Cytotoxic and Genotoxic Evaluation of the Aqueous and Hydroalcoholic Leaf and Bark Extracts of Crataegus oxyacantha in Murine Model
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Plant Material
4.3. Preparation of the Aqueous and Hydroalcoholic Leaf and Bark Extracts of C. oxyacantha
4.4. Animals
4.5. Groups and Test Agent Treatments
4.6. Sample Preparation and Micronucleus Analysis in Mice
4.7. Statistical Analysis
4.8. Ethical Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wang, J.; Xiong, X.; Feng, B. Effect of Crataegus usage in cardiovascular disease prevention: An evidence-based approach. J. Evid. Based Complement. Altern. Med. 2013, 2013, 149363. [Google Scholar]
- Afsheen, N.; Jahan, N.; Ijaz, M.; Manzoor, A.; Khan, K.M.; Hina, S. Cardioprotective and Metabolomic Profiling of Selected Medicinal Plants against Oxidative Stress. Oxid. Med. Cell. Longev. 2018, 2018, 9819360. [Google Scholar] [CrossRef] [Green Version]
- Vijayan, N.A.; Thiruchenduran, M.; Devaraj, S.N. Anti-inflammatory and anti-apoptotic effects of Crataegus oxyacantha on isoproterenol-induced myocardial damage. Mol. Cell Biochem. 2012, 367, 1–8. [Google Scholar] [CrossRef]
- Tadić, V.M.; Dobrić, S.; Marković, G.M.; Ðorđević, S.M.; Arsić, I.A.; Menković, N.R.; Stević, T. Anti-inflammatory, gastroprotective, free-radical-scavenging, and antimicrobial activities of hawthorn berries ethanol extract. J. Agric. Food Chem. 2008, 56, 7700–7709. [Google Scholar] [CrossRef]
- Arya, V.; Kashyap, C.P.; Thakur, N. Phytopharmacological Properties and Clinical Applications of Crataegus oxyacantha (Crataegus Laevigata). J. Tradit. Chin. Med. 2012, 7, 23–31. [Google Scholar]
- Zeouk, I.; Balouiri, M.; Bekhti, K. Antistaphylococcal Activity and Phytochemical Analysis of Crude Extracts of Five Medicinal Plants Used in the Center of Morocco against Dermatitis. Int. J. Microbiol. 2019, 2019, 1803102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benmalek, Y.; Yahia, O.A.; Belkebir, A.; Fardeau, M.L. Anti-microbial and antioxidant activities of Illicium verum, Crataegus oxyacantha ssp monogyna and Allium cepa red and white varieties. Bioengineered 2013, 4, 244–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stelmakiene, A.; Ramanauskiene, K.; Petrikaite, V.; Jakstas, V.; Briedis, V. Application of dry hawthorn (Crataegus oxyacantha L.) extract in natural topical formulations. Acta Pol. Pharm. 2016, 73, 955–965. [Google Scholar]
- Kanyonga, M.P.; Faouzi, M.Y.; Zellou, A.; Essassi, M.; Cherrah, Y. Effects of methanolic extract of Crataegus oxyacantha on blood homeostasis in rat. J. Chem. Pharm. Res. 2011, 3, 713–717. [Google Scholar]
- Shanthi, S.; Parasakthy, K.; Deepalakshmi, P.D.; Devaraj, S.N. Hypolipidemic activity of tincture of Crataegus in rats. Indian J. Biochem. Biophys. 1994, 31, 143–146. [Google Scholar]
- Kashyap, C.P.; Arya, V.; Thakur, N. Ethnomedicinal and phytopharmacological potential of Crataegus oxyacantha Linn.—A review. Asian Pac. J. Trop. Biomed. 2012, 2, S1194–S1199. [Google Scholar] [CrossRef]
- Akila, M.; Devaraj, H. Synergistic effect of tincture of Crataegus and Mangifera indica L. extract on hyperlipidemic and antioxidant status in atherogenic rats. Curr. Vasc. Pharmacol. 2008, 49, 173–177. [Google Scholar] [CrossRef]
- Elango, C.; Jayachandaran, K.S.; Devaraj, S.N. Hawthorn extract reduces infarct volume and improves neurological score by reducing oxidative stress in rat brain following middle cerebral artery occlusion. Int. J. Dev. Neurosci. 2009, 27, 799–803. [Google Scholar] [CrossRef] [PubMed]
