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Abstract: In Europe, mainly due to industrial desulfurization, the supply of soil sulfur (S), an essential
nutrient for crops, has been declining. One of the currently promoted sources of renewable energy is
biogas production, which produces S as a waste product. In order to confirm the effect of the foliar
application of waste elemental S in combination with liquid urea ammonium nitrate (UAN) fertilizer,
a vegetation experiment was conducted with maize as the main crop grown for biogas production.
The following treatments were included in the experiment: 1. Control (no fertilization), 2. UAN,
3. UANS1 (N:S ratio, 2:1), 4. UANS2 (1:1), 5. UANS3 (1:2). The application of UAN increased the
N content in the plant and significantly affected the chlorophyll content (N-tester value). Despite
the lower increase in nitrogen (N) content and uptake by the plant due to the application of UANS,
these combinations had a significant effect on the quantum yield of PSII. The application of UANS
significantly increased the S content of the plant. The increase in the weight of plants found on the
treatment fertilized with UANS can be explained by the synergistic relationship between N and S,
which contributed to the increase in crop nitrogen use efficiency. This study suggests that the foliar
application of waste elemental S in combination with UAN at a 1:1 ratio could be an effective way to
optimize the nutritional status of maize while reducing mineral fertilizer consumption.

Keywords: chlorophyll content; fluorescence parameters; plant weight; plant nutrient content;
nitrogen use efficiency

1. Introduction

One of the principles of the European Green Deal is the proposal of greenhouse
gas emissions cut by at least 55% by the year 2030, which should set Europe to a path
to becoming climate-neutral by the year 2050 [1]. According to the European Biogas
Association (EBA), biogas, biomethane, and other renewable gases will play a key role in
helping Europe’s transition to a clean energy system [2], and the European Commission’s
strategies promise targeted support for biogas in the revised Renewable Energy Directive
and gas legislation. EBA, Eurogas, and the Gas for Climate consortium are calling for an
EU-wide renewable target of at least 11%. The annual production of biogas in Europe
reaches 15.8 bcm and is relatively stable with a total of 18,943 biogas plants according to
the EBA [3].

A biogas plant produces biogas, which can then be used for the cogeneration of
electricity and heat. Biogas is a mixture of methane, carbon dioxide, and other components
such as hydrogen sulfide (H2S) [4]. The biogas must be pretreated before use. The first
step of the purification process is the removal of H2S, which is corrosive and harmful to
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health [5,6]. Biogas production is thus associated with the production of waste products.
The utilization of waste sulfur obtained from the purification process seems to be promising
from the point of view of plant nutrition and especially from the economic aspect of biogas
production [7,8] and sulfur deficiency in the environment.

European SO2 emissions have been reduced by 70–80% since 1990 [9,10]. According
to results of Engardt et al. [11], sulfur deposition in Europe will decrease until, at least,
2050. For example, in the Czech Republic, atmospheric sulfur deposition is about 5 kg/ha
per year [12], so there is a shortage of sulfur in the soil, as it has been presented by
many authors [13–18]. According to Zbíral et al. [19], a statistically highly significant
decrease in the soil S content caused by reduction of SO2 emissions in the long-term field
experiments in Czech Republic from 33 mg/kg in 1981 to 8 mg/kg in 2017. Therefore,
it is necessary to pay special attention to fertilization by sulfur in addition to the other
essential nutrients, especially because of the increased cultivation of crops with high sulfur
requirements [19,20]. Sulfur in plants is essential for the synthesis of cysteine, methionine,
and some vitamins [21]. The deficiency of sulfur in maize as the main crop for biogas
production not only reduces yield but also quality parameters such as the content of starch,
carbohydrates, and proteins [22]. Sulfur is usually applied in the form of mineral fertilizers,
and co-application with nitrogen is recommended by many authors as these nutrients
have been proven to have good synergy [23,24]. Salvagiotti and Miralles [25] showed that
S addition increased the biomass and grain yield of cereal and the positive interaction
of N and S, which resulted in a greater nitrogen use efficiency. A shortage of S supply
also lowers the utilization of nitrogen and results in a deterioration in crop quality [26].
As sulfur is an essential constituent of enzymes involved in nitrogen metabolism, its
deficiency could lead to a decrease in N assimilation [27,28]. Some reports have shown
the accumulation of nitrates in S-deficient plants [29]. In addition, Haneklaus et al. [30]
reported that each kg of S deficit causes 15 kg of nitrogen to be lost in the environment.
Maize is an important crop that, despite its relatively low sulfur requirements, is severely
affected by its deficiency [31,32].

