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Abstract: Adult plant resistance in wheat is an achievement of the breeding objective because of its
durability in comparison with race-specific resistance. Partial resistance to wheat stripe rust disease
was evaluated under greenhouse and field conditions during the period from 2016 to 2021. Misr
3, Sakha 95, and Giza 171 were the highest effective wheat genotypes against Puccinia striiformis
f. sp. tritici races. Under greenhouse genotypes, Sakha 94, Giza 168, and Shandaweel1 were
moderately susceptible, had the longest latent period and lowest values of the length of stripes
and infection frequency at the adult stage. Partial resistance levels under field conditions were
assessed, genotypes Sakha 94, Giza 168, and Shandaweel1 exhibited partial resistance against the
disease. Leaf tip necrosis (LTN) was noted positively in three genotypes Sakha 94, Sakha 95, and
Shandaweel1. Molecular analyses of Yr18 were performed for csLV34, cssfr1, and cssfr2 markers.
Only Sakha 94 and Shandaweel1 proved to carry the Yr18 resistance allele at both phenotypic and
genotypic levels. Scanning electron microscopy (SEM) observed that the susceptible genotypes were
colonized extensively on leaves, but on the slow-rusting genotype, the pustules were much less in
number, diminutive, and poorly sporulation, which is similar to the pustule of NIL Jupateco73 ‘R’.

Keywords: wheat; stripe rust; Puccinia striiformis f. sp. tritici; adult plant resistance (APR); Yr18 gene;
allelic variation

1. Introduction

Wheat (Triticum aestivum L.) is the most commonly grown cereal crop worldwide,
and about one-third of the world’s population depends on it as a main source of food.
In addition, it is an important source of protein, vitamins, minerals, and basic caloric
value [1]. A new report by the USDA-Foreign Agricultural Service (FAS) in Cairo forecasts
Egypt’s wheat production in 2020/2021 to reach 8.9 million metric tons (MMT), up by
approximately 1.5% compared to 8.77 MMT in 2019/20. Moreover, in terms of imports, FAS
Cairo forecasts Egyptian wheat imports in 2020/2021 at 12.85 MMT, up 0.4 percent from
2019/20 import [2]. However, this increased production is still not sufficient to provide
food security for the ever-escalating population pressure. The productivity of wheat is of
vital importance in the context of many biotic and abiotic factors that limit its production.
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Diseases and pests are the most important biotic factors affecting wheat productivity.
Although wheat may be attacked by many phytopathogens and pests, about 20 diseases
and five pests are of major significance. Some of these are spread all over the world,
while others are limited to certain geographic districts or climatic zones [3]. Stripe rust
was estimated to be the most currently important fungal disease in most wheat-growing
areas [4].

Stripe rust of wheat is incited by the fungus Puccinia striiformis f. sp. tritici an
obligate biotrophic pathogen that can disperse over long distances using wind-borne
urediniospores [5]. The urediniospores, teliospores, and the hyphal stage on wheat are
dikaryotic. Teliospores produce haploid basidiospores [6]. Pycnial and aecial spore stages
of the fungus were confirmed recently on the alternate host Berberis spp. [7]. Historically,
stripe rust has mainly been a problem in cool temperate regions; however, new races
with adaptation to higher temperatures have been detected recently [8,9], suggesting the
possibility of virulence changes in the pathogen population that are spreading rapidly and
threatening wheat production worldwide [10].

Wheat production throughout the world is affected significantly by stripe rust. Regular
rust epidemics have occurred and resulted in a significant decrease in numbers of kernels
per head, lower kernel weights, and low grain quality [6,11]. The losses caused by the stripe
rust can reach up 10–70%, depending on some factors. In severe cases, where infection
occurs at early stages and disease development continues during the growing season, the
yield loss reached 100% in susceptible genotypes. Until now, stripe rust on susceptible
wheat cultivars is mainly controlled by fungicide applications [12]. However, their uses are
undesirable due to health concerns, the hazard effects they inflict on the environment, and
their high cost. In contrast, resistant cultivars are a potential, economical, and eco-friendly
approach to controlling the disease.

In Egypt, the disease has overcome new resistant wheat cultivars only a few years
after they were first used at a large scale in the field, causing grain yield losses to reach
69.33% [13]. With difficulties in the quick replacement of susceptible wheat cultivars,
breeding cultivars with adequate levels of genetic resistance remains the most efficient
method for controlling stripe rust as the long-term strategy [14]. It has been achieved by the
deployment of cultivars with race-nonspecific resistance, also referred to as slow rusting,
adult plant resistance, and partial resistance [15,16].

Adult plant resistance (APR) genes associated with slow rusting are believed to be
more durable for successful long-term rust control in wheat. Wheat cultivars with APR
may be susceptible at the seedling stage, but the expression of resistance increases at the
flag leaf stage [17,18]. Slow rusting is a partial or incomplete resistance that permits the
fungus to develop. It is generally not affected by the types of pathotypes, i.e., nonspecific
in nature, and keeps the disease below the threshold level and decreases the chances of
selection of new pathotypes [19,20]. In contrast, race-specific resistance provides a low
infection type at the seedling stage and, most of the time, short-lived in nature due to the
emergence of new virulences in the pathogen population to host selectivity in the field [21].