- Elango, C.; Devaraj, S.N. Immunomodulatory effect of Hawthorn extract in an experimental stroke model. J. Neuroinflamm. 2010, 7, 97. [Google Scholar] [CrossRef] [Green Version]
- Sokół-Łętowska, A.; Oszmiański, J.; Wojdyło, A. Antioxidant activity of the phenolic compounds of hawthorn, pine and skullcap. Food Chem. 2007, 103, 853–859. [Google Scholar] [CrossRef]
- Olah, N.; Burtescu, R.; Petrescu, S.; Brașovan, A.; Chișe, E.; Cobzac, S.A.; Hanganu, D. Phytochemical screening of different Crataegus oxyacantha extracts. Stud. Univ. Babes-Bolyai Chem. 2017, 62, 57–73. [Google Scholar] [CrossRef]
- Saeedi, G.; Jeivad, F.; Goharbari, M.; Gheshlaghi, G.H.; Sabzevari, O. Ethanol extract of Crataegus oxyacantha L. ameliorate dietary non-alcoholic fatty liver disease in rat. Drug Res. 2018, 68, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Mecheri, A.; Benabderrahmane, W.; Amrani, A.; Boubekri, N.; Benayache, F.; Benayache, S.; Zama, D. Hepatoprotective Effects of Algerian Crataegus oxyacantha Leaves. Recent Pat. Food Nutr. Agric. 2019, 10, 70–75. [Google Scholar] [CrossRef]
- Saoudi, M.; Salem, R.B.; Salem, M.B.; Brahmi, N.; Badraoui, R.; Nasri, M.; El Feki, A. Beneficial effects of Crataegus oxyacantha extract on neurobehavioral deficits and brain tissue damages induced by an insecticide mixture of deltamethrin and chlorpyrifos in adult wistar rats. Biomed. Pharmacother. 2019, 114, 108795. [Google Scholar] [CrossRef]
- Abdul, A.S.; Amin, R.; Suleiman, M.S. Hypotensive effect of Crataegus oxyacantha. Int. J. Crude Drug Res. 1987, 25, 216–220. [Google Scholar] [CrossRef]
- Jayalakshmi, R.; Thirupurasundari, C.J.; Devaraj, S.N. Pretreatment with alcoholic extract of shape Crataegus oxyacantha (AEC) activates mitochondrial protection during isoproterenol–induced myocardial infarction in rats. Mol. Cell. Biochem. 2006, 292, 59–67. [Google Scholar] [CrossRef]
- Cuevas-Durán, R.E.; Medrano-Rodríguez, J.C.; Sánchez-Aguilar, M.; Soria-Castro, E.; Rubio-Ruíz, M.E.; Valle-Mondragón, D.; Ibarra-Lara, L. Extracts of Crataegus oxyacantha and Rosmarinus officinalis attenuate ischemic myocardial damage by decreasing oxidative stress and regulating the production of cardiac vasoactive agents. Int. J. Mol. Sci. 2017, 18, 2412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjbar, K.; Zarrinkalam, E.; Salehi, I.; Komaki, A.; Fayazi, B. Cardioprotective effect of resistance training and Crataegus oxyacantha extract on ischemia reperfusion–induced oxidative stress in diabetic rats. Biomed. Pharmacother. 2018, 100, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Long, S.R.; Carey, R.A.; Crofoot, K.M.; Proteau, P.J.; Filtz, T.M. Effect of hawthorn (Crataegus oxyacantha) crude extract and chromatographic fractions on multiple activities in a cultured cardiomyocyte assay. Phytomedicine 2006, 13, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Alp, H.; Soner, B.C.; Baysal, T.; Şahin, A.S. Protective effects of Hawthorn (Crataegus oxyacantha) extract against digoxin-induced arrhythmias in rats. Anatol. J. Cardiol. 2016, 15, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Degenring, F.H.; Suter, A.; Weber, M.; Saller, R. A randomised double blind placebo controlled clinical trial of a standardised extract of fresh Crataegus berries (Crataegisan®) in the treatment of patients with congestive heart failure NYHA II. Phytomedicine 2003, 10, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Jalaly, L.; Sharifi, G.; Faramarzi, M.; Nematollahi, A.; Rafieian-Kopaei, M.; Amiri, M.; Moattar, F. Comparison of the effects of Crataegus oxyacantha extract, aerobic exercise, and their combination on the serum levels of ICAM-1 and E-Selectin in patients with stable angina pectoris. DARU J. Pharm. Sci. 2015, 23, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Guijarro, J.M. Los parámetros de seguridad en Fitoterapia. Rev. Fitoter. 2005, 5, 117–134. [Google Scholar]
