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Abstract: Global agricultural systems are under unprecedented pressures due to climate change.
Advanced nano-engineering can help increase crop yields while ensuring sustainability. Nanotechnol-
ogy improves agricultural productivity by boosting input efficiency and reducing waste. Alkaloids
as one of the numerous secondary metabolites that serve variety of cellular functions essential for
physiological processes. This study tests the competence of silver nanoparticles (AgNPs) in boosting
alkaloids accumulation in Catharanthus roseus suspension cultures in relation to the expression of C.
roseus Mitogen Activated Protein Kinase 3 (CrMPK3) and Strictosidine Synthase (STR) genes. Five
concentrations (5, 10, 15, 20 and 25 mg·L−1) of AgNPs were utilized in addition to deionized water as
control. Results reflected binary positive correlations among AgNPs concentration, oxidative stress
indicated with increase in hydrogen peroxide and malondialdehyde contents, activities of ascorbate
peroxidase and superoxide dismutase, expression of the regulatory gene CrMPK3 and the alkaloid
biosynthetic gene STR as well as alkaloids accumulation. These correlations add to the growing
evidence that AgNPs can trigger the accumulation of alkaloids in plant cells through a signaling
pathway that involves hydrogen peroxide and MAPKs, leading to up-regulation of the biosynthetic
genes, including STR gene.

Keywords: silver nanoparticles; Catharanthus roseus; H2O2; malondialdehyde; APX; SOD; CrMPK3;
STR; alkaloids

1. Introduction

Catharanthus roseus, belonging to Apocynaceae is an essential medicinal plant synthe-
sizing about 130 precious indole alkaloids [1], many of which are important for valuable
drugs [2]. The common precursor for monoterpenoid indole alkaloids (strictosidine) is
produced in the shikimate pathway step catalyzed by strictosidine synthases (STR) [3].
However, the low productivity and high cost of alkaloids chemical synthesis put C. roseus
as an alternative source for industrial extraction of such invaluable secondary metabo-
lites [4,5].

Plant secondary metabolites, including alkaloids, are important for the plant to inter-
act with its environment for adaptation and defense against different types of stress [6,7].
Heavy metals, at phytotoxic concentrations, bring about oxidative stress accompanied with
motivation in reactive oxygen species (ROS) generation [8]. Besides provoking ascorbate-
glutathione cycle enzymes and other antioxidant enzymes [e.g., catalase (CAT), peroxi-
dases (POD), and superoxide dismutase (SOD)]. Metabolic activities are directed towards
pathways consuming reduction equivalents. Consequently, the biosynthetic pathways of
reduced compounds, including alkaloids, are promoted [9,10]. The utilization of heavy
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metals to enhance alkaloids biosynthesis in C. roseus was recorded using Mn2+, Pb2+, and
Ni2+ [11], Hg2+ [12], Cu2+ [3], Cd2+ [13], Ag+ [14], Co2+ [15] and Cr2+ [16].

Mitogen-activated protein kinases (MAPKs) are a major group of protein kinases
playing a crucial role in coupling the perception of stressful stimuli with alterations in
gene expression [17]. MAPK cascade is fundamental for alkaloids biosynthesis while
experiencing stress conditions [18]. Up-regulation of several genes related to alkaloids
biosynthetic pathway coupled with stimulation of CrMPK3 expression was recorded in C.
roseus following copper treatments [3] and silver exposure [14].

Although stress promotes alkaloids production, it is usually associated with a decrease
in growth of the producing plant that may neglect an increase in the total amount of
alkaloids synthesized per plant [15]. Thus, stress should be manipulated to produce
the maximum enhancement in alkaloids production with minimum growth retardation.
Applying heavy metals, such manipulation can be achieved through variations in the
used metal concentration and stressful treatment duration. The unique characteristics of
nanoparticles, compared with their bulk counterparts, may provide an additional tool to
manipulate heavy metal-associated stress [19].