Yr18/Lr34/Pm38/Sr57 is an important gene in wheat as it confers race-nonspecific,
durable resistance to some diseases, including stripe rust, leaf rust, powdery mildew, and
stem rust [22–25]. In addition, the expression of the Yr18 gene induces leaf tip necrosis (LTN)
phenotype in flag leaves of adult plants and likely involves senescence-like processes [26,27].
There is a great interest in developing effective methods for the detection of this gene. Some
of the previous markers associated with Yr18 were eliminated from application in breeding
programs due to their low diagnostic ability across various wheat genotypes [28,29]. Newly
developed markers that are closely linked to the Yr18 locus have been shown to provide
a widely diagnostic capacity in diverse wheat cultivar backgrounds [30,31]. The aim
of the study was to characterize the durability of adult plant resistance gene Yr18 in
partial-resistance behavior of 13 wheat genotypes with different degrees of tolerance to
P. striiformis f. sp. tritici during five successive seasons (from 2016 to 2021). We suggest that
the presence or absence of the Yr18 gene plays a key role in the durable resistance of wheat
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against P. striiformis f. sp. tritici. We used integrated epidemiological, phenotypic, and
genotypic markers to better understand the partial-resistance behavior of wheat genotypes
against variable levels of stripe rust infection. We believe that characterization of adult
plant resistance of different wheat genotypes is a critical step to design better control
guidelines/recommendations to minimize losses due to stripe rust disease. Moreover, it
can be deployed to develop new resistant wheat cultivars.

2. Results
2.1. Sakha 95 and Misr 3, but Not Other Genotypes, Were Efficient against Pst Races at the
Seedling Stage under Greenhouse Conditions

The efficacy of the tested wheat genotypes is shown in Figure 1. Briefly, most of the
wheat genotypes were not efficient (efficacy ranged from 00.00% to 20.00%) against Pst
races, except Sakha 95 and Misr 3, which had the highest efficacy (100%), followed by Giza
171 with 76.00% efficacy. The two-way hierarchical cluster analysis (HCA) showed that the
13 studied genotypes were arranged in approximately seven distinct clusters. Cluster 3
(C3) was the biggest cluster, which included four genotypes (Gemmeiza 11, Gemmeiza 12,
Sids 12, and Morocco) with no efficacy at all against all tested Pst races at seedlings stages.
On the other hand, cluster 6 (C6) included only two genotypes (Sakha 95 and Misr 3) with
absolute efficacy against all tested Pst races at seedlings stages (Figure 1).

Figure 1. Efficacy of 13 selected wheat (Triticum aestivum) genotypes with different degrees of
tolerance against stripe rust disease caused by Puccinia striiformis f. sp. tritici (Pst) at the seedling
stage. Standardized two-way HCA based on the seedling response of each genotype against Pst
races based on ITs as described by McNeal et al. [32]. The race was considered to be avirulent if
it caused infection type 1, 2, 3, 4, or 5 (colored green) and considered to be virulent if it caused
infection type 6, 7, 8, or 9 (colored red). Gene efficacy for stripe rust resistance was calculated by
considering the number of susceptible responses over the total number of responses to the tested
races. Two-way hierarchical cluster analysis (HCA) and its associated heatmap were visualized using
JMP data analysis software, Version 15.

2.2. Assessment of Partial-Resistance/Slow-Rusting Components at Adult Stage under
Greenhouse Conditions

The obtained data of partial-resistance (slow-rusting) components at the adult stage
(Figure 2) indicated that significant variability was observed on the tested genotypes.
Gemmeiza 11, Morocco, Giza 168, and Sids 12 showed susceptible (S) reactions with the
highest percentages of rust severity. Moderately resistance reaction (MR) and the low
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percentage of rust severity was also observed on Gemmeiza 12, Misr 1, and Sids 14, while
genotypes Giza 171, Misr 2, Sakha 94, and Shandaweel 1 showed moderate susceptible
reaction (MS) with moderate rust severity (Figure 2A). Among the tested genotypes, only
two genotypes, Misr 3 and Sakha 95, were completely resistant/immune (infection type 0,
as assessed primarily according to the size of pustules and associated necrosis or chlorosis).

Figure 2. Components of partial resistance/slow rusting of 13 selected wheat (Triticum aestivum)
genotypes with different degrees of tolerance against stripe rust disease caused by Puccinia striiformis
f. sp. tritici (Pst) at adult stage under greenhouse conditions. (A) adult plant reaction, (B) latent
period (Days), (C) stripes length (cm), and (D) infection frequency (stripes/leaf). Data presented are
the means ± standard deviation (mean ± SD) of three biological replicates. Different letters indicate
statistically significant differences between genotypes, whereas the same letters signify no significant
differences between them based on Duncan’s multiple range test (p < 0.05).

