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Abstract: Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are toxic components
of atmospheric particles. These pollutants induce a wide variety of responses in plants, leading to
tolerance or toxicity. Their effects on plants depend on many different environmental conditions, not
only the type and concentration of contaminant, temperature or soil pH, but also on the physiological
or genetic status of the plant. The main detoxification process in plants is the accumulation of
the contaminant in vacuoles or cell walls. PAHs are normally transformed by enzymatic plant
machinery prior to conjugation and immobilization; heavy metals are frequently chelated by some
molecules, with glutathione, phytochelatins and metallothioneins being the main players in heavy
metal detoxification. Besides these detoxification mechanisms, the presence of contaminants leads
to the production of the reactive oxygen species (ROS) and the dynamic of ROS production and
detoxification renders different outcomes in different scenarios, from cellular death to the induction of
stress resistances. ROS responses have been extensively studied; the complexity of the ROS response
and the subsequent cascade of effects on phytohormones and metabolic changes, which depend on
local concentrations in different organelles and on the lifetime of each ROS species, allow the plant to
modulate its responses to different environmental clues. Basic knowledge of plant responses toward
pollutants is key to improving phytoremediation technologies.

Keywords: atmospheric pollutants; polycyclic aromatic hydrocarbons; heavy metals; ROS produc-
tion; phytohormones; P450 monooxygenases; glutathione; plant responses

1. Introduction

Atmospheric pollutants are considered compounds that are not normally present in
air and are present at higher concentrations than usual or that are abnormally present
in certain atmospheric layers [1]. Air pollution’s composition is complex and variable,
depending on time, geographic zone, climate conditions, human activities and many other
factors [2].

Air pollution is mainly formed by a gaseous fraction and by particulate matter [3].
Gases such as mono- and dioxide (CO, CO2), methane (CH4) and volatile organic com-
pounds (VOCs), represent the main carbonaceous compounds of air contamination. Ni-
trogen, mainly in the form of ammonia (NH3), ammonium (NH4

+), dinitrogen tetroxide
(N2O4), nitrogen mono- and dioxide (NO, NO2), sulphur dioxide (SO2), ozone (O3), mer-
curic vapors (Hg), chlorine (Cl2) and fluorides (HF, SiF6, CF4 and F2) are other gases present
in air pollution. Most of these compounds are very reactive, and interactions between them
and with other atmospheric molecules can form other, even more harmful compounds.
Amongst the VOCs, solvents such as benzene, toluene, ethylbenzene, and xylenes (BTEX),
hexane (C6H6) and phenol vapours are the main organic carbon forms found in gaseous
fractions of atmospheric pollution.
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Atmospheric particulate matter (PM) or atmospheric aerosols are mostly constituted
by inorganic ions, such as nitrate, sulphate and ammonium and mineral dust, sea salt and
carbon derivatives, i.e., black carbon. PAHs represent ~1.25% of atmospheric particulate
matter and can be found at concentrations in the range of ng m−3 [4]. Heavy-weight PAHs
[HMW-PAHs] (more than four aromatic rings) are the most abundant PAHs in PM [5].
Heavy metals (HMs) such as arsenic (As), cadmium (Cd), chromium (Cr) and lead (Pb) have
also been found at the same average concentrations as PAHs (~1.37%). Pb and As seem to be
the most abundant HMs found in atmospheric PM [6]. Although trichloroethylene (TCE),
polychlorinated biphenyls (PCBs), BTEX (benzene, toluene, ethylbenzene and xylenes),
dioxins and others are also toxic constituents of atmospheric contamination, HMs and
PAHs are among the most abundant compounds in PM and they constitute the main focus
of this review.

Atmospheric PAHs are produced as the consequence of pyrolysis and the incomplete
combustion in deficient oxygen conditions, not only of solid fuels, waste and plant residues,
but also as a consequence of volcanic eruptions or natural fires [7,8]. Heavy metals are
chemical elements naturally found on Earth. However, human activities have altered their
biogeochemical cycles, allowing their accumulation at concentrations and/or locations
where they exert a deleterious effect on organisms. Nevertheless, some natural processes
can also result in local accumulations of HMs; i.e., high concentrations of As in water
are mainly the result of rock-weathering, volcanic eruptions or microbial activity. The
most significant sources of HM emissions to the atmosphere are smelters (iron, steel and
non-ferrous metallurgy), fossil fuel combustion and mining activities, though, there are
many others, depending on the HM [9].

It is estimated that the impact on health problems related with air pollution will
increase worldwide, reaching 3.1 million premature deaths annually by 2030 (OECD
Environment Outlook to 2030). The impact of PAHs and HMs on human and animal health
has been widely studied. PAHs (especially those of high molecular weight [HMW-PAHs])
act as potent carcinogens; they can affect the immune, reproductive, hematopoietic and
nervous systems [10]. Although some HMs are necessary for the correct functioning of
certain enzymes in humans, excessive amounts of some HMs, such as nickel (Ni), copper
(Cu) and zinc (Zn), are potentially toxic. Others have adverse effects on human health even
at very low concentrations (i.e., Pb and Cr) [11].

Plants are exposed to these toxic compounds not only through their aerial parts but
also in below-ground organs because of the deposition of PM in soils. In fact, the amount of
PAHs in soil is high, not only in many industrial areas, but also in non-industrial soil [12].
In this review we summarize the effects of PAHs and HMs of atmospheric contaminants
on plants and the defensive responses that are triggered in plants in response to them.

2. PAHs and HMs Affect Seed Germination and Plant Growth

PAHs and some of their byproducts, formed during the natural processes of PAH
modification by ageing, biodegradation and weathering, affect the rate of seed germination
and seedling weight [13,14]. For example, some photo-induced PAHs are more toxic than
their parental compounds, probably because they have higher water solubility [13,15]. In
fact, seed germination has often been used as a physiological index test to examine the
toxic effects of a certain contaminant on plants. However, the effects observed depend
not only on the plant species but also on; (i) the PAH type; (ii) PAH local concentrations;
(iii) PAH solubility in water (generally correlated with PAH bioavailability), (iv) organic
matter content and soil texture and (iv) the age of the contamination [16,17]. Therefore, low-
molecular-weight PAHs (LMW-PAHs), which have higher water solubility and bioavail-
ability than HMW-PAHs, are generally more toxic to plants than HMW-PAHs [13]; different
types of soil, of low organic matter and grainy texture, retain less PAHs and therefore
plant germination is improved when compared with compact soils of high organic matter
content [16,18,19] and the phytotoxicity of PAH mixtures is higher at the early stages of
contamination than in aged contaminated soil because of the loss of volatile compounds
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(mainly LMW hydrocarbons) with time and the adsorption of PAHs into organic matter
and colloids in the soil (with the concomitant reduction of bioavailability) [20–22].

As reported in many other organisms, hormesis has been identified in plant responses
toward different stressful agents, among them PAHs and HMs [23]. Hormesis is defined as
“an adaptive response of biphasic dose where it responds to a stress determining factor, in
which sub-doses induce stimulation and high doses induce inhibition” [24]. In plants, the
induction of hormesis leads to responses that optimize many physiological processes (i.e.,
increases in chlorophyll content, alteration of signalling pathways, and others) which, in
turn, enhance seed germination, crop growth and early flowering [25,26]. As many of the
cellular responses toward pollutants converge at some point with responses toward other
compounds, i.e., plant pathogens, hormesis has also been associated with cross-resistance
toward different stresses [26].