Nitrogen is essential for plants in terms of biomass and yield production [33]. In addi-
tion to the conventional nitrogen fertilization of the soil, the nutritional status of the plants
can be optimized by foliar fertilization during the plant growth [34]. Foliar fertilization
could be used under farming conditions as a quick correction for unexpected nutrient defi-
ciencies, for the late supply of N (and another nutrients) during advanced growth stages,
and as a preventive measure against unsuspected (or hidden) deficiencies [35–38]. The
foliar application of nutrients is also recommended when the soil or the plant conditions
limit the availability of some nutrients [39] and is appropriate under conditions when high
loss rates of soil-applied nutrients may occur [40]. For example, the foliar application of
nitrogen has significantly improved the grain yield of maize [41] and other cereal crops [42].

The aim of this study was to verify the effect of the foliar application of waste ele-
mental sulfur from biogas production in combination with conventional liquid fertilizers
UAN applied in different ratios. Such a reutilization of waste sulfur from biogas plants
back in agriculture is suitable from the economic aspect of biogas purification and waste
management. The application of this sulfur could help to reduce the consumption of
mineral fertilizers and, at the same time, address the deficient sulfur content in the soil
and plants.

2. Results and Discussion

The application of UAN fertilizer alone and in combination with sulfur increased
the chlorophyll content (N-tester value) in maize leaves compared to the unfertilized
control. The increase in chlorophyll was evident at both monitoring terms (t1 and t2), while
the differences between the control (N-unfertilized treatment) and the N (UAN) and NS
(UANS1-3)-fertilized treatments increased over time (Table 1).
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Table 1. The effect of the foliar fertilizer application on chlorophyll contents (N-tester value).

Treatment
t1 t2

N-Tester Value Rel. % N-Tester Value Rel. %

Control 271 ± 5 f 100.0 196 ± 12 g 100.0
UAN 465 ± 11 a 171.6 379 ± 13 cd 193.4

UANS1 397 ± 14 bc 146.5 349 ± 28 de 178.0
UANS2 414 ± 11 b 152.8 325 ± 12 e 165.8
UANS3 393 ± 12 bc 145.0 319 ± 13 e 162.8

The values in the table represent the arithmetic mean (n = 8) ± SD (standard deviation). The same letters next to
the numbers describe no statistically significant differences between the treatments (Fisher’s LSD test, p < 0.05).
The relative expression of the values is shown in the column marked Rel. % (Control = 100%). The measurements
were performed at two growth stages, t1 (5th true leaf) and t2 (6th true leaf).

The N-tester values were significantly correlated with the rate of nitrogen applied in
fertilizers at both terms, as presented in Figure 1. The results agree with several studies
that have reported a strong correlation between chlorophyll content and the amount of
nitrogen in leaves [43–47].
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Figure 1. Dependence of N-tester value on nitrogen dose. The measurements were carried out on the 1st (t1) and 2nd (t2) 
growth stages of maize. 
Figure 1. Dependence of N-tester value on nitrogen dose. The measurements were carried out on the 1st (t1) and 2nd (t2)
growth stages of maize.