The shortest latent period was observed on Morocco, Sids 12 and Gemmeiza 11 (10.00,
10.66, and 11.00 days, respectively), while the longest latent period was recorded with
Sakha 94, Shandaweel 1, Misr 2, and Giza 171 (14.33, 14.00, 12.00 and 12.00, respectively)
(Figure 2B). Moreover, the stripes length (Figure 2C) and infection frequency (Figure 2D)
differed significantly between all the genotypes; however, Shandaweel 1, Misr 2, Giza171,
and Sakha 94 exhibited the lowest values of both components. On the other hand, the
genotypes Giza 168, Gemmeiza 11, Sids12, and Morocco exhibited the higher values of both
components. Lack of spore production was recorded in the case of genotypes Gemmeiza
12, Sids14, and Misr 1. However, no pustules were produced on Sakha 95 and Misr 3
(Figure 2C,D).

2.3. Partial Resistance under Field Conditions during the Period from 2016 to 2021

Epidemiological parameters of stripe rust disease, i.e., final rust severity (FRS %), the
area under disease progress curve (AUDPC), rate of stripe rust increase (r-value), and
relative resistance index (RRI), were detected during five successive growing seasons from
2016/17 to 2020/21 to determine the partial resistance of the selected wheat genotypes
against Pst (Figure 3).
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Figure 3. Partial-resistance parameters of 13 selected wheat (Triticum aestivum) genotypes with
different degrees of tolerance against stripe rust disease caused by Puccinia striiformis f. sp. tritici (Pst)
under field conditions during five successive seasons from 2016 to 2021. (A) final rust severity (FRS %),
and (B) the area under disease progress curve (AUDPC). Values represent mean± standard deviation
(mean ± SD). LSDs (least significant difference) were calculated based on Duncan’s multiple range
test (p < 0.05).

2.3.1. Final Rust Severity (FRS %)

Final rust severity (FRS %) showed a range within the tested wheat genotypes and
within growing seasons, as shown in (Figure 3A). Sakha 95 and Misr 3 proved to be
highly resistant ones, which provided immune reaction during 2016/17 and 2017/18
seasons, and moderately resistant to stripe rust infection with low rust severity in 2018/19,
2019/20, and 2020/21 growing seasons. Giza 171, Sakha 94, Shandweel1, and Giza 168
genotypes slightly changed from moderately susceptible to susceptible response with low
rust severities during the five growing seasons. Great changes were observed concerning
Gemmeiza 12, Sids 14, Misr 1, and Misr 2, which showed resistant to moderately resistant
infection type (low disease severity) during 2016/17 and 2017/18 seasons, and highly
susceptible disease severity in 2018/19, 2019/20 and 2020/21 growing seasons (Figure 3A).
In contrast, some wheat genotypes, i.e., Gemmeiza 11, Sids 12, and Morocco, showed
inconstant results since they showed a highly susceptible response with the highest disease
severities along the five growing seasons.

2.3.2. Area under Disease Curve (AUDPC)

AUDPC was run in a parallel line with disease severity. The lowest values of AUDPC
were recorded in Sakha 95 and Misr 3 during all of the growing seasons. Giza 171, Sakha 94,
Shandweel1, Giza 168, and Sids 14 genotypes exhibited moderately AUDPC values, while
the highest values of AUDPC were recorded with Gemmeiza11, Gemmeiza 12, Sids12, Misr
1, Misr 2, and Morocco during the five years of study (Figure 3B).

2.3.3. Rate of Disease Increases (r-Value)

Data concerning the rate of disease increases (r-value) showed that the wheat geno-
types could be ranked into three groups: The first group included six genotypes, i.e., Sakha
95, Misr 3 Giza 171, Sakha 94, Shandweel1, Giza 168, and Sids 14, which exhibited stripe
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rust developed more slowly and increased at relatively lower rates of disease increase dur-
ing the five growing seasons (Figure 4A). The second group included Gemmeiza 12, Misr 1,
and Misr 2, which exhibited variable levels of r-values, starting with low r-values during
the 2016/17 and 2018/19 seasons, then the r-values reached the maximum levels during
the rest seasons and were classified as susceptible genotypes. The third group included
the genotypes Gemmiza 11, Sids 12, and Morocco, which recorded a highly susceptible
response to stripe rust infection, where the r-values reached the maximum level during all
the seasons and were classified as fast rusting wheat genotypes (Figure 4A).

Figure 4. Partial-resistance parameters of 13 selected wheat (Triticum aestivum) genotypes with
different degrees of tolerance against stripe rust disease caused by Puccinia striiformis f. sp. tritici (Pst)
under field conditions during five successive seasons from 2016 to 2021. (A) rate of stripe rust increase
(r-value), and (B) relative resistance index (RRI). Values represent mean ± standard deviation (mean
± SD). LSDs (least significant difference) were calculated based on Duncan’s multiple range test
(p < 0.05).