However, the presence of PAHs or HMs above certain doses has detrimental effects on
plant germination and growth and biomass yield [27–29]. Toxic amounts of PAHs lead to
shorter roots and lower root weight in seedlings than develop in the absence of the contam-
inant [30,31]. Pollutants cause a mechanical disruption of cellular membranes, diminishing
their capacity to retain water and nutrient uptake and alteration of cell expansion processes
due to disruption of the cell organelle’s metabolism and the alteration of hormone actions
(auxins) [30,31]. Other effects of the presence of contaminants involve a significant reduc-
tion in cell size and mitotic activity [32], and slower expansion of cotyledons following
emergence [33]. Furthermore, PAHs produce an inhibition of the growth and chlorophyll
content of the seedlings. Many of these effects are due to oxidative damage suffered in the
presence of the contaminant [34].

The toxic effects of PAHs depend not only on the physicochemical properties of the
contaminant or intrinsic tolerance of the plant, but also on the capacity of natural micro-
bial populations to degrade PAHs and the capacity of the plant to stimulate indigenous
soil microbes to degrade contaminants [35,36]. The ability of the plant to stimulate the
beneficial capacities of their associated microbiota depends on the composition of the
root exudate, chemical properties of the contaminant, soil properties and environmental
conditions [37,38].

The presence of HMs in soil also has negative consequences for plants and include
overall morphological abnormalities, reductions in dry weight, decrease in germination,
and reduced root and shoot elongation [29]. The observed reduction in germination is a
consequence of oxidative damage causing membrane alterations, alterations of sugar and
protein metabolism, nutrient loss and reduced amounts of total soluble protein levels [39].
The inhibition of many enzymes involved in the digestion and mobilization of food reserves
during germination, such as amylases, proteases and ribonucleases, has been reported as
one of the effects of HM toxicity [39–42]. The toxic effect of HMs on seeds depends on the
particular heavy metal affecting them; in Arabidopsis thaliana seeds, the reported decrease in
seed germination from contamination followed the order of Hg2+ > Cd+ > Pb2+ > Cu2+ [29].
HMs can also be oxidized or become complex entities in soil, sometimes increasing their
toxicity [43].

It has been proposed that HMs exert toxicity in plants through four possible mecha-
nisms: (i) similarities with the nutrient cations (for example, it has been reported that As
and Cd compete with P and Zn, respectively, for their absorption); (ii) the direct interaction
of HMs with sulfhydryl groups (-SH) of functional proteins, which disrupt their structure
and provokes its inactivation; (iii) the inactivation of proteins by the displacement of essen-
tial cations from specific binding sites and (iv) the generation of reactive oxygen species
(ROS), which subsequently damage essential macromolecules [44].

3. PAHs and HMs Affect Plant Metabolism

The toxicity of PAHs and HMs affects plant metabolism in different aspects. By using
–omics’ techniques, some of the most important effects of these contaminants in plant
physiology are being revealed (Figure 1).
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Figure 1. Schematic representation of the metabolic processes that have been reported as induced
or repressed in the presence of PAHs (a) and HMs (b). Red indicates the processes (enzymes
and compounds) that are induced in the presence of the contaminants, and green those that are
repressed. NR: nitrate reductase; Glu-DH: glutamate dehydrogenase; PD: pyruvate dehydrogenase
complex; GSH: glutathione; PSI: phosphosystem I; PSI: phosphosystem II; Cytb6f: cytochrome b6f;
Pyr: pyruvate; Ac-CoA: acetyl-CoA; Cit: citrate; Aco: aconitate; ICIT: isocitrate; KG: α-ketoglutarate;
SCC-CoA: succinyl-CoA; SCC: succinate; Fum: fumarate; Mal: malate; OAA: oxaloacetate; 3P-Gly:
3-phosphoglycerate; G3P: glyceraldehyde-3-phosphate; Rib-5-P: ribulose 5-phosphate; Rib-1,5DP:
ribulose-1,5-bisphosphate; 1-3 BPGly: 1,3-bisphosphoglycerate.
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3.1. Effects on the Photosynthetic System

The presence of PAHs results in a reduction in total chlorophyll content of both C3
and C4 plants, with an increase of the chlorophyll a/b ratio, which is one of the direct
indications that the plants are experiencing extremely harmful conditions [45]. PAHs
inhibit RuBisCO carboxylation activity, decreasing photosynthetic rates and inhibiting
photosystem II activity, blocking the photosynthetic electron flow from photosystem II
to photosystem I (Figure 1). This restriction of the electrons flux is primarily due to the
net degradation of the D1 protein, which is caused by the accumulation of (ROS) in PAH-
treated plants [46,47]. As mentioned above, PAHs probably alter membrane permeability
with subsequent production of ROS, which produces this functional change in PSII [48].

Similar effects have been described in plants under HM stress. Disruption of the
photosynthetic machinery by HM stress is inferred from the low abundance of proteins
involved in the Calvin cycle and the photosynthetic electron transport chain and by the
drastic reduction in abundance/fragmentation of large and small sub-units of RuBisCO
(LSU and SSU) [49].

Interestingly, mild concentrations of these ions (1 µM) produce an increase of proteins
involved in photosystems I and II and the Calvin cycle (Figure 1). This effect might
be an adaptive strategy for overcoming plant injury; the presence of high quantities of
photosynthetic assimilated into respiration would help plants to yield more energy, needed
to combat heavy metal stress [50].

3.2. Effects on Carbon Metabolism

A combination of metabolomic, proteomic and transcriptomic studies have deter-
mined that the application of phenanthrene on wheat leaves affects the functioning of the
tricarboxylic acid cycle (TCA) [51]. The presence of this PAH produces alterations in the
concentrations of the TCA intermediates, increasing citrate and malate and decreasing
α-ketoglutarate, fumarate, oxaloacetate, pyruvate and succinate (Figure 1). The accu-
mulation of citrate and malate is due to the induction of the expression of the pyruvate
dehydrogenase, dihydrolipoyllysine-residue succinyltransferase, fumarate hydratase and
ketoglutarate dehydrogenase and the inhibition of NADH synthesis, isocitrate dehydroge-
nase and malate dehydrogenase, GTP formation, succinyl-CoA synthase and the respiratory
chain linked to the succinate reductase. Ultimately, the altered functioning of the TCA
cycle was due to a decrease in the cellular pyruvate concentrations under exposure to
phenanthrene, an observation also reported in the root cells of wheat plants [52]. Other im-
portant metabolic enzymes that have been shown to be down-regulated in the presence of
phenanthrene in wheat are glyceraldehyde-3-phosphate dehydrogenase (NADH-forming
enzyme) and the adenosine kinase, involved in the synthesis of ATP [53]. Similarly, stress
caused by HMs also produces changes in the concentrations of TCA intermediates (mainly,
decreasing malate or succinate) and changes in the expression of enzymes of this important
metabolic pathway, indicating important disturbances that affect the energy potential (the
synthesis of NADH and GTP and the correct functioning of the respiratory chain) of the
plant cell [54,55] (Figure 1). For both stresses, the reported results suggest that there is an
inhibition of the energy-forming processes, i.e., the synthesis of ATP and NADPH, and an
activation of a fermentative metabolism in plants cells.