Nitrogen is part of the enzymes associated with chlorophyll synthesis [48] and the
chlorophyll concentration reflects relative crop N status. Statistically significant highest
N-tester values were found for the treatment fertilized with UAN applied without sulfur
(UAN) on both measurement terms (t1; t2). The highest nitrogen dose was applied on
this treatment. The application of UAN in combination with elemental sulfur (UANS1–3)
significantly increased the N-tester value compared to the unfertilized (control) treatment,
but the level of chlorophyll content did not reach the values found in plants fertilized with
UAN alone. While, in the first measurement term (t1), the highest N-tester value was
found for the UANS2 treatment (Table 1), in term t2, the N-tester values were in direct
dependence on the nitrogen doses contained in the UAN–sulfur mixture. The N-tester
values found at both terms (t1; t2) were significantly correlated with the plant nitrogen
content detected at term t3 (r = 0.711, p < 0.001; r = 0.707, p < 0.001, respectively). Evaluation
of the nutritional status after the joint application of nitrogen and sulfur using the N-tester
was also performed on several dates by Lacroux et al. [49], and their results showed
a significant increase in measured values compared to the control, with the highest values
achieved by the joint foliar application of N and S.

The ability of the photosystem II to absorb radiation is expressed by the variable
chlorophyll fluorescence for dark-adapted leaves (Fv). The more radiation a plant can
absorb, the more radiation the plant can use for photosynthesis. Although the ability of
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the plant tissue to absorb radiation decreased over time (comparison of Fv levels between
t1 and t2), this decrease was not significant for the UAN and UAN combination with
sulfur. A significant reduction in Fv values was only observed in the unfertilized treatment
(Figure 2). Even though the treatment with the highest sulfur dose (UANS3) showed the
lowest Fv values, the results showed that the decrease in Fv between terms t1 and t2 was
smallest on this treatment. Nitrogen deficiency decreases the photosynthetic assimilation
capacity of CO2 of plant leaves, leading to decreases in light-saturated photosynthetic
rates [50]. In addition, Ciompi et al. [51] and Jin et al. [52] reported a positive correlation
between the nitrogen content in the plant tissue of leaves and photosynthetic capacity.
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deviation of the mean. There are no statistical differences between columns with the same letters (Fisher’s LSD test, p < 0.05).

After dark adaptation of the maize leaves, the maximum photosynthetic capacity
(ΦPSII) was estimated as the quotient between variable and maximum fluorescence (Fv/Fm).
The quantum yield, which indicates the actual capacity for photochemical processes by
the availability of reaction centers of the photosystem II (PSII), was significantly (p ≤ 0.05)
influenced by the fertilizer application (Figure 3). It is clear that nitrogen significantly affects
photosynthesis and chlorophyll fluorescence of the plant. This was demonstrated by the
response of maize to nitrogen fertilization in a study by Ahmad et al. [53], in which the effect
of nitrogen application increased the electron transport rate, photochemical quenching
coefficient, variable fluorescence, maximal quantum yield, and effective quantum yield of
PSII photochemistry. A significant increase in ΦPSII values in three maize varieties due to
a high nitrogen dose was demonstrated by Jin et al. [52]. Reductions in the quantum yield
of PSII electron transfer due to nitrogen deficiency were also described by Nunes et al. [54]
and Verhoeven et al. [55]. In our study, the values of ΦPSII were decreased over time
regardless of fertilization treatment. The highest value of ΦPSII was determined after the
application of UAN with the highest elemental sulfur content (UANS3). These results
contradict the above studies, but, on the other hand, they show a positive effect of applied
sulfur on nitrogen utilization and its use by the plant. A high linear dependence between
the efficiency of carbon fixation and quantum yield value was presented by Fryer et al. [56].