2.3.4. Relative Resistance Index (RRI)

The frequency distribution of RRI values of the five-season trials for wheat genotypes
is presented in (Figure 4B). All of the tested wheat genotypes showed desirable RRI to
stripe rust except the three wheat genotypes, i.e., Gemmeiza 11, Sids 12, and Morocco,
were placed under undesirable range during 2016/17 and 2017/18 growing seasons. While
during the 2018/19, 2019/20, and 2020/21 seasons, the six wheat genotypes, i.e., Gemmeiza
11, Gemmeiza 12, Sids 12, Misr 1, Misr 2, and Morocco, were placed under undesirable
range (Figure 4B).

2.3.5. Observation of Phenotypic of APR Gene Yr18

Leaf tip necrosis (LTN), a morphological trait, showed a complete linkage with the
Yr18 gene and could be used as a specific marker to identify wheat genotypes carrying
this gene. Only three cultivars (Sakha 95, Sakha 94, and Shandaweel1), along with NIL
Jupateco73 ‘R’, expressed LTN in the five growing seasons of the study, while the remaining
9 cultivars lacked LTN phenotype (Figure 5).



Plants 2021, 10, 2262 7 of 17

Figure 5. Leaf tip necrosis (LTN) displayed on the lamina of flag leaf of 13 selected wheat
(Triticum aestivum) genotypes with different degrees of tolerance against stripe rust disease caused
by Puccinia striiformis f. sp. tritici (Pst) compared with Yr18 gene related to adult plant resistance in
NIL Jupateco 73 ‘R’. LM: lamina, FT: forerunner tip (also known as Vorläuferspitze), LTN: leaf tip
necrosis, and PL: elongated lesions of yellow-orange urediniospores erupting from pustules (the
most characteristic symptom of stripe rust disease).

2.3.6. Molecular Analyses to APR Gene Yr18

The STS marker csLV34 was used and has shown polymorphism. This marker clearly
represented resistant genotypes by producing 150 bp product size while genotypes amplify-
ing 229 bp product size were susceptible for gene Yr18. Only positive control and Sakha 94
showed an amplified band of 150 bp, whereas 229bp band was amplified in 10 genotypes,
i.e., Sakha 95, Gemmeiza 11, Gemmeiza 12, Giza 168, Giza 171, Sids 12, Sids 14, Misr 1,
Misr 2, and Misr 3. However, Shandaweel 1 amplified the two bands 150 bp and 229 bp, as
shown in Figure 6A. Gene-specific marker cssfr1 showed a polymorphic profile with 517 bp
product size, indicating the presence of Yr18 gene in the only positive control, Sakha 94,
Sids 12, and Shandaweel 1 (Figure 6B). Marker cssfr2 amplified 52 bp fragments, indicating
the absence of the Yr18 gene in only four genotypes, namely, Gemmeiza 11, Giza 168, Giza
171, and Misr 1 (Figure 6C). Data of csLV34 and cssfr1 markers were corresponded to each
other except for Sids 12, while data of csLV34 and cssfr2 markers corresponded to each
other for genotypes, Sakha 94, Gemmeiza11, Giza 168, Giza 171, and Misr1. According
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to phenotypic and genotypic markers, Sakha 94 and Shandaweel1 proved to carry the
Yr18 gene (Figure 6D). The HCA analysis showed that both Sakha 94 and Shandaweel 1
genotypes were clustered together with the NIL Jupateco 73 ‘R’ (Cluster C-I) and separately
from other cultivars (Figure 6D). It is worth mentioning that there were no differences
among Gemmeiza 11, Giza 168, Giza 171, and Misr 1, which were clustered together at the
bottom of the dendrogram with no evidence for the presence of the Yr18 gene (Figure 6D).

Figure 6. Amplification profile of the genotypic markers tagging the gene Yr18 in 13 selected wheat
(Triticum aestivum) genotypes with different degrees of tolerance against stripe rust disease caused
by Puccinia striiformis f. sp. tritici (Pst) compared with Yr18 gene related to adult plant resistance
in NIL Jupateco 73 ‘R’. (A–C) Amplification profile of the genotypic markers csLV34, Cssfr1, and
Cssfr2, respectively. (D) Standardized two-way HCA based on amplification profile of the genotypic
markers (csLV34, Cssfr1, and Cssfr2) tagging the gene Yr18. Rows signify cultivars, while columns
represent the genotypic markers. The presence of the genes is indicated by the plus sign (+) and
colored red, whereas the absence of the gene is indicated by the minus sign (−) is colored green.
Two-way hierarchical cluster analysis (HCA) and its associated heatmap were visualized using JMP
Data analysis software-Version 15.