Galactose, sucrose, inositol galactoside and melibiose metabolisms are activated in
the presence of PAHs, increasing the content of the D-mannose, D-galactose, raffinose,
galactinol, melibiose, sucrose, and D-glucose metabolites in plant tissues. As mentioned
above, PAHs cause decreases in water content and in the nutrient-utilization efficiency in
plants, besides provoking the inhibition of photosynthetic activity and electron transport
(Figure 1). Therefore, the accumulation of sugars (or derivatives) can supply compounds
for the higher demand of energy required to tolerate adverse stress conditions created by
the presence of PAHs. Furthermore, they can also act as osmolytes in the protection of
cellular structures and to sustain osmotic balance under the water stress conditions caused
by the PAHs [56,57]. In the presence of PAHs, a decrease in the content of hydroxypyruvate
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and the metabolism of certain amino acids has been observed, affecting the gluconeogenic
pathway [56].

Plants exposed to HMS also suffer alterations in the metabolism of glucose (Figure 1).
A decrease in the glycolytic flux due to a dysfunction of the pyruvate kinase glyceraldehyde-
3-phosphate dehydrogenase or of enolase, key regulators of glycolysis, has been observed
in presence of Hg2+, As or Cu heavy metals, respectively [58,59]. In these studies, to
compensate for the cellular deficit of NADH, the anaplerotic NADP-dependent malic
enzyme was induced; this induction was correlated with a decrease in malate content
observed in heavy metal-exposed plants. This enzyme produces cytosolic pyruvate to also
compensate for pyruvate kinase dysfunction. This malic enzyme has also been suggested to
be involved in plant defence responses against oxidative damage and to compensate for the
large energy requirements of NADPH and to provide pyruvate to supply the mitochondrial
TCA cycle [54].

3.3. Effect on Amino-Acid and Nitrogen Metabolism

Plants exposed to PAHs significantly increase the activity of nitrate reductase (Figure 1),
an enzyme responsible for nitrate assimilation by plants through the reduction of nitrate to
ammonia [52]. This increase in ammonia content, and the upregulation of the glutamate
dehydrogenase (GDH2), may explain the augmentation of the levels of glutamic acid [57]
and the decrease of α-ketoglutarate levels [51] observed under PAH stress. Proline, which
forms part of the non-enzymatic responses to ROS, is formed from glutamate, and it
has been reported to accumulate under both stresses [56,57]. HMs also increase nitrogen
metabolism by enhancing protease activity [60], inhibiting the synthesis of proteins [55]
and reducing the activity of nitrate and nitrite reductases, enzymes involved in nitrate
assimilation, and of glutamine synthetase, glutamine oxoglutarate aminotransferase and
glutamate dehydrogenase, which are involved in ammonia assimilation [61,62].

The synthesis of branched chain amino acids (L-valine, L-leucine and l-isoleucine)
from pyruvate have been shown significantly upregulated under PAH and HM expo-
sure [55–57,63] (Figure 1), and this increased utilization of pyruvate may explain the lower
content of this compound found in PAH-stressed plants by Zhan and co-workers [52]. The
presence of PAHs has also produced an increase in L-alanine, L-tryptophan, L-(−)-tyrosine
and D-(+)-phenylalanine content in plant cell tissues [56,57]. The three latter amino acids
are precursors in important pathways for the biosynthesis of secondary metabolites [64].

In the presence of phenanthrene enhanced sulphur assimilation from sulphite, serine
transformation and increased cysteine synthesis has been demonstrated [57] (Figure 1). Cys-
tein is a powerful antioxidant and facilitates nitrate absorption and/or foliar transport [65].
Furthermore, cysteine, glutamate and glycine are the precursors of the antioxidant glu-
tathione [66]. The expression of the enzymes involved in the glutathione cycle—glutamate
cysteine ligase (synthesis), glutathione reductase (recycling) and glutathione-S-transferase
(the transfer to xenobiotics)—is upregulated in the presence of PAHs [57].

Aminoacyl-tRNA biosynthesis, involved in the biosynthesis of proteins, is also signifi-
cantly increased by plants’ exposure to PAHs. This could be due to the increase in demand
for anti-oxidative enzymes, stress proteins and DNA repair enzymes [57].

3.4. Effects on Secondary Metabolism

Many studies have shown elevations in the content of plant polyphenols (Figure 1),
which play an important role in antioxidant plant responses, in response to both PAH
and heavy-metal treatments. This is possible a consequence of the stimulation of pheny-
lalanine ammonia-lyase (PAL) activity, and also of the increase in the concentration of
the precursors phenylalanine, tyrosine and tryptophan. Tyrosine is first converted to
4-hydroxyphenylpyruvate, which is subsequently transformed to turinic acid by the action
of the 4-hydroxyphenylpyruvate dioxygenase. Turinic acid is a precursor of tocopherols,
such as vitamin E and plastoquinone, and improves plant stress resistance. Tryptophan
is a precursor of numerous secondary metabolites, such as auxins, antitoxins, glucosino-
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lates and alkaloids that augment aromatic compound biosynthesis [57]. Phenylalanine
participates in the biosynthesis of several phytochemicals and antioxidants in the phenyl-
propanoid pathway [64].

Some authors have indicated that there is a significantly positive dosage relationship
between polyphenolic metabolism intensity and contamination levels [67]. However, a
significant reduction of phenolic compounds (flavonoids, anthocyanins, tannins, lignins,
phenolic acid and the related compounds coumarin, flavenol, cinnamic acid, cinnamic
alcohol, cinnamic aldehyde), greater than >40%, was observed in plants exposed to high
concentrations of PAH/HM pollution when compared with non-exposed cells [68,69]. It
has been hypothesized that when plants cannot counteract oxidative stress, the plant enters
into a state of metabolic distress, compromising its secondary metabolism.

Membrane lipid peroxidation has been shown in response to PAH stress [5] where, there-
fore, it increased the content of several lipids, such as 13-hydroperoxy-9, 11-octadecadienoic
acid (13-HPODE), 9-hydroxy-(10E,12Z,15Z)-octadecatrienoic acid, 14,15-dehydrocrepenynic
acid, palmitaldehyde, octadeca-11E,13E,15Z-trienoic acid and α-linolenic acid, which have
been observed in plants exposed to PAHs.

4. Adsorption, Absorption and Accumulation of PAHs and HMs by Plants
4.1. Adsorption

Atmospheric PM containing PAHs and HMs can be deposited directly onto plant
leaves or in soil. The retention of PMs on leaves depends on the PM atmospheric con-
centration [70,71], the exposed surface area and leaf-surface properties and topography,
which are conditioned by leaves’ hairiness or cuticle compositions [72–75]. For example,
the gymnosperm Pinus silvestris can accumulate up to 19 micrograms of PAHs per gram of
dry weight of needles [76] and is one of the plant species with the highest levels of PAH
accumulation described in the literature; the waxy surface of the pine needles traps PM
and gaseous pollutants [77].