Silver nanoparticles (AgNPs) offer a unique biological activity and can function as
new stimulators for plant growth [20]. Positive effects of AgNPs include germination
stimulus, revitalization of growth, accumulation of biomass, improved induction and
proliferation of shoots or higher pigment content [21–23]. Several authors documented the
potential use of AgNPs- enhance accumulation of secondary metabolites in tissue cultures
of hazel [24], Cucumis anguria [25], Caralluma tuberculata [26], and Linum usitatissimum [27].
Nevertheless, few studies [25,26] were devoted to monitoring the impact of AgNPs on
alkaloids production in plant tissues and lacked elucidation for the genetic expression
profile underlying the biosynthetic pathway.

Plant cell and tissue cultures are routinely utilized to study and enhance alkaloids
production in C. roseus [28]. However, cell suspension culture is the start point for the
establishment of bioreactors and commercial production of the precious metabolites [29].

The aim of this work is to study the positive potential effect of using AgNPs in the
stimulation of alkaloids biosynthesis in C. roseus suspension cultures by triggering the
expression of CrMPK3 and STR genes.

2. Results
2.1. Growth Parameters

Regarding the corresponding control, AgNPs have a growth-promoting effect at
5 mg.L−1 manifested in about 15% significant increase in both fresh and dry weights
(Figure 1). Higher concentrations of AgNPs was associated with decrease in fresh weight
reaching about 55% of the corresponding control at 25 mg L−1. Dry weight remained
unaffected at 10 mg L−1 then decreased reaching about 73% of control at 15 mg L−1 that
remained insignificantly changed with furthur increases in AgNPs concentration.

2.2. Hydrogen Peroxide (H2O2) Content and Lipid Peroxidation

Compared with untreated cultures, AgNPs have no significant effect on H2O2 content
at 5 mg L−1 (Figure 2a). However, the increase in AgNPs concentration was associated with
a significant irregular increase in H2O2 content to be approximately doubled at 25 mg L−1.
Lipid peroxidation, symbolized with malondialdehyde (MDA) content, exhibited a more
or less similar trend following exposure to AgNPs (Figure 2b). It remained unaffected
at 5 mg L−1 then increased at higher concentrations reaching about 1.75 fold control at
25 mg L−1.
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Figure 1. Effects of AgNPs at concentrations of 5, 10, 15, 20 and 25 mg L−1 on fresh weight (a) and 
dry weight (b) of C. roseus cell suspension cultures. Means ± standard deviations (SDs), n = 3, Val-
ues followed by the same small letter within each column are not significantly different at p ≤ 0.05. 
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of the CrMPK3 gene at 5 mg L−1 (Figure 3a). The transcript abundance increased dra-
matically at 10 and 15 mg L−1 then steeply at higher concentrations reaching about 4.5 
folds of control at 25 mg L−1. Similar to CrMPK3 gene, STR gene expression remained in-
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ever, the higher AgNPs concentrations were associated with a significant increase in STR 
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Control cultures accumulate about 3 mg alkaloids in each gram of dried cells and 
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significant enhancements in alkaloids accumulation in cells to reach 1.42 folds of the 
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Figure 2. Effects of AgNPs at concentrations of 5, 10, 15, 20 and 25 mg L−1 on H2O2 content
(a) and MDA content (b) of C. roseus cell suspension cultures. Means ± standard deviations (SDs),
n = 3, Values followed by the same small letter within each column are not significantly different at
p ≤ 0.05.