3. Discussion

Stripe rust incited by Puccinia striiformis f. sp. tritici (Pst) has been a sporadic problem
on wheat in Egypt, where epidemics arise mostly every decade. The disease has been
consistently serious in the district during recent years. The rise of new virulent races
of Pst can overcome the resistance constantly with the frequent replacement of wheat
cultivars [33]. Knowledge of the identity of the stripe rust resistance genes in released
cultivars is essential for the incorporation of new effective resistance genes into breeding
programs and maintenance of a diversity of resistance genes in commonly grown cultivars.
There is little information about adult plant resistance in Egyptian wheat cultivars, therefore,
we carried out this study to determine the adult plant resistance (APR) in wheat cultivars
at seedling and adult stages under greenhouse and field conditions during the period from
2016 to 2021.
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In the current study, the efficacy of the tested wheat genotypes against the Pst races
was evaluated at the seedling stage. The highest effective wheat genotypes were Misr 3,
Sakha 95, and Giza 171, while the remaining cultivars had low efficacy against these races.
It was evident that lacked seedling effective genes conferred resistance in wheat genotypes.
These results are in contract with those informed by Zhang et al. and Pretorius et al. [14,34].
The absence of most of the effective seedling genes from commercial varieties prevents any
forecasts of their response to aggressive stripe rust races.

At the adult stage, the results revealed that although all the tested genotypes were
equally inoculated with the same Pst race under favorable environmental conditions, there
was significant variation among them. The genotypes, Gemmeiza 11, Sids 12, and Giza168
showed the shortest incubation and latent periods and the highest disease severity, also
recorded the highest length of stripes and infection frequency. Consequently, these geno-
types could be classified as fast rusting. In contrast, the genotypes Sids 14, Misr1, and
Gemmeiza 12 showed the lowest disease severity, moderate incubation period, shortest
latent period, length of stripes, and infection frequency. In addition, the genotypes Sakha
95 and Misr 3 were free from infection; these genotypes could be categorized as resistant.
While the genotypes Shandaweel 1, Giza 171, Misr 2, and Sakha 94 showed moderate
susceptible responses and moderate values of the other trials, therefore, it could be char-
acterized as slow rusting. A similar pattern was observed by [35]. Confirmation of these
results [36] proves that the latent period was connected to the reaction type in which the
cultivars with susceptible reaction types had shorter latent periods compared with those
possessing resistant reactions.

Wheat genotypes responses under field conditions revealed high susceptibility to
stripe rust during all the seasons of study. More stripe rust epidemic was recorded in
the 2018/19 and 2019/2020 growing season than that in the previous two seasons, which
the stripe rust epidemic was relatively lower. Among 13 genotypes tested, only three
genotypes were moderately resistant to stripe rust during all the seasons, i.e., Sakha 95,
Misr 3, and Giza 171. It was also observed that genotypes Gemmeiza 12, Sids 14, Misr 1,
and Misr 2 rated resistant to moderately resistant in 2016/17 and 2017/18 seasons then
lost their resistance in the third season 2018/19 showing highly susceptible response. On
the contrary, Sids 12 and Gemmeiza 11 showed highly susceptible responses along the five
seasons with the highest values of FRS %, AUDPC, r-value, and RRI. However, only three
genotypes, Sakha 94, Shandaweel1, and Giza168, were distinct as possessing high levels
of partial resistance according to the studied parameters (FRS %, AUDPC, r-value, and
RRI) in five years of study. Based on the greenhouse and field data, genotypes Sakha 94,
Giza186, and Shandaweel1 carry slow-rusting resistance at the adult stage. This type of
resistance remains effective for a long time even if the pathogen changes its genotype [37].
These results run in the same trend with many other workers confirmed our finding in this
respect [38,39].

It could be a challenge to avoid stripe rust epidemics in Egypt due to various wheat
cultivars without genetic information that have been cultivated nationally. Therefore,
identifying the resistance genes in wheat cultivars is important to explain the relationship
between the host genetic pool and pathogen diversity. In the current study, stripe rust
resistance gene Yr18 was detected in Egyptian wheat genotypes.

Yr18 is an important gene in wheat as it confers race-nonspecific, durable resistance
to stripe rust and has been deployed for over 100 years [40]. The nucleotide sequence
of Yr18 spans 11,805 bp and consists of 24 exons, and is located on wheat chromosome
7DS [28]. Comparison of different wheat genotypes revealed two distinct haplotypes, a
susceptible (−Yr18) and a resistant (+Yr18) haplotype. The previously haplotypes varied in
three-nucleotide polymorphisms, two of which were located in exons, and only one single
nucleotide polymorphism (SNP) was located in intron 4 [27]. Studies of Singh et al. [41]
using the Jupateco73 ‘R’ near-isogenic reselections studies at CIMMYT have shown that
the gene Yr18 increases latent period at flag leaf stage and decreases infection frequency
and length of infection lesions to stripe rust in greenhouse experiments. In addition, slow-



Plants 2021, 10, 2262 10 of 17

rusting resistance based on Yr18 protected grain yield depending on cultivar response and
environmental condition, according to Ma and Singh, 1996 [42].