- Luengo, M.T.L. Plantas medicinales: Interacciones con medicamentos y con otros fármacos vegetales. Offarm Farm. Soc. 2008, 27, 82–86. [Google Scholar]
- Nasri, H. Toxicity and safety of medicinal plants. J. HerbMed. Pharmacol. 2013, 2, 21–22. [Google Scholar]
- Saad, B.; Zaid, H.; Shanak, S.; Kadan, S. Introduction to Medicinal Plant Safety and Efficacy. In Anti-Diabetes and Anti-Obesity Medicinal Plants and Phytochemicals; Springer: Berlin/Heidelberg, Germany, 2017; Chapter 2; pp. 21–55. [Google Scholar]
- Tabach, R.; Mattei, R.; Carlini, E.L. Pharmacological evaluation of a phytotherapeutic product-CPV (dry extract of Crataegus oxyacantha L., Passiflora incarnata L. and Valeriana officinalis L.) in laboratory animals. Rev. Bras. Farmacogn. 2009, 19, 255–260. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, J.C.; de Oliveira, P.R.; Camargo-Mathias, M.I.; Perazzo, F.F.; Rosa, P.C.; de Mascarenhas Gaivão, I.O.; Maistro, E.L. Hepatic and splenic cytotoxic evaluation after Crataegus oxyacantha fruit extract administration on mice. Histol. Histopathol. 2019, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Yonekubo, B.T.; Alves, H.D.; de Souza, E.; Perazzo, F.F.; Rosa, P.C.; Gaivão, I.O.; Maistro, E.L. The genotoxic effects of fruit extract of Crataegus oxyacantha (hawthorn) in mice. J. Toxicol. Environ. Health Part A 2018, 81, 974–982. [Google Scholar] [CrossRef] [PubMed]
- De Quadros, A.P.; Mazzeo, D.E.; Marin, M.A.; Perazzo, F.F.; Rosa, P.C.; Maistro, E.L. Fruit extract of the medicinal plant Crataegus oxyacantha exerts genotoxic and mutagenic effects in cultured cells. J. Toxicol. Environ. Health Part A 2017, 80, 161–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez Lamar, Á.; Fonseca López, G.; Capiro Trujillo, N.; Fernández Fuentes, D. Propuesta de ruta crítica para la evaluación genotóxica de plantas medicinales en Cuba. Rev. Cuba. Farm. 2000, 34, 34–43. [Google Scholar]
- Denny, K.H.; Stewart, C.W. Acute, Subacute, Subchronic, and Chronic General Toxicity Testing for Preclinical Drug Development. In A Comprehensive Guide to Toxicology in Nonclinical Drug Development, 2nd ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 109–127. ISBN 9780128036204. [Google Scholar] [CrossRef]
- Schmid, W. The micronucleus tests. Mutat. Res. 1975, 31, 9–15. [Google Scholar] [CrossRef]
- Heedle, J.; Fenech, M.; Stopper, H.; Kirsch-Volders, M.; Bolognesi, C.; Nersesyan, A.; Thybaud, V. The Micronucleus Assay in Toxicology; Royal Society of Chemistry: London, UK, 2019. [Google Scholar]
- Sommer, S.; Buraczewska, I.; Kruszewski, M. Micronucleus Assay: The State of Art, and Future Directions. Int. J. Mol. Sci. 2020, 21, 1534. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, M.; MacGregor, J.T.; Gatehouse, D.G.; Adler, I.-D.; Blakey, D.H.; Dertinger, S.D.; Krishna, G.; Morita, T.; Russo, A.; Sutou, S. In vivo rodent erythrocyte micronucleus assay. II. Some aspects of protocol design including repeated treatments, integration with toxicity testing, and automated scoring. Environ. Mol. Mutagen. 2000, 35, 234–252. [Google Scholar] [CrossRef]