The rate of fluorescence decline (RFd), an empirical parameter for the quantification
of plant vitality under tested conditions, was measured. In contrast to the values of
the variable chlorophyll fluorescence (Fv) and quantum yield of PSII (ΦPSII), the rate of
fluorescence decline was not statistically significantly affected by foliar fertilization. Only
at term t2 did the RFd value of plants grown on the UANS2 treatment decrease significantly
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below the control level, but no trend in the decrease in RFd due to UAN fertilization in
combination with elemental sulfur was observed (Figure 4).
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Figure 3. The effect of the foliar application of fertilizers on the quantum yield of PSII photochemistry (ΦPSII). The
measurements were carried out on two growth stages of maize (t1 and t2). The values represent the arithmetic mean (n = 8);
the bars represent the standard deviation of the mean. There are no statistical differences between columns with the same
letters (Fisher’s LSD test, p < 0.05).
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The average dry weight of the above-ground biomass (AGB) of plants determined on
the 35th day after the foliar application of fertilizer (t3) is shown in Figure 5. The highest
plant dry weight was found for the treatment fertilized with UAN, which provided the
most nitrogen to the plants. The dry weight of plants produced on this treatment was
2.4 times higher compared to the unfertilized Control. The dry weight of plants fertilized
with the UANS fertilizer combination ranged from 17.44 to 17.84 g/plant and was not
statistically different from the UAN treatment (Figure 5). A significant effect of foliar
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nitrogen application on plant dry matter yield has been demonstrated in the available
literature [57–59], in agreement with our results. The increase in plant weight due to
foliar sulfur fertilization was also documented. Perveen et al. [60] observed a significant
increase in root and shoot biomass and root and shoot length of maize grown under salinity
conditions due to the foliar application of different sulfur compounds. An increased barley
yield after elemental sulfur application was described by Grzebisz and Przygocka-Cyna [61]
in their long-term experiment. A positive effect of the foliar application of sulfur on canola
pods formation and subsequent seed yield was demonstrated by Khalid et al. [62].
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Figure 5. Weight of dry matter above-ground biomass of maize after the foliar application of fertilizer. The measurements
were taken at the end of experiment (t3). The values represent the arithmetic mean (n = 8); the bars represent the standard
deviation of the mean. There are no statistical differences between columns with the same letters (Fisher’s LSD test, p < 0.05).
AGB—above-ground biomass.

The UAN fertilizer application significantly increased the nitrogen content of maize
leaves. The highest N content, 10.3 g/kg DM, was found in leaves after the application
of UAN fertilizer alone (Table 2). There was no significant difference in plant N content
among treatments fertilized with a mixture of UAN and elemental sulfur (UANS1-3), but
the data showed a relative increase in N content with sulfur rate. An increased leaf N
concentration following sulfur fertilization has also been described [31,63]. An increase in
the nitrogen content of wheat grain, due to the foliar application of sulfur, was observed
by Tea et al. [64] and Rossini et al. [65]. This effect could be due to a better assimilation of
foliar-applied N and S compared to their soil-applied counterparts.

Table 2. Nutrient content and nutrient uptake by DM of AGB and the N:S ratio.