Postulating the presence or absence of the Yr18 gene in genotypes based on adult
plant reactions may be performed. However, this is complicated by the presence of other
resistance genes and the effects of environmental variability on expression. Analysis of
Yr18 in genotypes based on LTN has been used as a marker to identify wheat genotypes
carrying this gene. In the present study, LTN expression was observed positive in three
genotypes Sakha 95, Sakha 94, and Shandaweel 1, along with positive control Jupateco73
‘R’ in the five seasons, while the remaining 9 genotypes lacked LTN phenotype. Several
observations were conducted about the molecular basis of LTN by Krattinger et al. [27],
who noted that the LTN gene was induced in flag leaves of Yr18 containing lines when
compared to lines without the gene. Leaf tip necrosis was assessed by Kolmer et al. [40] to
predict the presence of Yr18 in 127 wheat genotypes at CIMMYT, Mexico. Only 52 lines
lacked the LTN phenotype and possessed the non-Yr18-associated csLV34a allele, and about
75 lines expressed LTN, 62 from them carried the Yr18-associated csLV34b allele, while the
remaining 13 lines had the csLV34a allele. Therefore, the background of the genotype and
the multigenic effects on overall leaf tip necrosis expression can lead to equivocal results,
and LTN is not equally expressed in all environments [26,43].

The importance of the adult plant rust resistance genes Yr18 was confirmed via the
use of tightly linked markers such as csLV34. Two alleles of csLV34 were detected, included
csLV34a (229 bp) and csLV34b (150 bp), which are associated with the susceptibility allele
and the Lr34 resistance allele, respectively [30]. In the present study, results revealed that the
STS marker csLV34 amplified 150 bp fragment in Sakha 94 and positive control, addressing
the presence of Yr18 gene, while 229 bp fragment was amplified in 10 genotypes and
reported to be linked with the absence of Yr18 gene. However, in Shandaweel 1 genotype,
which is heterozygous, and both bands are generated simultaneously. csLV34 marker, along
with phenotypic analysis, was used to assume the presence of Yr18 in wheat lines and
cultivars [31,44,45]. Briefly, although the csLV34b allele was reported in some susceptible
lines, a strong correlation was suggested between adult plant rust resistance and the
presence of this allele, csLV34b [31,44,45].

In order to assess more accurately the presence of Yr18 in the tested wheat genotypes,
the newly developed gene-specific markers, cssfr1 and cssfr2, which were developed
based on these sequence differences between the resistance and susceptibility alleles, were
used in this study [30]. Gene-specific marker cssfr1 produced 517 bp in Sakha 94, Sids
12, Shandaweel 1, and in the positive control, suggesting the presence of the Yr18 gene.
Four genotypes, Gemmeiza 11, Giza168, Giza 171, and Misr1, showed 523bp fragments,
indicating the absence of the Yr18 gene according to the cssfr2 marker. The two markers
csLV34 and cssfr1 produced very nearly results, except for Sids 12 genotypes. Similar results
were confirmed by Wu et al. [46] when evaluating some landraces were to stripe rust. These
landraces were predicted to have Yr18 based on the presence of the markers but had final
disease severities higher than 70%. Such a gene may be under the influence of a suppressor.
However, the results of markers csLV34 and cssfr2 correspond to each other for genotypes,
Gemmeiza 11, Giza168, Giza 171, and Misr1.

All used markers revealed that the frequency of the Yr18 gene is low in Egyptian wheat
cultivars and needs to be increased to broaden the race-nonspecific resistance against stripe
rust. In accordance with these results, the frequency of Yr18 is extremely high in Chinese
landraces at more than 80% that is much higher than that in other countries and regions
worldwide [40]. The csLV34 (b) allele was absent in most of the cultivars and was at low
frequency in North Africa, the Middle East, and Southwestern Europe, also reported that
in Egypt, the distribution of csLV34 alleles was (8,1) a and b alleles, respectively. Disparate
distribution at the csLV34 locus between cultivars may be directly or indirectly caused by
selection and breeding efforts aimed at joining Yr18 into these genotypes.

The Yr18 gene has been recently isolated and predicted to encode ABC-type proteins,
which belong to the superfamily of ABC transporters that produce proteins connected to the
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plasma membrane. This type of protein plays an important role in transferring a wide range
of materials in and out of the membrane. Cytotoxic macromolecules, including ions, can be
transported against the diffusion gradient on both sides of the cell membrane [27,47,48].
Therefore, the mechanism of Yr18 in providing relative resistance against stripe rust
pathogen maybe remove toxins, metabolites, or more harmful substances released by
pathogen into host cells; this makes the pathogen grow slowly with a long latent period
and smaller pustules compared to the hosts, which do not possess this gene [49,50]. Thus,
the deployment of durable resistance gene Yr18 is an effective strategy to stripe rust control.

