plant extracts against Nacobbus aberrans, the false root-knot nematode. The extracts
from Adenophyllum aurantium, Alloispermum integrifolium and Tournefortia densiflor were
found to have the best nematicidal potential [65]. Mokrini et al. [3] listed the application
of various biofertilisers, based on plant extracts and botanical oils, which were found
effective against PPN and against Meloidogyne species in particular. The application of
biofertilisers to plants, soil or seeds can result in the nutrients becoming available to the
plants and can therefore enhance plant growth and productivity [66]. Limitations on
the use of biofertilisers can be environmental conditions like soil temperature, pH and
moisture, as the microbes associated with biofertilisers are not be effective unless these
factors are favourable [64]. Natural compounds, like neem extracts, have been widely
used in the past due to their nematicidal properties against nematodes [67]. Neem is a
natural herb, known to have many antibiotic characteristics due to its naturally occurring
compounds, like azadirachtin, an antibacterial compound proven to control pests [68].
Secondly, the decomposition of neem leaves produces ammonia gas that acts as a fumigant
to destroy microbes naturally [67]. Amendments obtained from the decomposition of
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natural products such as Brassica species [6], castor oil plant (Ricinus communis) and velvet
bean (Mucuna spp.) have also proven to be very effective against nematode growth [69,70].
A study on Brassica species has shown 85–90% nematode mortality by incorporating
Brassica leaf extracts into soil infested with potato cyst nematodes [6]. Brassica species
contain glucosinolates that, on hydrolysis, produce biologically active compounds like
thiocyanates and isothiocyanates that are capable of controlling pests to a significant extent.
Moreover, these Brassica leaves on decomposition produce toxic volatile sulphur-containing
compounds such as dimethyl disulphide and carbon sulphide that act as biofumigants to
completely clean up soils [71]. However, most of the time, Brassicaceae plants serve as
hosts for many devastating species of nematodes, such as Meloidogyne spp. [69] and hence,
increase the nematode numbers instead of controlling them. Therefore, it is essential to
study the host range of the target nematode(s) before selecting a plant for biofumigation.
Although organic amendments are very successful at controlling nematode growth, a
major limitation is that they are time-consuming to use with no immediate effects after
application. The other major limitation of using organic amendments is their potential
to stimulate a broad range of other organisms, for example nematode-trapping fungi or
other potential predators or parasites of PPN [69,72,73]. In a relevant case study performed
in China, an increase in omnivore and predator nematode levels were reported within
1 month of compost application to a corn crop but they disappeared after 2 months [74]. A
study in Florida [70] illustrated the impact of applying organic amendments, such as green
manure residues, sunn hemp amendment, yard waste compost, previous crop residues
and composted municipal soil waste, and has reported the difficulty in maintaining one
beneficial group of organisms in a particular soil. Sometimes, organic amendments on
decomposition release volatile/non-volatile compounds that may hamper plant growth. In
the case of ammonia-releasing organic amendments, soil microorganisms readily oxidise
ammonia into nitrites and nitrates through the process of nitrification and further cause
a decrease in soil pH, making the soil ineffective for plant growth [68]. In such cases,
organic nitrification inhibitors may be needed to improve the efficiency of such organic
amendments. Thoden et al. [75] highlighted the application of various organic amendments
that have proven successful in mitigating the effects of PPN in various crop plants. The
amendments, such as slurries and their organic acids, had the potential to accumulate/form
high concentrations of nematicidal compounds and were able to create anaerobic conditions
to directly suppress PPN population. Korthals et al. [76] reported the application of
eight soil health treatments (anaerobic soil disinfestation, biofumigation, chitin, compost,
grass-clover, marigold, a physical method and a combination of marigold, compost and
chitin) to manage the root-lesion nematode Pratylenchus penetrans. All of them proved
to be better alternatives to chemical treatments due to their beneficial influence on the
physical and chemical properties of soil. The overall positive contribution of the organic
amendments is due to their role in increasing the population of free-living nematodes,
entomopathogenic nematodes and bacteria, which subsequently play an important role in
stimulating plant growth, nutrient supply and mineralisation, thus making plants resistant
to PPN infections [75].