Treatment
Nitrogen Sulfur

N:S Ratio
g/kg DM Rel. % g/kg DM Rel. %

Control 7.7 ± 0.8 b 100.0 3.4 ± 0.6 a 100.0 2.3 ± 0.5 b

UAN 10.3 ± 1.8 a 134.0 2.8 ± 0.6 b 80.9 3.8 ± 0.4 a

UANS1 9.3 ± 0.6 a 121.6 3.6 ± 0.4 a 104.4 3.1 ± 0.8 ab

UANS2 9.7 ± 0.7 a 127.1 3.3 ± 1.3 a 97.1 3.4 ± 1.6 ab

UANS3 9.9 ± 0.5 a 129.7 3.3 ± 0.7 a 97.8 2.6 ± 0.4 ab

The values in the table represent the arithmetic mean (n = 8) ± SD (standard deviation). The same letters next to
the numbers describe no statistically significant differences between the treatments (Fisher’s LSD test, p < 0.05).
DM—dry matter, AGB—above-ground biomass.
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Sutar et al. [22] described the critical sulfur concentration in dry matter of maize leaves
as 1.5 g/kg DM. The sulfur content in the ABG of maize plants ranged from 2.8 to 3.6 g/kg
DM (Table 2). Its content in the ABG of plants grown on the treatments fertilized with
a mixture of UAN and elemental sulfur (UANS1–3) was identical to that of unfertilized
plants (Control). Only in the nitrogen-fertilized treatment (UAN) was the amount of sulfur
significantly lowest (Table 2). This fact is not only related to the absence of sulfur in the
fertilizer, but it can also be explained by the dilution of nutrients in the maize plant tissue
that occurred as a result of the increase in DM weight of AGB on this treatment (Figure 5).
Therefore, the nutrient uptake by the plant was calculated as a more appropriate parameter
expressing the nutritional status of the plants (Figure 6). Nutrient uptake is the relationship
between the DM weight of AGB and its nutrient content, expressed in g of nutrient per
plant (g/plant). Logically, the highest nitrogen uptake was recorded in the UAN-fertilized
treatment, i.e., the treatment with the highest applied nitrogen rate. Even though nitrogen
uptake by plants was not significantly different among the treatments fertilized with
UAN and elemental sulfur mixtures, plants fertilized with fertilizers containing a higher
proportion of elemental sulfur (UANS2 and UANS3) showed a higher uptake of nitrogen
by plant AGB. A positive significant interaction between nitrogen and sulfur uptake and
utilization was confirmed.
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The N:S ratio of the plant may also be an interesting indicator of nutritional status, as
reported by some authors [31,66]. The principle behind this assessment is the fact that plants
need a balanced amount of nitrogen and sulfur for proper amino acid synthesis. Therefore,
nitrogen-to-sulfur ratios above a N:S ratio threshold indicate S deficiency [67]. A possible
disadvantage of this assessment is the decreasing value of the N:S ratio during the growing
season, as reported, for example, by Calvo et al. [68,69] or Scherer [70]. A 15-19:1 N:S ratio
has been reported as a limiting ratio for cereals at the time of tillering [71], and an ideal
N:S ratio for the optimum growth and development of maize is 15:1 [72]. The observed
N:S ratio (Table 2) indicated that the sulfur contained in maize was not deficient in any of
the fertilization treatments. From the ratios obtained, it is possible to observe the already
described trend, where the highest ratio of nitrogen and sulfur was logically found on the
treatment fertilized only with UAN fertilizer. In contrast to our study, significant changes
in the N:S ratio after sulfur application were observed [73,74]. However, they agreed that
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an increase in the sulfur content of the plant does not necessarily predict increased yield.
Sutradhar et al. [31] also confirmed the same conclusion.

The previously mentioned synergism between nitrogen and sulfur can be documented
by crop nitrogen use efficiency. The nitrogen supplied by foliar nutrition from fertilizer
applied without sulfur addition (UAN) was utilized by the plant at 30.5% (Table 3). A simi-
lar level of NUECrop was found on the treatment fertilized with the lowest sulfur fertilizer
mixture (UANS1), whereas an increase in the proportion of sulfur in the fertilizer mixture
increased nitrogen use efficiency. The relationship between nitrogen recovery from applied
fertilizers and the dose of sulfur applied by the fertilizer mixture was statistically significant
(NUECrop = 22.9 + 0.171 × sulfur dose, r = 0.709; p = 0.002).

Table 3. Crop nitrogen use efficiency.

Treatment
NUECrop

% Rel. %

Control - -
UAN 30.5 ± 5.3 b 100.0

UANS1 29.9 ± 7.9 b 97.8
UANS2 50.1 ± 5.6 b 164.2
UANS3 73.4 ± 8.2 a 240.3

The values in the table represent the arithmetic mean (n = 8) ± SD (standard deviation). The same letters next to
the numbers describe no statistically significant differences between the treatments (Fisher’s LSD test, p < 0.05).