Besides being directly deposited on leaves or soil, PMs can also be mobilized from
soil to leaves by wind or evaporation, be transported from roots to leaves or be deposited
on soil through plant biomass decay (Figure 2; [78–81]).
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4.2. Absorption

The uptake of atmospheric contaminants by plant roots varies significantly, depending
on factors such as pollutant concentrations in soil, the hydrophobicity of the contami-
nant, plant species and tissue and soil microbial populations [72,82]; it also depends on
temperature [83].

The absorption of LMW-PAHs to the inner tissues of the leaf is mainly conducted
by passive diffusion through the hydrophobic cuticle and the stomata. HMW-PAHs are
mostly retained in the cuticle tissue and its transfer to inner plant components is limited by
the diameters of its cuticle pores and ostioles [84].

PAHs, adsorbed on the lipophilic constituents of the root (i.e., suberine), can be ab-
sorbed by root cells and subsequently transferred to its aerial parts [85]. Once inside the
plant, PAHs are transferred and distributed between plant tissues and cells in a process
driven by transpiration. A PAH concentration gradient across plant–cell components is
established, and PAHs are accumulated in plant tissues depending on their hydrophobici-
ties [86]. Almost 40% of the water-soluble PAH fraction seems to be transported into plant
roots by a carrier-mediated and energy-consuming influx process (a H+/phenanthrene
symporter and aqua/glyceroporin) [87,88]. The PAH distribution pattern in plant tissues
and in soil suggests that root uptake is the main entrance pathway for HMW-PAHs. Con-
trarily, LMW-PAHs are probably taken-up from the atmosphere through leaves as well as
by roots [89].

Although HM absorption by leaves was first reported almost three centuries ago [90],
the mechanism of absorption is not yet fully understood [91]. Absorption mainly occurs
through stomata, trichomes, cuticular cracks, lenticels, ectodesmata and aqueous pores [92],
with the stomata and trichomes being the preferential sites of ion penetration due to the
existence of polar domains in these structures [93]. Transportation to other plant tissues
occurs via the phloem vascular system, by mechanisms similar to those transporting
photosynthates within the plant. This active HM transport depends on plant metabolism
and varies with the chemistry of the HMs. Immobile metals, i.e., Pb, may precipitate
or bind to ionogenic sites located on the cell walls, avoiding their movement within the
plant leaves. However, these immobile metals can also be transported inside plants under
other conditions; i.e., if the levels of HMs are low enough not to surpass their solubility
limits, “immobile” metals can move within plants with other metabolites. Alternatively,
“immobile” metals may form chelates or complexes with organic compounds present in
the phloem. These compounds inhibit metals’ precipitation and favour their transport [91].

However, the soil-root transfer of metals seems to be the major HM entrance path-
way [94]. The uptake of HMs by roots mainly depends on the metal’s mobility and
availability; that is, in general, it is controlled by soil adsorption and desorption character-
istics [95,96]. The key influencing factors inolved include pH, soil organic matter, cation
exchange capacity, oxidation-reduction status and the contents of clay minerals [97,98]. At a
low pH, the transfer of HM into soils is generally accelerated, while greater organic matter
content depletes oxygen and increases the resistance of soil to weathering, preventing
heavy metal dissolution [99]. After adsorption into root surfaces, metals bind to polysac-
charides of the rhizodermal cell surface or to carboxyl groups of mucilage uronic acid.
HMs enter the roots passively and diffuse to the translocating water streams [100]. Metal
transportation from roots to the aerial parts occurs through the xylem system, transported
as complex entities with different chelates, and is generally driven by transpiration [91].

4.3. Accumulation

Several groups of plants have developed the capacity to hyperaccumulate contami-
nants. Several species of the Poaceae and Fabaceae families, e.g., white clover (Trifolium
repens), a few vegetable crops, such as carrot (Daucus carota), celery (Apium graveolens),
barley (Hordeum vulgare), cabbage (Brassica oleracea), soybean (Glycine max L.) and spinach
(Spinacia oleracea), mosses and both broadleaf and conifer trees have been considered as
effective PAH accumulators [101,102]. Two mechanisms have been described for the hyper-
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accumulation of PAHs; one is the production of high quantities of low-molecular-weight
organic acids in the root exudates. These acids promote the availability of PAHs by dis-
ruption of the complexes in the PAH–soil matrix [103]. PAH-hyperaccumulating plants
present higher lipid (membrane and storage lipids, resins, and essential oils) and water
content, lower carbohydrate content and a higher plant transpiration-stream flow rate than
non-accumulating plants [104]. An additional mechanism for the higher uptake of PAHs in
these hyperaccumulating plants is the presence of oil channels within the roots and shoots
in plants such as carrots, and high lignin and suberin content that may also absorb organic
chemicals [104,105].

Metallophytes are plants that are specifically adapted to soil enriched in HMs [106].
Some metallophytes are hyperaccumulators; they can accumulate 100–1000-fold higher
shoot metal concentrations (without yield reduction) compared with non-accumulator
plants [107]. They can tolerate the presence of 100 mg kg−1, in dried foliage, of Cd, Se
or Ti; 300 mg kg−1 of Co, Cu or Cr; 1000 mg kg−1 of Ni, Pb or As; 3000 mg kg−1 of Zn;
10,000 mg kg−1 of Mn without showing any visible phenotypical changes [106,108,109].
Many of these plants belong to the Brassicaceae, Phyllanthaceae, Asteraceae or Laminaceae
families [107], The biological significance of this phenotype, besides survival in heavily
contaminated sites, is that metal hyperaccumulation in leaves could be a defensive mech-
anism against herbivores (by making leaves unpalatable or toxic) and pathogens [110].
This process requires increased metal uptake and xylem loading, as well as enhanced
metal accumulation by sequestration in the apoplasts or vacuoles and detoxification in
shoots [111].

5. Detoxification of PAHs and HMs by Plants

Plants can detoxify contaminants, mainly by immobilization in cellular compart-
ments such as vacuoles or cell walls. However, some leguminous plants, such as alfalfa
(Medicago sativa L.) and sorghum (Sorghum bicolor), can exude enzymes, such as tyrosinases,
laccases or peroxidases, through their roots. These secreted enzymes play an important
role in the polymerization reactions that lead to pollutant immobilisation in humic acids
in soil, rendering pollutants biologically inaccessible [112]. Furthermore, these enzymes
catalyse the oxidation of phenolic compounds and PAHs using hydrogen peroxide as the
electron acceptor, transforming these molecules into more easily degradable compounds
for the indigenous microbiota, and therefore, indirectly, detoxifying these environments.
Similarly, root exudates of various plant species, such as fescue grass (Festuca arundinacea),
switch grass (Panicum virgatum), maize (Zea mays L.), soybean, sorghum, alfalfa and clover,
have the ability to enhance PAH biodegradation, probably because plant roots can stimu-
late soil microbial biomass and oxygen transport to the rhizosphere, thus facilitating the
degradation process [113,114].