2.3. Relative Expression of CrMPK3 and STR Genes

Compared with the corresponding control, AgNPs did not aggravate the expression of
the CrMPK3 gene at 5 mg L−1 (Figure 3a). The transcript abundance increased dramatically
at 10 and 15 mg L−1 then steeply at higher concentrations reaching about 4.5 folds of control
at 25 mg L−1. Similar to CrMPK3 gene, STR gene expression remained insignificantly
affected at 5 mg L−1, compared with control expression (Figure 3b). However, the higher
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AgNPs concentrations were associated with a significant increase in STR transcript to reach
a maximum of 3.1 folds of control at 20 mg L−1.
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CrMPK3 gene (a) and STR gene (b) of C. roseus cell suspension cultures. Means± standard deviations
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2.4. Alkaloids Content

Control cultures accumulate about 3 mg alkaloids in each gram of dried cells and
about 35 mg othese secondary metabolites in each liter liquid growth medium after filtering
the cells (Figure 4). Cellular accumulation of alkaloids remained insignificantly changed
at 5 mg L−1; however, higher AgNPs concentrations were accompanied with significant
enhancements in alkaloids accumulation in cells to reach 1.42 folds of the corresponding
control at 25 mg L−1. Alkaloids accumulation in growth medium declined significantly at
5 mg L−1 and remained comparaple with corresponding control upon exposure to AgNPs
at 10 mg L−1. Above 10 mg L−1, AgNPs significantly enhanced accumulation of alkaloids
in growth medium reaching about 1.7 folds of the corresponding control at 25 mg L−1.

2.5. Antioxidant Enzymes

APX activity significantly increased more or less gradually following exposure to
the increasing AgNPs concentrations reaching about 3.5 folds of control at 25 mg L−1

(Figure 5a). Assuming a slightly different trend, SOD activity increased in response to Ag-
NPs treatments reaching a maximum of about 2.5 folds of control at 25 mg L−1 (Figure 5b).
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Figure 5. Effects of AgNPs at concentrations of 5, 10, 15, 20 and 25 mg L−1 on APX activity (a) and
SOD activity (b) of C. roseus cell suspension cultures. Means ± standard deviations (SDs), n = 3,
Values followed by the same small letter within each column are not significantly different at p ≤ 0.05.

Correlation analysis (Table 1) reflected significant negative Pearson correlations be-
tween AgNPs concentration and growth parameters, while all other concerned parameters
appeared to be positively correlated with the concentration of AgNPs. Similar correlations



Plants 2021, 10, 2202 6 of 13

were demonstrated for each of H2O2 and MDA contents with other parameters. Positive
correlations were documented between CrMPK3 expression and STR expression as well as
alkaloids content, either in cells or secreted in growth medium.

Table 1. Pearson correlation matrix for AgNPs concentration and different evaluated parameters.

AgNPs
Conc.

Fresh
Weight

Dry
Weight

H2O2
Content

MDA
Content

APX
Activity

SOD
Activity

CrMPK3
Expression

STR
Expression

Alkaloids
in Cells

Fresh Weight −0.874 *
Dry Weight −0.839 * 0.948 *
H2O2 Content 0.883 * −0.848 * −0.790 *
MDA Content 0.928 * −0.848 * −0.852 * 0.841 *
APX activity 0.974 * −0.813 * −0.786 * 0.898 * 0.941 *
SOD activity 0.933 * −0.808 * −0.767 * 0.753 * 0.890 * 0.907 *
CrMPK3Expression 0.950 * −0.885 * −0.883 * 0.809 * 0.904 * 0.928 * 0.883 *
STRExpression 0.926 * −0.819 * −0.854 * 0.828 * 0.869 * 0.908 * 0.776 * 0.904 *
Alkaloids in cells 0.883 * −0.802 * −0.722 * 0.787 * 0.778 * 0.853 * 0.892 * 0.821 * 0.767 *
Alkaloids in
medium 0.860 * −0.814 * −0.844 * 0.685 * 0.835 * 0.834 * 0.763 * 0.902 * 0.927 * 0.751 *

* Correlation is significant at the 0.05 level.

