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Abstract: Decline disease causes serious damage and rapid death in bayberry, an important fruit
tree in south China, but the cause of this disease remains unclear. The aim of this study was to
investigate soil quality, microbial community structure and metabolites of rhizosphere soil samples
from healthy and diseased trees. The results revealed a significant difference between healthy
and diseased bayberry in soil properties, microbial community structure and metabolites. Indeed,
the decline disease caused a 78.24% and 78.98% increase in Rhizomicrobium and Cladophialophora,
but a 28.60%, 57.18%, 38.84% and 68.25% reduction in Acidothermus, Mortierella, Trichoderma and
Geminibasidium, respectively, compared with healthy trees, based on 16S and ITS amplicon sequencing
of soil microflora. Furthermore, redundancy discriminant analysis of microbial communities and soil
properties indicated that the main variables of bacterial and fungal communities included pH, organic
matter, magnesium, available phosphorus, nitrogen and calcium, which exhibited a greater influence
in bacterial communities than in fungal communities. In addition, there was a high correlation
between the changes in microbial community structure and secondary metabolites. Indeed, GC–MS
metabolomics analysis showed that the healthy and diseased samples differed over six metabolic
pathways, including thiamine metabolism, phenylalanine–tyrosine–tryptophan biosynthesis, valine–
leucine–isoleucine biosynthesis, phenylalanine metabolism, fatty acid biosynthesis and fatty acid
metabolism, where the diseased samples showed a 234.67% and 1007.80% increase in palatinitol
and cytidine, respectively, and a 17.37–8.74% reduction in the other 40 metabolites compared to the
healthy samples. Overall, these results revealed significant changes caused by decline disease in the
chemical properties, microbiota and secondary metabolites of the rhizosphere soils, which provide
new insights for understanding the cause of this bayberry disease.

Keywords: bayberry; decline disease; soil properties; microbial community; secondary metabolites

1. Introduction

Bayberry (Myrica rubra) is an important fruit tree in southern China that is cultivated
on approximately 334,000 hectares and has an annual output of approximately 950,000 tons.
It is also an important Figmedicinal plant, and its extract contains antioxidants that can
fight inflammation, allergies, diabetes, cancer, bacterial infection, and diarrhea [1,2]. It is
well known that the main disease of bayberry is twig blight, which is mainly caused by
Pestalotiopsis versicolor and Pestalotiopsis microspora [3]; the infected plants may die within
one to four years. However, in recent years, bayberry plants have been infected by a new
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decline disease, with wide and serious effects, resulting in new shoots being difficult to pull,
photosynthetic rate reduction, and trees dying 3–4 years later [4]. Until now, no pathogenic
microbe has been successfully isolated from the infected bayberry plants, although a lot of
work has been carried out on this disease.

Interestingly, Ren et al. (2021) [5] recently found that three kinds of bio-organic
fertilizer have certain effects on decline disease in bayberry trees and could improve the
content of nutrient elements in the soil and leaves of diseased trees, promoting vegetative
growth and fruit quality. As we know, soil microbes play an important role in soil quality
and fertility, and vice-versa [6]. Furthermore, soil metabolites have also been reported to
be involved in interactions between microorganisms and plants by regulating numerous
plant growth, development, and stress response processes [7]. Therefore, we proposed a
hypothesis that this decline disease in bayberry may be associated with soil properties as
well as soil microbial communities and metabolites.

The aim of this paper is to compare the differences between health and diseased
bayberry in chemical properties, as well as microbial community structure and metabolites
of rhizosphere soils. The results of this study will not only provide a scientific basis for
understanding the cause of decline disease, but also give a microbial insight into the
sustainable development of bayberry.

2. Materials and Methods
2.1. Investigated Orchard and Bayberry Trees

This study was carried out on fifteen-year-old bayberry (cv. Dongkui) trees, which
were cultivated in Qianjiang Village (30◦32′ N; 120 ◦42′ E) of Huangwan Town, Haining
City, Zhejiang Province. The orchard was characterized by a typical gentle slope mountain
area, approximately 50 m above sea level, and acidic yellow soil. Sixty-five percent of the
bayberry plants in the orchard were infected by decline disease with 1–9 grades, which
were ranked as described by Ren et al. (2020) [4]. The row spacing of bayberry plants
was 4 m × 5 m, with bayberry trees with similar loads and crown sizes being selected
for investigation and analysis in this study. The straight-line distance was about 100 m
between the investigated healthy and decline bayberry trees with a disease index of grade 5.
The orchard was managed conventionally.