In agreement with our results, several studies showed that sulfur fertilization may
increase NUE [75–77]. As sulfur is an essential constituent of enzymes involved in nitrogen
metabolism [78], its deficiency may lead to ineffective utilization of the nitrogen content in
plant [79,80]. An increase in nitrogen uptake by maize plants due to graded doses of foliar
sulfur application was presented by Sarfaraz et al. [81].

3. Materials and Methods
3.1. Experimental Methodology, Plant Material, and Growth Conditions

The pot vegetation experiment was established in the vegetation hall of the Biotech-
nological house at Mendel University in Brno located at 49◦21′03′ ′ N and 16◦61′38′ ′ E.
Mitscherlich pots (STOMA GmbH, Siegburg, Germany) were filled with 6.5 kg of air-dried
and sieved soil (2 cm diameter sieve). Properties of the soil used in the pot experiment are
shown in Table 4.

Table 4. Properties of soil used in pot experiment.

Soil Parameter Value Ref

pH (CaCl2) 6.09 [82]
Soil oxidizable carbon (Cox) 0.80% [83]

Clay 20% [84]
Silt 27% [82]

Sand 53% [82]
Cation Exchange Capacity 164 mmol/kg [82]

N total 0.19% [82]
N-NH4

+ (K2SO4) 1.48 mg/kg [82]
N-NO3

− (K2SO4) 17.2 mg/kg [82]
S (water soluble) 8 mg/kg [82]

P (Mehlich 3) 36.4 mg/kg [82]
K (Mehlich 3) 400 mg/kg [82]
Ca (Mehlich 3) 2720 mg/kg [82]
Mg (Mehlich 3) 214 mg/kg [82]

The maize (Zea mays L.), cultivar SY ORPHEUS (Syngenta Czech s.r.o., Prague,
Czech Republic), was chosen for this study. Four seeds of maize were sown to a 4 cm depth
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in each pot. The number of plants in each pot was reduced to two plants per pot two weeks
after the sowing.

The pot experiment was carried out under seminatural conditions in the outdoor
vegetation hall under a rain shelter. The air temperature, air humidity, and solar radiation
during the maize growing season are shown in Figure 7. After a cooler April (11.8 ◦C)
and May (12.6 ◦C), a warming period occurred at the beginning of June (22.6 ◦C), which
lasted until the end of the experiment (average air temperature in July was 19.6 ◦C). The
relative air humidity fluctuated evenly between 40 and 90% during the experiment. Global
solar radiation also fluctuated over time depending on weather conditions, with levels
increasing slightly during the experiment (April: 16.9; July: 22.1 MJ/m2). A controlled
watering regime identical for all treatments (pots) was used in the experiment. Plants were
watered to 70% of the maximum water holding capacity throughout the growing season.
The pots were watered by hand with demineralized water on the soil surface.
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Figure 7. The average daily temperature (◦C), relative humidity (%), and global solar radiation (MJ/m2) in the vegetation
hall during the experiment.

Liquid urea ammonium nitrate fertilizer (UAN; 30% total N–15% N-NH2, 7.5% N-NO3,
7.5% N-NH4) was applied to maize plants in combination with waste elemental sulfur
suspension (12% S0 suspension) in the ratios shown in Table 5. The sulfur suspension
was obtained by the desulfurization of biogas using the Thiopaq® scrubber (Paques, Balk,
The Netherlands), which works by washing the raw biogas with a slightly alkaline solution
(pH 8–9) and the subsequent biological oxidation of sulfides to elemental sulfur. The
elemental sulfur particle size in the suspension was less than 60 µm (96.9% of the particles).
Each of the treatments was established in eight replicates (pots). The pots were placed
randomly in the vegetation hall under the rain shelter.