However, once a contaminant is within a plant’s cells, immobilization is the main
detoxification pathway. The immobilization pathways are different for organic compounds
(such as PAHs) than for HMs (Figure 3).

5.1. Detoxification of Organic Compounds

Organic compounds are firstly modified by the action, mainly, of cytochrome P450
monooxygenases [115]. CYP450s are heme-thiolate monooxygenases that use electrons
from NADPH to activate molecular oxygen and to insert a single oxygen atom into their
substrates. They usually catalyse the hydroxylation or epoxidation, the dealkylation of
methoxy or amine substituents and the reductive dehalogenation of aromatic rings, but
catalysing the opening of aromatic rings has never been reported [116]. Under normal con-
ditions, CYP450s are involved in the metabolism of a wide variety of natural compounds,
such as hormones, lipids and secondary metabolites. Recently, transcriptomic assays
have revealed the importance of some dioxygenases, enzymes that are able to oxidize
aromatic compounds by the incorporation of two hydroxyl groups, in the first step of the
PAH modification in A. thaliana plants exposed to phenanthrene [117]. In addition, other
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oxidoreductases (including peroxidases) and carboxylesterases have been implicated in
PAH dissipation [118]. These reactions transform the contaminants into less hydrophobic
compounds and increase their reactivity, in what is known as phase I of detoxification
(Figure 3) [119].
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Phase II involves the conjugation of contaminants with glutathione, amino acids,
proteins, peptides, organic acids, mono- and oligo-polysaccharides, lignin and others,
resulting in the formation of peptide-, ether-, ester- or thioether-conjugates and the produc-
tion of hydrophilic compounds [119]. These conjugation reactions are catalysed by different
transferases: glutathione S-transferase, glucuronosyl-O-transferase, malonyl-O-transferase,
glycosyl-O-transferase, N-glycosyl-transferase, N-malonyl-transferase and others [120].
The main transferases involved in this phase II are glutathione S-transferases (GSTs) and
glycosyl-transferases (Figure 3). GSTs represent a family of more than 25 different enzymes
that bind glutathione (g-Glu–Cys–Gly) to reactive molecules, protecting the cell from ox-
idative damage. Glycosyl-transferases have an important role in sugar metabolism and in
plant secondary metabolism under normal conditions, and, in the presence contaminants,
participate in plant defence and stress tolerance [121]. The formation of these conjugates
is a key process in the detoxification of contaminants in plants [101]; conjugates can be
kept inside a cell for a certain period without any visible pathological symptoms, mainly
because their toxicity is decreased, compared with that of the parental compounds [120].
In some cases, more than 70% of absorbed organic pollutants in plants are accumulated in
the form of conjugates [122].

However, as, in most cases, plants do not possess excretion systems, the final des-
tination of the conjugates or the hydroxylated contaminants is their storage in defined
compartments of the plant such as cell walls and vacuoles [117,123]. This phase of the
process (phase III; Figure 3) allows plants to eliminate pollutants from the vital parts of
cells [119–121,124]. Conjugates are actively transported to the vacuole and, in some cases,
to the apoplast by the action of an ATP-dependent membrane pump [125–127]. Dihy-
droxylated pollutants can also be covalently linked with plant cell-wall polymers and
lignin [128,129], probably through the action of cell-wall- or vacuole-associated enzymes
(i.e., internal peroxidases and laccases). These enzymes, normally involved in the detox-
ification of H2O2, have been also associated with the formation of tyrosine or ferulate
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cross-links between different plant cell wall polymers with the non-specific oxidative poly-
merization of phenolic units to produce lignin and with the deposition of aromatic residues
of suberin on the cell wall [130].

Therefore, within the plant, PAHs are frequently found as: (i) residues covalently
bound to the plant cell wall components (lignin, hemicellulose, cellulose and proteins);
(ii) as glutathionylated and glucosylated derivatives located in vacuoles or (iii) mono- or
dihydroxylated PAHs or metabolites in plant cells [131].

Recent studies have determined that organic compound sequestration, metabolization
and/or dissipation from PAHs takes place mostly in specialized plant tissues or structures
such as trichomes, shoot hairs derived from the epidermal cell layer, pavement cells or
stomata, in A. thaliana, alfalfa, or Thellungiella salsuginea, and in the basal salt gland cells on
the Spartina species [132–135].

5.2. Detoxification of HMs

Plants have developed different mechanisms for HM detoxification. One of them
is the excretion of HMs from plant cells by different types of transporters (aquaporins,
efflux pumps and others) (Figure 3). HMs can also be chelated by low-molecular-weight
molecules such as glutathione, phytochelatins or metallothioneins that facilitate the trans-
port of metals to vacuoles (Figure 3). Glutathione plays an important role in the cellular re-
dox balance and can bind to several metals and metalloids [136]. The two best-characterized
heavy metal-binding ligands in plant cells are the phytochelatins (PCs) and metalloth-
ioneins (MTs). MTs are low-molecular-weight (7–8 kDa) polypeptides, rich in CC, CXC
and CXXC motifs, that have been found in all kingdoms of life. MTs, in plants, are con-
sidered multifunctional proteins involved in essential-metal homeostasis. However, they
can participate in the protection against HM toxicity by (i) the direct sequestration of HMs,
particularly Cu(I), Zn (II) and Cd(II), (ii) scavenging reactive oxygen species (ROS) [137,138]
and (iii) by regulating metallo-enzymes and transcription factors [139]. MTs are constitu-
tively expressed but they are also induced by a wide variety of endogenous and exogenous
stimuli and are temporally and spatially regulated [140]. In general, different types of MTs
correlated with specific patterns of expression (spatial and temporal) (review in 140).

PCs are enzymatically synthesized peptides that are involved in HM binding [141].
PCs only contain three amino acids, glutamine, cysteine and glycine (Figure 3), and have
been identified in many plant species and yeasts [142]. The first step of PC biosynthesis
is catalysed by PC synthase and its starting compound is GSH. PCs are synthesized after
exposure to HMs and are synthesized at different levels, depending on the specific HM; i.e.,
Cd and Pb induce higher levels of PCs than As and Cu [142]. PCs binds HM through the
thiol group of cysteine, but the polymerization of PCs plays a role in the binding stability
of the metal-PCn complexes [143]. The PC-metal complexes are transported from root to
shoot or from shoot to root and, probably, through phloem [144].

Within the cells, organic acids, such as citrate and malate, the amino-acid derivative
nicotianamine and phytate can also bind HMs, conferring heavy metal resistance to plants
(reviewed in [145]). Outside the cells, organic acids and amino acids, such as citric and
oxalic acids and histidine that are exudated by the plant, are also considered chelators of
HMs, protecting plants from excessed of these ions [146,147]. The final step of heavy metal
detoxification involves the sequestering of either free or chelated HMs into cell vacuoles.
Finally, this PC-metal complexes are sequestered in vacuoles by specialized transporters
([148,149] and reviewed in [49]).