2.2. Soil Sample Collection

Rhizosphere soil samples (0–20 cm) were collected in July 2016 at the drip line (1.5 m
distance) around the crown of the healthy and diseased bayberry plants at the postharvest
time of the fruits with stable vegetative growth and reproductive growth. Each treatment
consists of 6 replicates and each replicate contains one tree. Using the quartering method,
approximately 2 kg of mixed soil samples were collected from each investigated tree and
passed through a 0.45 mm sieve. One half of the soil samples was stored in a refrigerator
at −80 ◦C for DNA extraction, and the other half of the soil samples were dried at room
temperature for measurement of soil properties.

2.3. Soil Genome Sequencing

Genomic DNA of soil samples was extracted by a DNA extraction kit (Foregene,
Chengdu Fuji Biotechnology Co., Ltd., Chengdu, China). Bacterial diversity was deter-
mined by amplifying the 16S rRNA V3-V4 region using 343F-5′-TACGGAGGCAGAG-3′

and 798R-5′-AGGGTATCTATCT-3′ primers [8]. Fungal diversity was determined by am-
plifying the ITS1 and ITS2 region using ITS1F-5′-CTTGGTCATTTAGGAAGTAA-3′ and
ITS2-5′-GCTGCGTTCTTCATTCGATGC-3′ primers. After purification of the PCR prod-
ucts with Agencourt AMPure XP beads (Beckman Coulter Co., Chaska, MN, USA) and
quantification using a Qubit dsDNA assay kit, the amplicon quality was visualized using
gel electrophoresis. The concentrations were then adjusted for genome sequencing, which
were carried out by Shanghai Ouyi Biomedical Technology Co., Ltd. (Shanghai, China)
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using an Illumina MiSeqPE300 platform with two paired-end read cycles of 300 bases
each [9].

Paired-end reads were preprocessed using Trimmomatic software [10] to cut off am-
biguous bases and low-quality sequences with average quality scores below 20 using
a sliding window trimming approach, and then assembled using FLASH software [11]
with parameters of 10 bp minimal overlapping, 200 bp maximum overlapping and 20%
maximum mismatch rate. Further denoising was achieved by removing the reads with
chimeric, ambiguous, or homologous sequences or those below 200 bp. Following primer
sequence removal, clean reads were subjected to clustering to generate operational tax-
onomic units (OTUs) using VSEARCH software with a 97% similarity cutoff [12]. After
selection of the representative read of each OTU using the QIIME package [13], all 16S
rDNA and ITS representative reads were annotated and blasted against the Silva database
(Version 123) using the RDP classifier (confidence threshold was 70%) [14], and in the Unite
database (ITSs rDNA) using BLAST [15], respectively. Alpha diversity was estimated using
the Chao1 index [16] and Shannon index [17]. The unweighted unifrac distance matrix
obtained by QIIME was used for principal coordinates analysis (PCoA) and phylogenetic
tree construction.

2.4. Soil Properties

After natural air-drying, soil properties were examined. Indeed, the pH was deter-
mined by pH meter (the ratio of soil to water was 1:2.5); organic matter was determined by
the K2Cr2O7 oxidation external heating method [18]; available N was determined by the
Modified Kjeldahl method; available P was determined by hydrochloric acid–ammonium
fluoride extraction molybdenum–antimony anti-colorimetry [19]; available calcium and
magnesium were extracted by ammonium acetate, and contents were determined by an
ice3500 atomic absorption spectrophotometer [20].