3. Discussion

Results of the present investigation reflected a biphasic effect of AgNPs on the growth
of C. roseus cells. The available literatures provide contradictory results for the impact
of AgNPs on plant growth [20]. Such effect seems to vary with particle size, shape, and
concentration and is complicated with the treated plant material. The growth stimulation
observed at low concentration, as shown in Figure 1, can be explained in light of the
study conducted by Castro-González et al. [30] on stevia (Stevia rebaudiana B.) in vitro
seedlings. The authors attributed the growth-promoting effect of low concentrations of
AgNPs to inhibition of ethylene biosynthesis and improvement of nutrient accumulation
and antioxidant metabolism.

In the same context, Gupta et al. [31] related the growth promotion recorded for Oryza
sativa seedlings following AgNPs treatments to the acompanied increase in antioxidant
enzymes activity that reduces oxidative stress and hydrogen peroxide content and prevents
lipid peroxidation that appeared obviously in our results at 5 mg L−1. The inhibitory effect
of AgNPs on ethylene biosynthesis [32] combined with the role of ethylene in signaling
alkaloids production [33] can be used to explain the decrease in alkaloids accumulation in
growth medium recorded in the current study.

Starting from 10 mg L−1, AgNPs showed a growth retarding effect (Figure 1) that
can be attributed to the accompanied negatively correlated oxidative stress as manifested
by an increase in H2O2 content and the resultant increase in lipid peroxidation products.
These symptoms of oxidative stress were observed following exposure to AgNPs in rice
seedlings [34], wheat callus [35], Pisum sativum seedlings [36], lettuce plants [37], Salvia
officinalis seedlings [38], and Allium cepa root tips [39].

Recently, AgNPs have been a major revealer of bioactive molecule production. Many
research reports have proven that the NPs could alter the secondary metabolism in plant
and culture systems [40]. Despite the need for more research to understand the mecha-
nism, some evidence suggests that NPs lead to the production of reactive oxygen species
(ROS) and other second messengers, altering transcriptional regulation of plant secondary
metabolism [41].

Plants typically produce H2O2 as a common metabolite for various cellular processes
required for growth and development [42]. Nevertheless, H2O2 level rises significantly
following exposure to different types of abiotic stress as a consequence of exaggerated
energy and/or damaging of membrane system of chloroplast and mitochondria [43].

To cope with oxidative stress and to hunt the ROS, plants activate several metabolic
pathways, including MAPK pathway, which is suggested as one of the plant’s early re-
sponses to AgNPs treatment [41]. Results of the current study reflected a positive correla-
tion between expression of CrMPK3 gene (Figure 3) and each of AgNPs concentration and
H2O2 generation. H2O2–mediated induction of MAPK cascade was recorded in several
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plant species, including Brassica napus [44], Nicotiana tabacum [45], soybean leaves [46] and
maize leaves [47]. H2O2 may activate MAPK pathway through the inactivation of MAPK
repressors [48].

Induction of MAPK cascade transcriptionally elicits alkaloids biosynthesis to reduce
ROS accumulation through their inhibitory effect on NADPH-oxidase, the key enzyme
for ROS production [49]. Thus, our results reflected positive correlations between each
of AgNPs concentration, H2O2 content, and expression of CrMPK3 gene on one side and
expression of STR gene as well as alkaloids content on the other side. Supporting these
correlations, Khataee et al. [16] recorded that the enhancement of alkaloids accumulation
following exposure to chromium was associated with an increase in lipid peroxidation and
upregulation of MAPK and STR genes. In addition, Huerta-Heredia et al. [50] recorded an
increase in alkaloids content in Uncaria tomentosa root cultures following exposure to H2O2.
Working on the same plant, Vera-Reyes et al. [51] recorded the same findings in addition to
documentation of accompanied-up regulation of STR gene.

The synchronization between up-regulation of CrMPK3 and STR genes and increase
in alkaloids accumulation in C. roseus was recorded following exposure to different types
of elicitors, including wounding, UV and methyl jasmonate [52], ethylene and copper [3],
and silver nitrate combined with methyl jasmonate [14]. In a similar context, Fouad
and Hafez [15] recorded a positive correlation between expression of CrMPK3 gene and
alkaloids content in C. roseus suspension cultures experiencing oxidative stress symptoms
following exposure to cobalt ions and cobalt nanoparticles.