6. PAHs and HMs Produce Oxidative Stress in Plants

Plant PAH transformation enzymes, such as cytochrome CYP450, involve reduction
or oxidation reactions that increase the levels of oxidants and harmful metabolites and
activate the production of ROS [117]. The exposure of plants to HMs also elicits oxidative
stress through two different mechanisms that depend on the different chemical properties
of the metals [150]; (i) redox-active metals, under physiological conditions, exist in different
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oxidation states (i.e., Cu+/Cu2+ and Fe2+/Fe3+); this enables both metals to directly par-
ticipate in the Fenton and Haber–Weiss reactions, leading to the formation of highly toxic
hydroxyl radicals from H2O2 (Figure 4); (ii) physiologically non-redox-active metals, such
as Cd, Hg and Zn, contribute only indirectly to increased ROS production, for example,
by depleting or inhibiting cellular antioxidants (reviewed in [150]). Various enzymatic
systems have been proposed to generate ROS in plants. These include a membrane-bound
NADPH oxidase (similar to those found in neutrophils), lipoxygenase and apoplastic
peroxidases [151].
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When ROS production exceeds the antioxidizing capacity of the plant, the response
can lead to cell death due to ROS toxicity and/or specific ROS-activated cell-death-inducing
signalling events [152]. In A. thaliana, after exposure to atmospheric PAHs, a significantly
increased production of reactive oxidative species (ROS) was observed, with concomitant
necrosis of plant tissues and, therefore, inhibition of plant growth [132]. In wheat plants,
microscopy studies revealed that cell structures become plasmolysed and distorted, and
organelles disappeared as a consequence of the accumulation of H2O2 in plant tissues in
response to the presence of 0.5 mg/L of phenanthrene [153]. The necrotic lesions produced
by PAHs or HMs are similar to those produced in response to an avirulent pathogen in
the hypersensitive response (HR) [154]. HR is characterized by the fast production and
accumulation of ROS, primarily superoxide anions (O2

−), hydrogen peroxide (H2O2) and
the hydroperoxyl radical HO2, with the concomitant induction of local cell death to restrict
the spread of the pathogen [154].

The ROS toxic effect within cells is exerted via lipid peroxidation, protein degradation
modification and DNA damage [154] (Figure 4).

The most damaging consequence of ROS generation and accumulation is lipid peroxi-
dation on cell and organelle membranes; in turn, the free fatty acid hydroperoxides can
also be substrates of Fenton-like reactions, leading to the production of alkoxy radicals that
enhance lipid peroxidation [155,156]. As a consequence, membrane fluidity increases with
the concomitant cytosolic solute efflux and loss of functionality of membrane-associated
proteins [157]. Furthermore, lipid peroxidation could result in the production of highly
reactive aldehydes (i.e., malondialdehyde or 4-hydroxy-2-nonenal) that attack amino-acid
side chains in proteins, causing protein damage and DNA fragmentation [158].

ROS-mediated post-translational modifications in proteins include sulphonylation,
carbonylation, glutathionylation and s-nitrosylation [159], which are modifications that
provoke protein malfunctioning, leading to cellular damage. H2O2 has been shown to
hydroxylate cysteinyl thiols to form sulphenic acids. This oxidation is important in the
formation of inter- and intramolecular disulphide bonds, as well as in the formation of
disulphides with glutathione. These disulphides can be reduced to the thiol level through
the activity of glutaredoxins or thioredoxins, with thiol oxidation being an important node
for redox homeostasis [160]. Sulphonylation has been directly linked to the regulation of
signalling and metabolic processes [161]; amongst the toxicological targets of oxidant stress
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induced by environmental contaminants are cysteinyl thiolate residues on many regulatory
proteins [162]. S-glutathionylation is the subsequent modification of proteins; the sulphenic
acid-containing side chains of proteins form covalent bonds with low-molecular-weight
thiols, mainly with glutathione. This glutathionylation regulates the redox-driven signal
transduction cascades and metabolic pathways [163] and can be reversed through thiol–
disulphide oxidoreductase (thioltransferase) activity [164]. Protein carbonylation occurs in
arginine, histidine, lysine, proline and threonine residues and it is considered an irreversible
process [165]. The carbonylation of proteins can also be produced through indirect reactions
of lipoperoxidation products with cysteine and histidine residues [166]. S-nitrosylation
consists of the covalent binding of nitric oxide to thiol groups of cysteine residues, and it
has been shown to modulate the signalling cascades of senescence, resistance and defence
mechanisms [167]. S-nitrosylation has been involved in the modification of enzymes
involved in respiration, antioxidation and photorespiration and it has also been reported
to affect the DNA binding activity of some transcription factors [168,169].

The third main target of ROS accumulation in living cells are the electron-rich DNA
bases; hydroxyl radicals attack the double bonds of the DNA bases producing di-, mono-,
hydroxy-, and hydroxyl radicals, ring-saturated glycol, dehydrated, deaminated or ring-
opened derivatives that further react to form stable DNA lesions, producing a diverse
range of genotoxic modifications. As mentioned before, DNA bases may also be indirectly
damaged through reaction with the products of lipid peroxidation, such as malondialde-
hyde, acrolein and crotonaldehyde. DNA sugars could also be damaged by ROS, leading
to single-strand breaks. These lesions can be lethal, as they stop DNA replication, or by
causing mutagenic changes in the replicated base [170].

To summarize, excessive production of ROS and subsequent oxidative damage is a
common mechanism of phytotoxicity induced by both HMs and PAHs in plants. Indepen-
dent, additive, synergistic and antagonistic toxic effects toward plants have been reported
when plants were subjected to the combined pollution of PAHs and HMs [171–174]. How-
ever, to date, the mechanisms behind this synergistic or antagonistic toxicity of HMs
and PAHs to plants is not fully understood [175]. HMs may induce damage to root cell
membranes and consequently promote root uptake and the subsequent translocation of
PAHs, thus increasing the damaging effects. On the other hand, HMs may cause lipid
peroxidation of cell membranes and consequently decrease root lipid content, thereby
decreasing the plant uptake of PAHs [176].

7. Plant Detoxification of Oxidative Stress Produced by PAHs and HMs

Plants respond to oxidative damage through the activation of the antioxidant ma-
chinery that triggers signalling cascades for stress tolerance. ROS antioxidant defence
systems can be enzymatic and non-enzymatic, and both interact to neutralize free radicals.
Proteomic studies have revealed that, in the presence of HMs and PAHs plants signifi-
cantly increase the expression of superoxide dismutase, catalases, mono-dehydro-ascorbate
reductase, ascorbate peroxidase, peroxiredoxins, glutathione-S-transferases, glutathione
reductase, glutathione peroxidase and heat-shock proteins [53,177–180]. Enzymatic detoxi-
fication of ROS (Figure 5A) starts by the action of superoxide dismutase that converts the
O2

− generated by NADPH oxidases into H2O2. The subsequent scavenging of H2O2 is
carried out by catalases, ascorbate peroxidase, glutathione peroxidase, guaiacol peroxidase,
class III peroxidases and peroxiredoxins. In general, peroxidases oxidize a wide variety
of substrates, including H2O2 [181]. Catalases convert H2O2 to H2O and O2 without the
use of reducing equivalents. Catalases have a high reaction rate but lower affinity of H2O2
than ascorbate peroxidases and, therefore, it has been suggested that catalases play a more
important role in H2O2 detoxification than in the fine regulation of H2O2 as a signalling
molecule [150].