The foliar application was carried out on the plant development stage of the 4th true
leaf unfolded. The application of 3 mL of fertilizer mixture per pot of each treatment was
used. Fertilizers were evenly applied using a pressurized hand pump sprayer (DPZ 1500,
ProGlass, Weilheim an der Teck, Germany). The mixture of the waste elemental sulfur with
the UAN fertilizer was mixed prior to application to ensure that the elemental sulfur was
evenly distributed in the fertilizer mixture and applied uniformly.

During the maize vegetation, chlorophyll content (N-tester value) and chlorophyll
fluorescence parameters were evaluated. The measurements were performed 7 (t1) and
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21 days (t2) after the foliar application. The weight of dry matter (DM) of maize plant AGB,
the content and ratio of nutrients (N and S) in maize plant AGB, and their uptake by plants
were determined 35 days after the foliar application of fertilizer mixtures (t3). The schedule
of the experiment is shown in Table 6.

Table 5. Experimental treatments of foliar application in pot experiment.

Treatment

Proportion of Fertilizer in the
UANS Mixture

Nutrient Content in the UANS
Mixture (Weight %)

UAN S Suspension N S

Control 0 0 0 0
UAN 100% 0 30 0

UANS1 66% 33% 20 4
UANS2 50% 50% 15 6
UANS3 33% 66% 10 8

Table 6. Timetable of the experiment.

Term Growth Stages of Maize Operation

1 April 2019 seed Maize sowing
17 June 2019 4th true leaf Foliar application of fertilizer mixtures
24 June 2019 t1 5th true leaf Measurement of chlorophyll content and fluorescence parameters
8 July 2019 t2 6th true leaf Measurement of chlorophyll content and fluorescence parameters

22 July 2019 t3 7th true leaf Measurement of AGB harvest, DM weight, content and uptake of
nutrient, N:S ratio

3.2. Determination of Plant Growth and Development Parameters
3.2.1. Chlorophyll Content in Plant Leaf (N-Tester Value)

The chlorophyll content of maize leaves was measured using a Yara N-tester (Yara
International ASA, Oslo, Norway). The chlorophyll content was expressed as “N-tester
value.” Measurement was performed at a wavelength range of 650–940 nm [85]. Eight plants
were assessed in each treatment in both terms. The measurement of chlorophyll content
was performed on the 5th (t1) and 6th true leaves (t2), and the value of the chlorophyll
content of each plant was the mean of 60 measurements.

3.2.2. Chlorophyll Fluorescence Parameters

To determine the photochemical efficiency of photosystem II, selected fluorescence
parameters of chlorophyll were measured in maize plant. The tested parameters were
measured with the PAR-FluorPen FP 110-LM/S (Photon Systems Instruments, Drásov,
Czech Republic) and evaluated using the FluorPen 1.1 software [86]. Measurements of
fluorescence parameters were carried out on identical leaves (5th and 6th true leaves) at
identical terms (t1 and t2) as for chlorophyll content determination. Maize leaves were
dark-adapted for 25 min before measurement. The protocol for measuring the fluorescence
parameters of chlorophyll is shown in Table 7.

The variable fluorescence of the dark-adapted leaves (Fv), quantum yield of photosys-
tem II (ΦPSII), and chlorophyll fluorescence decrease ratio (RFd) were determined (Table 8).
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Table 7. Measurement protocol of the chlorophyll fluorescence parameters.

Chlorophyll Fluorescence
Parameters Pulse Type Light Intensity

(µmol/m2/s) Phase Duration (s) 1st Pulse (s) Pulse Interval (s)

ΦPSII, Fv Saturation 2400 - 1 pulse

RFd

Flash 900
L 60 0.2 1

DR 88 1 1

Saturation 2400
L 60 7 12

DR 88 11 26
Actinic 300 L 60 - -

The measured at wavelength (λ) of 454 nm, L—light, DR—dark recovery, ΦPSII—quantum yield of photosystem II, RFd—chlorophyll
fluorescence decrease ratio, Fv—variable fluorescence of the dark-adapted leaves.