The potential use of AgNPs to enhance alkaloids biosynthesis was proven in hairy
root cultures of Datura metel [53] and Isatis constricta in vitro plants [54]. The increase in
alkaloids content in cells without an associated increase in growth medium recorded in
our results at 10 mg L−1 may reflect intracellular sinks for the newly synthesized alkaloids
to cope the oxidative stress before immobilization to growth medium or suggest the ability
of cells to retain alkaloids within intracellular specialized structures avoiding cytotoxicity
with high concentrations in the growth medium [55].

Adding to antioxidant response against AgNPs-generated ROS, MAPKs stimulate
expression and activities of antioxidant enzymes that are clearly demonstrated in positive
correlations among AgNPs concentration, H2O2 content, expression of CrMPK3 gene, and
activities of APX and SOD in the present study. An increase in the activities of antioxidant
enzymes following exposure to AgNPs was recorded by Nwaichi and Anosike [56] in Vigna
subterranea plants, Barbasz et al. [35] in Pisum sativum seedlings, Ali et al. [26] in Caralluma
tuberculata callus, and Jadczak et al. [57] in lavender in vitro plants. The involvement
of MAPKs in the enhancement of antioxidant enzymes in response to oxidative stress
is well documented in C. roseus suspension cultures [15], maize leaves [47], and wheat
plants [58]. Summary for the action mechanism for AgNPs-mediated alkaloids biosynthesis
in Catharanthus roseus in Figure 6 suggests induction of MAPKs genes that upregulate STR
gene and enhances antioxidant enzemes.
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4. Materials and Methods
4.1. Silver Nanoparticles Characterization and Dispersion

AgNPs were purchased from Nanotech, Cairo, Egypt, as roughly spherical 20–30 nm
particles dispersed in deionized water (DW) in a concentration of 1mg/mL. Shape and
size were confirmed with transmission electron microscopy (TEM) in our previous publica-
tion [59]. Experimental concentrations were prepared by diluting stock solution in DW,
just before use, and sonication for 30 min at100 W and 30 kHz.

4.2. Plant Material and Explant Preparation

Healthy C. roseus seeds (generously afforded by Horticulture Research Institute, Agri-
cultural Research Centre, Giza, Egypt) were surface sterilized sequentially in 70% (v/v)
ethanol and 0.1% (m/v) HgCl2 for 1 and 10 min, respectively. Sterilized seeds were rinsed
several times in sterile distilled water after that transferred into 350 mL jars (10– 15 seed
per jar) containing germination medium. The medium was Murashige, and Skoog salts
and vitamins [60] enrich with sucrose (30 gL−1) and solidified with agar (7 gL−1). The
medium was autoclaved for 20 min at 121 ◦C after pH adjustment at 5.8. Cultures were
incubated at 25 ± 2 ◦C and lighted at 30 µmol m−2 s−1 with 16/8 h photoperiod. After one
week, seedlings were used as a source of hypocotyl explants.

4.3. Tissue Cultures and Silver Treatments

Cultures were established as described by Fouad and Hafez [61]. Calli were initiated
on hypocotyl explants using callus induction medium of germination medium to which
0.5 mg.L−1 kinetin and 1.0 mgL−1 of each of 2,4- dichlorophenoxyacetic acid (2,4-D) and
indole acetic acid (IAA) were added. Cultures were maintained in dark at 25 ± 2 ◦C for
one month; then, the originated calli were subcultured on the same but fresh medium with
time intervals of one month under the same growth conditions. Cell suspension cultures
were initiated in 500 mL flasks, each containing 200 mL callus induction medium lacking
agar. Each flask was aseptically inoculated with 10 g calli then placed on an orbital shaker
at 130 rpm. Every 10 days, cultures were divided into 20 mL aliquots that transferred
to 180 mL fresh medium for subculture. After one week of the fourth subculture, filter-
sterilized aqueous AgNPs solution was aseptically introduced into cultures to reach a final
concentration of 5, 10, 15, 20 and 25 mgL−1. In control cultures, AgNPs were replaced with
DW. Cells were collected, by filtration, for different analyses 4 and 72 h after applying silver
treatments. The 4 h treatment was dedicated for real-time quantitative PCR while 72 h
treatment was devoted for other measurements. Fresh weights were quantified, then cells
were crushed into a fine powder with the aid of liquid nitrogen and stored at −80 ◦C till
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used. Dry weights were determined after a drying step at 50 ◦C till unchangeable weight.
Dried cells and liquid growth medium were utilized to quantify alkaloids accumulated in
cells and excreted in medium, respectively.