Ascorbate, carotenoids, glutathione, polyamines, proline and α-tocopherol have been
described as non-enzymatic antioxidants that also form part of the antioxidative defence
system of plants [150,159] (Figure 5A). Ascorbate directly scavenge O2

−, H2O2, and •OH
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radicals and it is involved in the regeneration of other antioxidants [182]. Furthermore,
it plays an important role in the ascorbate-glutathione cycle (Figure 5B). In this cycle,
ascorbate peroxidase catalyses the conversion of H2O2 to H2O using ascorbate as the
reducing agent. The reconversion of ascorbate to its reduced form is coupled to the
oxidation of glutathione, which is subsequently reduced by the action of glutathione
reductase [183].
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As mentioned above, glutathione can also detoxify ROS [158,184], and plays an
important role in the scavenging of metals [136,185].

α-tocopherol and carotenoids are important antioxidative metabolites involved in the
protection against membrane lipid peroxidation and in the prevention of photosynthetic
machinery damage, respectively [182]. Proline, that is accumulated in plants under many
different types of abiotic stress, including HM exposure, is able to protect and stabilize ROS
scavenging enzymes such as catalase and peroxidases [186]. In the presence of PAHs and
HMs, plants also increase the synthesis of polyamides that can function as antioxidants, by
conjugation to oxidative molecules and metals. It has also been suggested that polyamides
can activate other cellular antioxidant defences, such as increased superoxide dismutase
and enzymes associated with the ascorbate-glutathione cycle activities [187].

Plant phenolic compounds (such as coumarins, lignins, flavonoids, phenolic acids,
or tannins) can remove ROS and chelate HMs by hydroxyl (-OH) and carboxylic acid
(-COOH) [188–190]. The electron-donating, deprotonation equilibrium and radical-scavenging
activity of phenolic compounds depends on their chemical structure, type, position and num-
ber of functional groups [191].

Whilst the participation of the majority of these mechanisms have been reported as the
processes involved in responses toward the presence of HMs, carotenoid and superoxide
dismutase seem to be the key factors for scavenging ROS in oxidative stress caused by
PAHs in plant tissues [153].

8. Phytohormone Signalling Cascades in Plants in Response to PAHs and HMs

ROS are considered as signalling molecules that regulate plant development, biotic and
abiotic stress responses [192]. Under normal conditions, ROS production is fine tuned to
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produce the appropriate physiological responses (for signalling, and metabolic processes).
ROS responses depend on duration, site and concentration; the concentration and longevity
of the ROS are determined by the composition and availability of antioxidant systems
in each particular sub-cellular compartment [193]. Therefore, the rate of ROS diffusion
and reactivity and ROS removal and perception, in the different cellular compartments
of the plant, are highly regulated to create the so-called ROS network [192]. The fine
equilibrium between ROS production and scavenging may be altered by different stresses.
Low concentration of ROS acts as a signal (second messenger) and provokes a plant stress
response; high ROS concentration causes cell damage and programmed cell death [194].

ROS are detected by ROS receptors. For example, the KEAP1 and NRF2 complexes
are responsible for synchronizing plant stress responses in order to cope with various envi-
ronmental and xenobiotic compounds. These stress signals are perceived and transmitted
by histidine kinases, redox-sensitive transcription factors, ROS-sensitive phosphatases
and redox-regulated ion channels [195]. All these systems activate signalling cascades
that finally target the responsive genes, allowing plants to respond to many different
environmental cues [195–198]. ROS production can directly alter the redox status of several
enzymes and control metabolic fluxes in the cell [199]. It can also affect transcription and/or
translation levels by modifying the function of some regulatory proteins (via ROS-derived
redox modifications). These modifications can activate an adaptation response that would
alleviate the effects of stress on cellular metabolism and reduce the level of produced
ROS [199] or may also produce the so called “oxidative burst” that eventually leads to cell
death [200–204].

ROS and heavy metals have been involved in the induction of mitogen-activated
protein-kinase (MAPK) in alfalfa, rice (Oryza sativa) and A. thaliana [203–207]. The metal
responsive transcription factor 1 (MTF-1) plays a significant role in the cellular response
to heavy metal stress; this regulatory protein induces certain genes involved in heavy
metal uptake and accumulation and ROS detoxification [208,209]. Proteomic studies have
shown that the nucleoside, diphosphate kinase 3, is upregulated in plants exposed to
PAHs; this kinase has a role in the metabolic and stress signalling functions and positively
regulates enzymes involved in ROS detoxification such as catalases, ascorbate peroxidases,
peroxiredoxins, glutathione-S-transferase and glutathione reductase [179]. Transcriptomic
studies have revealed that the presence of PAHs, in addition to provoking alteration in the
detoxification pathways of these molecules and ROS detoxification, also triggers signalling
responses similar to pathogen defence mechanisms, including HR-like cell death and
the induction of defence genes [210]. Phenanthrene-exposed plants showed induction
of the expression of the pathogenesis related protein 1 (PR-1), a marker for HR and the
glutathione-S-transferase gene GSTF2, which is induced by ethylene, auxin, salicylate,
paraquat and several sulfhydryl compounds [132]. This suggests that phytohormones are
also produced in response to PAHs (Figure 6).

Phytohormones are plant-endogenous molecules that modify physiological and molec-
ular reactions in response to different cues and are critically required for plant survival
under abiotic stress [211]. Therefore, it has been amply demonstrated that the accumulation
of ROS affects the level and function of many plant hormones, including ethylene [212,213],
abscisic acid (ABA), gibberellic acid (GA), brassinosteroids, NO and phytohormone-
modulating stress response reactions, such as salicylic acid (SA) and jasmonic acid (JA),
and development-associated hormones, such as auxins and cytokinins [132,212,214–218].

There is a great deal of evidence to support the induction of genes regulated by
phytohormones in response to environmental contaminants; genes encoding the ethylene-
inducible defence response proteins, PDF1.2a and PDF1.2b, are strongly upregulated in
A. thaliana in response to cadmium [219,220]; the pathogenesis-related gene, PR-1, a marker
gene for systemic acquired resistance and HR responses and regulated by SA, is highly
upregulated in PAH-exposed plants. Although ethylene-, JA- and SA-mediated responses
are induced by PAHs, the induction of PR-1 does not require the production of ethylene
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or jasmonate and, therefore, it has been suggested that PAHs independently induce both
signalling pathways [210].
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The presence of HMs also activates a complex signalling network, wherein phyto-
hormones and ROS can play complementary or an antagonistic roles [221]. Exposure to
HMs induces the endogenous levels of ABA, auxins, brassinosteroids, ethylene, GAs, JAs
and SA [211,222–227] and reduces the levels of cytokinins [228]. ABA transcriptionally
regulates up to 10% of protein-encoding genes in Arabidopsis [229,230]. Although the mech-
anism of ABA in response to HMs is not well known, it has been suggested that it might
regulate stomata closure to regulate water balance in plants under cadmium stress [231].
The elevated levels of indole-3-acetic acid (IAA) have been connected with plant growth
reduction, which can be a result of hormonal unbalance under stress conditions [211].
Brassinosteroids are plant steroids involved in the regulation of the anti-oxidative sys-
tem of plants and help to support plant growth under heavy metals stress [232]. It has
been described that some of them have the potential to directly reduce heavy metals,
diminishing their deleterious effects [225]. GAs positively affects seed germination, stem
elongation, leaf expansion, flower and trichome initiation and the development of fruits
and supports plant adaptation and resistance to abiotic stress among them, protection
against the toxic effects of HMs [221]. JA, and its derivatives, protect plants from the
toxic effects of HMs by enhancing the production of non-enzymatic antioxidants, such
as phenolic compounds and enzymatic antioxidants such as superoxide dismutase and
balance the production of photosynthetic pigments [226]. Under normal conditions, SA is
a major regulator of photosynthesis influencing chlorophyll content, stomatal conductivity,
and photosynthesis-related enzyme activity in plants [227].