Table 8. The photochemical quenching parameters.

Chlorophyll Fluorescence Parameters Ref.

Fv Fm−F0 [87]
ΦPSII Fm−F0/Fm [88]
RFd Fd/Fs [89]

F0—minimal fluorescence from the dark-adapted leaves, ΦPSII—quantum yield of photosystem II, RFd—chlorophyll
fluorescence decrease ratio, Fm—maximal fluorescence from the dark-adapted leaves; Fd—fluorescence decrease
from Fm to Fs; Fs—steady-state chlorophyll fluorescence.

3.2.3. Determination of Weight Biomass, Nutrient Contents and Uptake, and Nitrogen
Use Efficiency

The ABG of maize plants was harvested on 22 July 2019 (t3). The ABG was then oven-
dried at 60 ◦C for the first two hours. The temperature was then reduced to 45 ◦C where the
samples were kept for 72 h. The dry weight of ABG was determined using a laboratory-scale
PCB Kern (KERN & Sohn GmbH, Balingen, Germany). Then, the dried ABG was crushed
and homogenized by the grinder Grindomix GM200 (Retsch GmbH, Haan, Germany). The
HNO3/H2O2 [90] digestion of biomass was achieved using a microwave digestion system
in ETHOS 1 (Milestone Srl, Sorisole, Italy). Subsequently, the nutrient content (Table 9) and
nutrient ratio were determined, and crop nitrogen use efficiency (NUECrop) was calculated
by the relationship NUECrop = N yield/N input · 100 (N yield = nitrogen uptake by plants
(mg/pot); N input = nitrogen applied by foliar fertilizers (mg/pot)) [91]. In the calculation
of NUECrop, the nitrogen uptake by plants grown on the fertilized treatments (N yield) was
subtracted from the nitrogen uptake observed on the control treatment (this amount of
nitrogen characterized the natural soil supply).

Table 9. The methods for the determination of nutrients in maize AGB.

Nutrient Method Used Device Used Ref.

N Kjeldal method Kjeltec 2300 device (Foss Analytical, Hillerød, Denmark) [92]

S Optical emission spectrometry ICP–OES (Spectro, Kleve, Germany) [93]

3.3. Statistical Data Analysis

The effect of the foliar application of fertilizer mixtures on the plant growth and
development parameters was statistically analyzed by the STATISTICA 12 program (TIBCO
Software, San Jose, CA, USA) [94]. The effect of the foliar application on the N-tester value,
chlorophyll fluorescence parameters, dry weight of ABG, and nutrient content ABG of
maize was analyzed separately for each treatment of the experiment. The normality was
checked using the Shapiro–Wilk test, and the homogeneity was verified by the Levene
test at p ≤ 0.05. The effect of fertilization was analyzed using ANOVA. Fisher’s LSD test
(p ≤ 0.05) was used to determine any statistically significant differences between the means
of treatments.
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4. Conclusions

Nitrogen plays an important role in maize nutrition, contributes to chlorophyll forma-
tion, and significantly influences the photosynthetic activity of plants. The result of the
vegetation experiment showed that the efficiency of mineral nitrogen fertilization can be
increased by the foliar application of liquid fertilizers with sulfur addition. The optimal
adjustment of the ratio of applied nutrients (N and S) improves the nutritional status of
the plants and allows the reduction in their doses while minimizing the environmental
risks associated with fertilization. The foliar application of UAN fertilizer in combination
with elemental sulfur from biogas production in a 1:1 ratio seems to be a sensible way
to optimize the nutritional status of maize, both for the economics of biogas purification,
when the waste sulfur is reused as a fertilizer, and for environmental reasons. However,
verification of the results obtained from the pot experiment in field trials will be necessary.
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