4. Materials and Methods

The present investigation was conducted at the greenhouse and experimental farm of
stripe rust at Sakha Agriculture Research Station, Plant Pathology Research Institute (PPRI),
Agricultural Research Center (ARC), Kafr El-Shaikh, Egypt (31◦5′57.4224′ ′ N Latitude,
30◦54′55.8288′ ′ E Longitude), during the period from 2016 to 2021, and Plant Pathology
and Biotechnology Laboratory, Agricultural Botany Department, Faculty of Agriculture,
Kafrelsheikh University, Egypt. Meteorological data of the experimental site during the
5-years growing seasons (2016–2021) are presented in Figure 7.

4.1. Plant Materials

In the current study, the durability of adult plant resistance gene Yr18 in 12 wheat
genotypes (Table S1) was investigated. These genotypes included Sakha 94, Sakha 95,
Gemmeiza 11, Gemmeiza 12, Giza 168, Giza 171, Sids 12, Sids 14, Misr 1, Misr 2, Misr 3 and
Shandaweel 1 along with NIL Jupateco73 ‘R’ (Yr18 gene related to adult plant resistance)
and universally susceptible check Morocco. All plant materials were obtained from Wheat
Research Department, Field Crop Research Institute, ARC, Egypt.

4.2. Greenhouse Investigations
4.2.1. Seedling Tests

Twenty five prevalent and aggressive races of Puccinia striiformis f. sp. tritici detected
in Egypt from 2016 to 2020 namely 0E16, 128E28, 224E128, 66E0, 70E4, 172E52, 96E14,
64E0, 2E 16, 138E222, 100E38, 230E159, 2E0, 224E132, 238E143, 236E175, 160E173, 8E16,
68E200, 0E 28, 32E64, 151E80, 206E155, 236E175, and 230E30 were used to evaluate the
seedling response of the above mentioned genotypes compared with the highly susceptible
check Morocco. Briefly, eight-day-old seedlings of the tested genotypes were inoculated
separately with the urediniospores of each race and then incubated in a dew chamber at
10 ◦C for 24 h. At 24 h post incubation (hpi), the inoculated seedlings were moved to the
greenhouse, at 15 ± 2 ◦C, 80% ± 2% relative humidity, 8:16 h of light/dark period, and
7500 lux light intensity. Response of wheat seedling genotypes against different Pst races
was recorded 10–15 days post inoculation (dpi) based on infection types (IT) as described
by McNeal et al. [32]. Race was considered to be avirulent (resistant genotype) if it caused
infection type 1, 2, 3, 4, or 5 and considered to be virulent (susceptible genotype) if it
caused infection type 6, 7, 8, or 9. Gene efficacy for stripe rust resistance was calculated
by considering the number of susceptible responses over the total number of responses
to the tested races using Equation (1) according to the method adopted by Green [51] and
Omara et al. [52].

Gene efficacy (%) =
Number of susceptible responses

Total number of responses to tested races
× 100 (1)
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Figure 7. Meteorological data of the experimental site (31◦5′57.4224′ ′ N Latitude: 30◦54′55.8288′ ′ E
Longitude) during 5-years growing seasons (2016–2020). (A) Temperature at 2 m (◦C), (B) Relative
humidity at 2 m (%), and (C) Wind speed at 10 m (m s−1). Presented data is based on the most recent
available data on the Prediction of Worldwide Energy Resource (POWER; https://power.larc.nasa.
gov/data-access-viewer/, accessed on 19 September 2021) Project, the National Aeronautics and
Space Administration (NASA).

4.2.2. Slow-Rusting Components at Adult Stage

Pst race 230E159, which was detected in 2017/18, was chosen to assess slow-rusting
components at the adult stage during this year. A total of 10–15 wheat grains from
each genotype were grown in a 25 cm diameter pot. Three biological replicates (pots)
were used for each genotype and were inoculated with race 230E159 at the booting stage
(corresponding to the phenological growth stages 41–45 on BBCH-scale) according to
Tervet, 1951 [53]. After 24 h of incubation in dew chamber under less than 100% relative
humidity and at 10 ± 2 ◦C, the inoculated pots were shifted to the greenhouse, where the

https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
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temperature was 12 ± 2 ◦C under 80% relative humidity. The latent period (LP) (time
from inoculation to pustule eruption) was measured according to Parlevliet [54]. The
lengths of randomly chosen stripes on each leaf were measured [22]. Infection frequency
was determined by measuring the infection lesions per unit leaf area (cm2) on the upper
side of the leaves, as described by Parlevliet and Kuiper [55]. At the adult plant stage,
infection type was assessed primarily according to the size of pustules and associated
necrosis or chlorosis. At the adult stage, disease severity (DS%) was recorded on different
genotypes, based on the percentage of leaf area covered with rust pustules. Field reaction
of leaf rust infection types was classified into five categories: immune (0), resistant (R),
moderately resistant (MR), moderately susceptible (MS), and susceptible (S) based on the
scale described by Johnston [56] and Stakman et al. [57].