Interactions amongst different hormones have also been described during HM stress.
For example, ethylene modulates root morphogenesis during HM stress in A. thaliana by
increasing the production of auxins and the activity of superoxide dismutase (SOD) isoen-
zymes responsible for the control over superoxide accumulation [224]. Cytokinins, which
under normal conditions play a regulatory role in modulating plant development [228],
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have been described as antagonists of ABA and modifications in the levels of both plant hor-
mones under HM stress can be dependent on each other as a result of their crosstalk [221].
SA, under heavy metal stress, also interacts with other plant hormones (such as GAs,
auxins, or ABA) promoting the stimulation of the production of antioxidant compounds
and enzymes. These interactions have been described as an alerting system in HM-stressed
plants, helping them to cope with HM stress [233]. Signalling networks produced by
ROS and its cross-talk with HMs have been widely reported in plants but less so for
PAHs. However, the activation of the production of phytohormones under PAH and HM
stress suggests parallelisms between the pathogen-elicited responses and the responses
toward contaminants.

The upregulation of some auxin-related genes in the presence of the LMW-PAH
naphthalene has been explained by the structural similarities of this compound with the
plant growth regulator naphthalene acetic acid. In such a way, not only ROS responses, but
also the absorption of the contaminant, could trigger the responses that may help plants to
cope with pollutant stress [118].

miRNAs, although less studied, also play an important role in the signalling of heavy
metal stress. miRNAs are a class of 21–24 nucleotide non-coding RNAs involved in post-
transcriptional gene silencing by their near-perfect pairing with a target gene mRNA [234].
Sixty-nine miRNAs were induced in Brassica juncea in response to arsenic; some of them
were involved in regulation of indole-3 acetic acid, indole-3- butyric and naphthalene acetic
acid, JAs (jasmonic acid and methyl jasmonate) and ABA. Others were regulating sulphur
uptake, transport and assimilation [235].

Phytohormone alterations lead to metabolic modifications; i.e., in the presence of
PAHs, plant tissues are able to overproduce osmolytes such as proline, hydroxyproline,
glucose, fructose and sucrose [236]. Proline biosynthesis and accumulation is stimulated in
many plant species in response to diverse environmental stresses (such as water deficit,
and salinity) triggered by factors such as salicylic acid or ROS [186]. The overproduction of
hydroxyproline, which could be explained by the reaction between proline and hydroxyl
radicals [237], and of sucrose have also been observed [238,239]. This accumulation of
osmolytes also seems to be regulated by ABA, whose levels are increased in plants exposed
to PAHs [210].

9. Conclusions and Future Perspectives

Pollutants induced a wide variety of responses in plants leading to tolerance or toxicity.
The myriad of plant responses, responsible for the detection, transport and detoxification
of xenobiotics, have been defined as xenomic responses [240]. The emergence of –omic
techniques has allowed the identification of many of these responses, although these types
of studies are still too scarce to be able to draw a definitive map of the plant pathways that
cope with pollutant stresses. Many of the plant responses are common to those observed
with other stresses (i.e., production of ROS), however, some others do seem to be specific
(transport and accumulation in vacuoles or cell walls). The identification of HM and PAH
plant receptors and the subsequent specific signal cascades for the induction of specific
responses (i.e., the synthesis of phytochelatins or metallothioneins) are aspects that remain
to be explored.

The holobiont, the supraorganism which the plant produces with its associated micro-
biota, also has relevance in the context of plant responses toward contaminants. Whilst the
mechanisms by which plants can activate the metabolism of the microbiota, or the specific
selection of microbial genotypes that favour plant growth, have been explored for more
than two decades, these aspects have been less studied under contaminated environments
and have mainly been studied in soil systems [38,121,241,242]. The presence of PAHs
increases the “nutrient” content for some of the associated microorganisms, provoking
changes in the microbial composition and metabolism [243,244]. How these alterations
influence the capacity of the plant to respond to contaminants is an unexplored question.
There are some studies dealing with the changes in the phyllospheric microbiota composi-
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tion in response to atmospheric pollution [245,246], however, there are very few studies
dealing with the specific plant-microbe interactions in the contaminated phyllosphere.
Aspects, such as how plants can cope with the intermediates of PAH degradation and
the effects that the presence of these intermediates in roots or leaves can exert over plant
physiology, have been the subject of much study. One of the main targets for these studies is
salicylic acid, which is an intermediate of the PAH degradation as well as plant hormones.

How plants modulate and coordinate all these responses should drive the improve-
ments in the utilization of these responses in phytoremediation. Furthermore, it can be
assumed that low levels of contaminants may lead to a basal resistance toward other biotic
or abiotic stresses, therefore, an open question is whether the stimulation of the defensive
system of plant by low quantities of contaminants could became an acceptable technique
for crop protection. Another open question is the possibility of a commercial production
of added-value compounds during plant growth under pollutant-derived stress. It has
been suggested that the presence of heavy metals may serve to stimulate the production
of bioactive compounds with pharmaceutically important properties [247]. For exam-
ple, α-linolenic acid, which increases during HM exposure in plants, is a precursor of
long-chain n-3 polyunsaturated fatty acids, such as eicosapentaenoic acid and docosa-
hexaenoic acid, which have important applications as anti-inflammatory, anti-thrombotic
and anti-neurodegenerative medication [57]. Other compounds that increase during HM
exposure in plants are saponins (that have pharmaceutical as well industrial interest as food
additives or the components of photographic emulsions), cyclic hydroxamic acids (as in-
secticides, antimicrobials, anti-malarials and others) and sesquiterpenes, and isoflavonoids
and sulphur-containing compounds, which are potential antioxidants [67,248].

Therefore, although plant responses toward pollutants are similar to responses to
other stresses, and many have been extensively studied (such as the production of ROS),
there are still many open questions regarding how plants sense contamination and how
they are able to modulate their responses. The tolerance/sensitivity of plants is mediated
by many different processes that have to be coordinated for survival; the mechanisms by
which cause this cross-regulation to happen are still unknown. Finally, how these processes
could be improved for bioremediation or for industrial processes is an interesting and open
field of research.
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