In the past few years, according to the literature, it is evident that the use of biological-
based products is safer and more sustainable compared to chemical treatments or meth-
ods [3,57,77,78]. In the last 15 years, there has been a thorough investigation of various
microbial-based products. Dong [60] has reviewed a few commercial microbial products
that were used in the early 21st century. Some of those products were abamectin (Strep-
tomyces avermitilis-based), a Paecilomyces lilacinusa-based formulation (Biocon, Paecil and
Miexianing), BioNem (Bacillus firmus-based), Deny (Burkholderia cepacian-based), DiTera
(Myrothecium-based), Nemout (nematophagous-fungi-based), Royal 350 (Arthrobotrys ir-
regularisa-based) and Xianchongbike (Pochonia chlamydosporium-based). All of them were
proven successful in inhibiting, repelling, parasitising and killing PPN but had a com-
mon limitation of inconsistent field performance. Therefore, a thorough understanding of
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host–parasite interactions and long-term studies in the presence of those products would
contribute to successfully and sustainably managing PPN infestations.

7. Fermentation and Microbial-Based Products

Fermentation-based products have gained a lot of interest due to their sustainable
and cost-effective production methods [79]. For the large-scale production of fungi or
any other biological materials, a combination of solid and liquid fermentation could
be an effective approach [80]. Brand et al. [81]; Twamley et al. [82]; and Wu et al. [83]
reported the effectiveness of fermentation extracts against PPN. Recent applications of
fermentation extracts of Myrothecium verrucaria proved highly effective against M. incognita
and H. glycines by inhibiting the egg-hatching process, and demonstrated its lethal effects
on J2 juveniles of B. xylophilus, M. incognita and H. glycines [83]. Similar observations
were recorded by Hallmann and Sikora [84] using filtrates containing strains of Fusarium
oxysporum, which produced toxins that were effective against M. incognita. However, the
organic compounds in the fermentation medium retarded plant growth.

Beneficial soil-borne organisms, so-called biological control agents (BCA), are known
to act as antagonists against PPN [73]. Biological control agents of bacterial or fungal
origin are known to control plant diseases and also improve plant productivity and im-
munity against various plant pathogens [85]. Zhang and Yang [80] have reported several
commercial products, based on nematophagous fungi, that were capable of plant growth
promotion and the reduction of damage caused by nematodes. Nematophagous fungi are
those types of fungi that are capable of parasitising, capturing and paralysing nematodes at
various growth stages of their life cycle. These nematophagous fungi have gained a lot of
importance due to their specificity in targeting nematodes. They have various mechanisms
to control nematodes; some of them use traps to seize the free-living nematodes; others use
spores to parasitise nematodes, and some of them produce toxins to paralyse nematodes
and eventually kill them, while some of them infect the eggs and cyst stages of nematodes
using hyphal tips [80].

Bacterial and fungal endophytes such as Pseudomonas aeruginosa, Pseudomonas fluo-
rescens, Rhizobium etli, Pantoea agglomerans and Brevundimonas vesicularis have also been
reported to be suitable for the biological control of PPN [86]. These endophytes have the
potential to colonise endorhizae at some stage in their life cycle. They not only help in
plant growth promotion but are also reported to have antagonistic activity towards M.
incognita and G. pallida [86]. Toxic metabolites produced by fungal filtrates after fermen-
tation are known to show inhibitory activity towards sedentary nematodes, compared
to their activity towards non-parasitic nematode species [84]. This could be due to the
non-exposure of sedentary nematodes to high levels of toxins from the organic matter,
whereas the non-parasitic nematodes are constantly exposed to them [84].

Table 4 lists some microbial and fermentation-based products that have been investi-
gated and proven to manage PPN infestation in various plants.
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Table 4. Bionematicides based on biological control agents and fermentation processes.

Fermentation Extracts/Microbial Based Products Target Nematode Plants Reference

Fermentation filtrate of Myrothecium verrucaria M. incognita, H. glycines,
B. xylophilus, Hirschmanniella spp. Soybean and tomato [83]

Paecilomyces lilacinus
produced through the solid-state fermentation Meloidogyne spp. Tomato [79]

Bacillus firmus, commercial WP formulation (BioNem)
(*WP:Wettable powder) M. incognita Tomato [61]

Isolate of Bacillus thuringiensis
R. reniformis
M. incognita
P. penetrans

Tomatoes, pepper and strawberry [87]