- Heddle, J.A.; Cimino, M.C.; Hayashi, M.; Romagna, F.; Shelby, M.D.; Tucker, J.D.; MacGregor, J.T. Micronuclei as an index of cytogenetic damage: Past, present, and future. Environ. Mol. Mutagen. 1991, 18, 277–291. [Google Scholar] [CrossRef]
- Krishna, G.; Petrere, J.; Anderson, J.; Theiss, J. Use of cyclophosphamide as a positive control in dominant lethal and micronucleus assays. Mutat. Res. Environ. Mutagenesis Relat. Subj. 1995, 335, 331–337. [Google Scholar] [CrossRef]
- Tripathi, P.; Tripathi, R.; Patel, R.K.; Pancholi, S.S. Investigation of antimutagenic potential of Foeniculum vulgare essential oil on cyclophosphamide induced genotoxicity and oxidative stress in mice. Drug Chem. Toxicol. 2013, 36, 35–41. [Google Scholar] [CrossRef]
- Niwa, A.M.; Oliveira, R.J.; Mantovani, M.S. Evaluation of the mutagenicity and antimutagenicity of soy phytoestrogens using micronucleus and comet assays of the peripheral blood of mice. Genet. Mol. Res. 2013, 12, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, B.; Ornelas, J.D.; Gardear, A.A.; Yahia, E.M.; Rios, C.; Zamudio, P.B.; Ibarra, V. Phenolic compounds of hawthorn (Crataegus spp.): Their biological activity associated to the protection of human health. Rev. Fitotec. Mex. 2018, 41, 339–349. [Google Scholar]
- Bhalli, J.A.; Neft, R.; Noteboom, J.; Tebbe, C.C.; Chan, M.; Kuhn, K.; Beevers, C. Caffeic acid genotoxicity: Correlation of the Pig-a assay with regulatory genetic toxicology in vivo endpoints. Environ. Mol. Mutagen. 2019, 60, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, R.S.; Abou Zeid, A.H.; El Hawary, S.S.; Sleem, A.A.; Ashour, W.E. Flavonoid constituents, cytotoxic and antioxidant activities of Gleditsia triacanthos L. leaves. Saudi J. Biol. Sci. 2014, 21, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Zúñiga, G.M.; Torres, O.; Zamora, A.L.; Gómez, B.C.; Ramos, M.L.; Gallegos, P.; López, A. Induction of micronucleated erythrocytes in mouse peripheral blood after cutaneous application of 5-fluorouracil. Arch. Med. Res. 2003, 34, 141–144. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilera-Rodríguez, F.R.; Zamora-Perez, A.L.; Galván-Moreno, C.L.; Gutiérrez-Hernández, R.; Reyes Estrada, C.A.; Esparza-Ibarra, E.L.; Lazalde-Ramos, B.P. Cytotoxic and Genotoxic Evaluation of the Aqueous and Hydroalcoholic Leaf and Bark Extracts of Crataegus oxyacantha in Murine Model. Plants 2021, 10, 2217. https://doi.org/10.3390/plants10102217
Aguilera-Rodríguez FR, Zamora-Perez AL, Galván-Moreno CL, Gutiérrez-Hernández R, Reyes Estrada CA, Esparza-Ibarra EL, Lazalde-Ramos BP. Cytotoxic and Genotoxic Evaluation of the Aqueous and Hydroalcoholic Leaf and Bark Extracts of Crataegus oxyacantha in Murine Model. Plants. 2021; 10(10):2217. https://doi.org/10.3390/plants10102217
Chicago/Turabian StyleAguilera-Rodríguez, Fany Renata, Ana Lourdes Zamora-Perez, Clara Luz Galván-Moreno, Rosalinda Gutiérrez-Hernández, Claudia Araceli Reyes Estrada, Edgar L. Esparza-Ibarra, and Blanca Patricia Lazalde-Ramos. 2021. "Cytotoxic and Genotoxic Evaluation of the Aqueous and Hydroalcoholic Leaf and Bark Extracts of Crataegus oxyacantha in Murine Model" Plants 10, no. 10: 2217. https://doi.org/10.3390/plants10102217
APA StyleAguilera-Rodríguez, F. R., Zamora-Perez, A. L., Galván-Moreno, C. L., Gutiérrez-Hernández, R., Reyes Estrada, C. A., Esparza-Ibarra, E. L., & Lazalde-Ramos, B. P. (2021). Cytotoxic and Genotoxic Evaluation of the Aqueous and Hydroalcoholic Leaf and Bark Extracts of Crataegus oxyacantha in Murine Model. Plants, 10(10), 2217. https://doi.org/10.3390/plants10102217