4.3. Field Investigations

The wheat genotypes under study were separately planted in adjacent rows within
plots (3.5 × 3 m) in a randomized complete block design with three replicates. All plots
were surrounded by a spreader area of one meter in width planted with the highly suscep-
tible check Morocco. Artificial inoculation was relied on a mixture of virulent races of Pst,
according to Tervet, 1951 [53]. Recommended agronomic practices, including fertilization
dose and irrigation schedules, have been followed to maintain crop vigor. Briefly, phos-
phorus fertilizer (in the form of calcium superphosphate P2O5 15% P) and potassium (in
the form of potassium sulfate K2O 48% K) were added at the rate of 100 and 120 kg fed−1,
respectively, during land preparation. Moreover, nitrogen fertilizer (in the form of ammo-
nium nitrate 33.5% N) was applied at a rate of 300 kg fed−1 into three portions; 20% before
planting, 40% before the second irrigation, while the remaining portion (40%) was applied
before the third irrigation. Experimental plots were irrigated every 20–25 days as needed.
All other agronomic practices such as hilling weeds, pests, and diseases management were
conducted as recommended by the Ministry of Agriculture, Egypt.

4.3.1. Disease Assessment

Data on disease severity were noted four times, every 10 day’s intervals during the
five growing seasons 2016/17, 2017/18, 2018/19, 2019/20, and 2020/21. Two parameters
were included during the scoring, i.e., severity according to the Modified Cobb Scale [58]
and host reaction following Johnston, 1961 [56]. Epidemiological parameters expressed
as the rate of stripe rust increase (r-value) and the area under the disease progress curve
(AUDPC) were estimated using the formulas approved by Jeffers and Plank, 1965 and
Pandey et al., 1989 [59,60]. The relative resistance Index (RRI) was calculated according
to [61]. The standard for the desirable index was maintained at ≤7, whereas the value for
the acceptable index was fixed as 6. The incidence or absence of leaf tip necrosis (LTN) was
verified on flag leaves after the heading stage (corresponding to the phenological growth
stages 54–56 on BBCH-scale) in the field during the five growing seasons [62].

4.3.2. Molecular Analyses for Yr18

Genomic DNA was isolated from seedlings of the tested wheat genotypes along
with positive control, NIL Jupateco 73 R following CTAB (Cetyl Tri-methyl Ammonium
Bromide) extraction method as illustrated by Chen et al. [63]. Fresh leaves (60 mg) were
freeze-dried, homogenized to a fine powder, allowed to thaw, and suspended in 1 mL of
CTAB DNA isolation buffer. After thorough mixing, 1 mL chloroform/isoamyl alcohol was
added, and samples were kept on a shaker for 20 min. The samples were then centrifuged
at 12,000 rpm for 20 min, and the top aqueous layer of each sample was transferred to a new
Eppendorf tube. The precipitate DNA was solved on 1 mL isopropanol then suspended
in TE buffer. PCR amplification was performed in a 10 µL reaction using csLV34, cssfr1,
and cssfr2 primers (Table S2). The reaction mixture contained 1.0 µL (10 picomol) each
of reverse and forward primers, 1.0 µL (2 mM) dNTPs, 1.0 µL 10× PCR buffer, 0.1 µL
(5 unit.µL−1) Taq polymerase, 2.0 µL DNA (60–70 ng template DNA) and 4.9 µL d-H2O.
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PCR was performed in an Eppendorf f Mastercycler® Gradient, at 94 ◦C for 3 min, followed
by 45 cycles of 15 sec at 94 ◦C, 15 sec at 58 ◦C, 15 sec at 72 ◦C, and a final extension step of
10 min at 72 ◦C. PCR products were resolved by electrophoresis in 1.2% agarose gel and
visualized under UV light following staining with ethidium bromide (500 µL.L−1).

4.4. Statistical Analysis

The trials were conducted in a randomized complete design with three replicates. All
data were square-root transformed to ensure normal distribution of residuals. The analysis
of variance of the data was performed with the software package SPSS 22. Duncan’s
multiple range tests were used to compare treatment means [64]. Furthermore, two-way
hierarchical cluster analysis (HCA) and its associated heatmap were used to visualize the
seedling response against Pst races, as well as the amplification profile of the genotypic
markers (csLV34, Cssfr1, and Cssfr2).

5. Conclusions

It could be concluded that the presence of variable levels of resistance among the
Egyptian wheat genotypes, Sakha 94, Giza 168, and Shandaweel1 carrying slow rusting
at the adult stage and may have APR resistance genes. Analysis of Yr18 gene related to
APR was performed, genotypes Sakha 94 and Shandaweel1 proved to carry Yr18 based
on phenotypic and genotypic markers. Growing of these cultivars is recommended to
minimize losses due to stripe rust disease, and the Yr18 gene can be deployed to develop
new resistant wheat cultivars.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10112262/s1, Table S1: Name and pedigree/selection history of wheat genotypes used
in this study; Table S2: Marker name, sequences, PCR annealing temperature, expected product size,
and reference used for the analysis of Yr18 in selected wheat genotypes.
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