Abamectin
(a fermentation product from Streptomyces avermitilis), a strain of B. thuringiensis, Nemaless

(containing strains of Serratia marcescens)
M. incognita Faba beans [88]

Abamectin (a fermentation product from Streptomyces avermitilis)
M. incognita, M. javanica, Radopholus

similis,
D. dipsaci

Tomato, banana, garlic, cucumber [89]

Bacillus methylotrophicus strain R2-2 and Lysobacter antibioticus strain 13-6 M. incognita Tomato [56]
Strains of

F. oxysporum M. incognita Lettuce [84]

Trichoderma harzianum and Trichoderma lignorum isolates M. javanica Tomato [90]
DiTera (a fermentation product of the fungus Myrothecium verrucaria) P. penetrans Red raspberry (Rubus idaeus) [91]

ACS5075
(proprietary blend of fermentation and plant extracts with micronutrients, Alltech, Inc.,

Nicholasville, KY USA) and
ACS3048 (a microbial-based product)

M. javanica, M. incognita Tomato [92]
[93]

Compost- Aid (Lactobacillus plantarum, Bacillus subtilis and Enterococcus faecium) Pratylenchus brachyurus and M. javanica Soyabean [94]
Bacillus megaterium (ATCC No. 14581), Pseudomonas fluorescens (ATCC No. 13525), Trichoderma

viride (MTCC No. 167), Paecilomyces lilacinus (PDBC PL55) and Glomus intraradices M. incognita Withania somnifera L. [95]

BioNem (containing lyophilised bacteria spores of Bacillus firmus) Meloidogyne spp. Tomatoes [78]
Micosat (by C.C.S. Aosta, Italy) (constituted by 40% roots hosting arbuscular mycorrhiza

forming fungi of Glomus spp. and a mixture of antagonistic fungi, rhizobacteria and yeasts) M. incognita Tomatoes [85]

Bioact (P. lilacinus and Bacillus firmus) Meloidogyne spp. Tomatoes [96]
Bacillus sphaericus B43 M. incognita Tomatoes [86]
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8. Conclusions

The information in this review attempts to help provide an overall understanding of
various aspects related to plant parasitic nematodes and their management. A thorough
review of various management strategies of these pests demonstrates the limitations,
importance and potential of biological materials in controlling PPN infection rates. To
overcome the limitations, multiple long-term experiments must be performed within a
greenhouse before field application, to ensure the efficacy and consistent performance of the
products. The use of fermentation-based products would be beneficial to the environment
and serve as a more sustainable approach towards pest management. The application of
such fermentation-based products as nematicides could prove very promising and form
an integral part of sustainable agriculture. The results from the two Irish studies are the
first to report the occurrence of PPN in the Republic of Ireland. The most frequently
occurring nematodes found in Teagasc, Oakpark, were the migratory parasite herbivores
Pratylenchus; Tylenchus, the herbivorous epidermal/root hair feeders; and Tylenchorhynchus,
the herbivorous ectoparasite. In Teagasc, Johnstown Castle, the ectoparasites Merlinius
and epidermal/root hair feeders Aglenchus were the most abundant. Helicotylenchus spp.,
Meloidogyne spp. and Pratylenchus spp. were commonly found in both sites. Members of
the genus Pratylenchus are root-lesion nematodes, mostly the endoparasites of Poaceae and
Leguminosae, however with a wide host spectrum including Rosaceae and the herbaceous
and woody plants (black currant, apple trees, strawberries, raspberries, etc.). They also
exist as endoparasites in the roots of Cruciferae (Brassicas) family members. Root lesion
nematodes can easily spread while moving soil through various means, such as soil adhered
to equipment, plant products, vehicles and humans. Sometimes root lesion nematodes
multiply in the roots of mustard or other plants belonging to Brassicas. This could be a
reason for the increased relative abundance of Pratylenchus spp. in the second site where
oilseed rape was grown. Therefore, it is very much essential to check the crops that are
selected for biofumigation. It is evident from the results that a wide range of PPN are
present in Irish soils; hence, there is a need to focus on future studies to prevent their spread
and impact on crop yields. However, the analysis was performed only in two specific sites
and needs to be repeated in other major agricultural areas.

9. Future Studies

Thorough investigations are necessary to analyse the potential of combining the
various available biological and cultural practices, in an effort to reduce economic losses
due to nematode damage.
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