4.4. H2O2

H2O2 content was quantified according to the method outlined by Loreto and Ve-
likova [62]. 0.5 g cells were homogenized in 2.5 mL of freshly prepared trichloroacetic acid
(0.1% (w/v)) in an ice bath. The homogenate was centrifuged for 20 min at 4 ◦C and 10,000
g. 0.5 mL of the clear supernatant was mixed with an equal volume of 10 mM potassium
phosphate buffer (pH 7.0) and 1 mL of 1.0 M KI. The absorbance was recorded at 390 nm,
and the amount of H2O2 (nmol g−1 fresh weight) was computed based on a standard curve
constructed using different known concentrations of H2O2.

4.5. Lipid peroxidation assay

Lipid peroxidation was evaluated by quantification of malondialdehyde (MDA) for-
mation employing the thio¬barbituric acid method Stewart and Bewley [63]. Liquid
nitrogen-grinded cells belonging to 72 h treatment were blended with 100 mM Tris–HCl
buffer, pH 7.4, containing 1.5% (m/v) polyvinylpyrrolidone (PVP). The homogenate was
filtered, then the filtrate was centrifuged for 15 min at 15,000× g. 1 mL transparent su-
pernatant was incubated at 90 ◦C with 4 mL of 20% (m/v) trichloroacetic acid containing
thiobarbituric acid in a concentration of 0.5% (m/v). 30 min later, tubes were cooled and
centrifuged for 15 min at 15,000× g. The MDA concentration was computed in the super-
natant based on its extinction coefficient of 155 mM−1 cm−1, and absorbance was read at
532 nm after subtraction of nonspecific absorbance at 600 nm.

4.6. Antioxidant Enzymes and Soluble Proteins

Stored frozen powder of 72 h treatment was mixed with extraction solution of 50 mM
potassium phosphate buffer (pH 7.8), 0.2 mM EDTA and 1% PVP (m/v) [64]. The ho-
mogenate was centrifuged at 4 ◦C for 15 min at 20,000× g then the clear supernatant
was used for assessment of ascorbate peroxidase (APX) and SOD activities as well as
quantification of soluble proteins content.

Ascorbate peroxidase (APX) activity was assessed according to the protocol outlined
by Nakano and Asada [65] using a reaction mixture of 50 mM phosphate buffer, pH 7.0,
0.5 mM ascorbate, 1.2 mM H2O2, and 0.1 mM EDTA. The rate of decrease in oxidised
ascorbate absorbance was recorded at 290 nm, and APX activity was computed using
the extinction coefficient of 2.8 mM−1 cm−1 for ascorbate. SOD activity was evaluated
according to the method described by Beauchami and Fridovich [66] through monitoring
the inhibition of photochemical reduction of nitroblue tetrazolioum (NBT). The assay was
conducted using a reaction mixture of 50 mM phosphate buffer (pH 7.8), 33 mM NBT,
0.66 mM Na-EDTA, 10 mM methionine, and 3.3 mM riboflavin at a light intensity of
300 µmol m−2 s−1. After 10 min at 25 ◦C, the change in OD was recorded at 560 nm. 50%
inhibition in NBT reduction was defined as one SOD unit [67].

Soluble proteins were estimated at 750 nm as outlined by Lowry et al. [68] employing
Folin-Ciocaltcau reagent and bovine serum albumin-based calibration curve.

4.7. Alkaloid Extraction and Determination

Alkaloid extraction and determination was carried out, as described by Lee et al. [69]
for dry weights and broth of 72 h treatments. Fine powder of oven-dry cells was extracted
three times in methanol. The three extracts were mixed then the solvent was vacuum-
evaporated. In the separating funnel, the residue was shaken in acid water (pH 3) and
petroleum ether. The aqueous phase was collected alkalinized to pH of 8.5 using 1 M
NaOH, then total alkaloids were extracted with chloroform in a subsequent step. The
collected liquid growth medium was acidified to pH 3 and shaked with petroleum ether;
then extraction was proceeded as described for dried cells. Total alkaloids content was
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computed by comparing OD recorded at 280 nm with an ajmalicine (Sigma-Aldrich, St.
Louis, MO, USA)-based standard curve.

4.8. Real-Time Quantitative PCR

Fresh cells collected from 4 h treatments were used for total RNA extraction with the
aids of Direct-zol™ RNA MiniPrep (http://www.zymoresearch.com (accessed on 10 Octo-
ber 2020)). After a purification step, residual genomic DNA was eliminated using DNase
(Fermentas, Waltham, MA, USA) then RNA purity and concentration were evaluated us-
ing Nanodrop spectrophotometer (ND−2000c, Thermo Fisher Scientific, Wilmington, DE,
USA). One µg purified RNA was devoted for cDNA synthesis employing Sensi¬FAST™
cDNA synthesis kit (http://www.bioline.com (accessed on 10 October 2020)). CrMPK3
and STR cDNAs were quantitatively amplified with the aid of a Mx3000P (Stratagene,
CA, USA) qPCR system using specific primers (Table 2) [55]. The transcription level of
actin was used as an endogenous control to which the transcription level of CrMPK3 and
STR genes were normalized using the 2-∆∆Ct method [70]. The amplification protocol
consisted of 40 amplification cycles (95 ◦C for 15 s and 60 ◦C for 60 s) preceded by 95 ◦C for
10 min. Expression estimated in cells collected from control cultures was employed as a
quantification unit.

Table 2. List of primers used for qRT-PCR (5′–3′).

Gene Primers Sequence

Actin 5′-CTATGTTCCCAGGTATTGCAGATAGA-3′

5′-GCTGCTTGGAGCCAAAGC-3′

CrMPK3 5′ACGAAATGAGGATGCAAAAAGATAC-3′

5′-TGCTAACTGCTGACGAGGGAAT-3′

STR 5′-TGCTTCACTCCCATCATTTACAGT-3′

5′-CTGCCATCATGGATTTAGATTCAG-3′

4.9. Statistical Analysis

Results of all treatments were exhibited as the mean of three replicates ± standard
deviation (SD). Significant differences between different treatments was tested using the
least significant difference (LSD) post-hoc test at level of significance set at p ≤ 0.05 using
SPSS v. 14. Correlations between parameters were calculated using Minitab v. 10.0 software
based on Pearson correlation at p values < 0.05.

5. Conclusions

Thus, we can conclude that exposure to AgNPs was associated with oxidative stress
manifested in an increase in H2O2 content and lipid peroxidation products that provoked
antioxidant defense through MAPK cascade represented by CrMPK3. The induced MAPK
transcriptionally induces alkaloids biosynthetic genes, including STR gene enhancing alka-
loids accumulation to prevent ROS formation. In addition, the induced MAPK provoked
antioxidant enzymes to scavenge the generated ROS. The results suggest a mechanism for
the potential role of AgNPs in the enhancement of alkaloids accumulation in plant cells
through a signaling pathway that involves H2O2 and MAPKs, leading to up-regulation of
the biosynthetic genes, including STR gene.
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