2.5. GC–MS Metabolomics Analysis

One gram of soil sample was added with internal standard (0.3 mg/mL L−2-chloro-
phenylalanine dissolved in 20 µL methanol), 1 mL of methanol: water (v:v = 1:1), and two
small steel balls. After precooling at −20 ◦C for 2 min and grinding with a grinder (60 Hz,
2 min), The homogenized sample was transferred to a 15 mL centrifuge tube, and the
residue on the tube wall was repeatedly washed with 1 mL of methanol: water (v:v = 1:1).
After centrifuging the total 3 mL sample solutions at 7700 rpm under 4 ◦C for 10 min,
2.5 mL of supernatant was placed into a 5 mL centrifuge tube and freeze-dried, and the
dried powder was re-dissolved with 400 µL of methanol: water (v:v = 1:1), vortexed for 60 s
and ultrasonicated for 30 s. The solution was transferred to a 1.5 mL centrifuge tube and
centrifuged for 10 min (12,000 rpm, 4 ◦C), and 300 µL of supernatant was placed into a glass
derivative bottle. The quality control sample (QC) was prepared by mixing the extract of all
samples in equal volumes, and the volume of each QC sample was the same as that of the
tested sample. The samples were dried in a freeze-dryer concentration centrifuge. To each
glass derivation flask was added 80 µL of pyridine methoxyamine hydrochloride solution
(15 mg/mL), and an oximation reaction was carried out in a shaking incubator at 37 ◦C for
90 min after vortex shaking for 2 min. The samples then had80 µL of BSTFA (containing
1% TMCS) derivatization reagent and 20 µL of n-hexane added. After vortexing for 2 min
and reacting at 70 ◦C for 60 min, the samples were stored at room temperature for 30 min
for gas chromatography–mass spectrometry (GC–MS) metabolomics analysis.

Metabolomics analysis was carried out on a 7890B-5977A GC/MSD GC–MS (Agilent
Technologies Inc. Santa Clara, CA, USA) with a DB-5MS capillary column (30 m× 0.25 mm
× 0.25 µm, Agilent J & W scientific, Folsom, CA, USA) and high-purity helium (purity no
less than 99.999%). The flow rate was 1.0 mL/min, while the injection temperature was
260 ◦C. The injection volume was 1 µL and the solvent was delayed for 5 min. Temperature
programming was as follows: the initial temperature of the column incubator was 60 °C,
followed by 8 ◦C/min to 125 °C, 4 ◦C/min to 210 °C, 5 ◦C/min to 270 ◦C and 10 ◦C/min
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to 305 ◦C for 3 min. The MS ion source and quadrupole temperature was 230 °C and
150 ◦C, respectively, while electron energy was 70 eV and scanning range was 50–500 m/z.
The repeatability of the entire analysis process was examined by inserting one QC sample
among every 10 samples. The obtained data in this study were compared with the standard
spectrum library of the National Institute of Standards and Technology, and the obtained
metabolite information was searched for in the KEGG database.

2.6. Statistical Analysis

PCoA, community histograms and redundancy discriminant analysis (RDA) were
performed using R 3.5.1. A heat map was drawn by Pheatmap software. Excel 2010 was
used for preliminary data processing and SPSS 17.0 software was used for the significance
test (p < 0.05). The Kruskal–Wallis test was used to compare α-diversity metrics.

3. Results and Discussion
3.1. Distribution of Diseased Bayberry Trees

The results of our investigation indicated that the locations of the diseased bayberry
trees were highly random, with no center for the decline disease in the same orchard, al-
though the disease worsens year by year until death, leading to soil quality being proposed
to be one of the main causes of the disease. Furthermore, there was no difference in disease
occurrence among different locations including the foot, middle or top of the mountain,
with no obvious disease transmission trend in the investigated orchard (Figure 1). This
result is consistent with the data of our previous reports [4]. In contrast, our recent studies
found that the occurrence of twig blight caused by fungal infection is more serious at the
foot of the mountain than that at the top of the mountain in the same orchard, and there is
an obvious disease center and a trend of disease transmission. In addition, the incidence of
twig blight was affected by temperature and relative humidity [4].
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3.2. Changes in Microbial Community Diversity

As shown in Table 1, there was a difference in the number of operational taxonomic
units (OTUs) in the bacterial V3 + V4 region and fungal ITS region between the healthy
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and diseased bayberry plants. Indeed, the average number of bacterial OTUs in healthy
and diseased bayberry trees is 1685.50 (varying from 1480 to 1845) and 1575.33 (varying
from 1203 to 1781), respectively (Table 1)—indicating that the diseased bayberry trees
caused a 6.54% reduction in the number of bacterial OTUs of rhizosphere soils compared
to those of healthy bayberry trees. The average number of fungal OTUs in healthy and
diseased bayberry trees is 909.67 (varying from 736 to 1126) and 814.17 (varying from 725
to 884), respectively (Table 1)—suggesting that the diseased bayberry trees caused a 10.50%
reduction in the number of fungal OTUs of rhizosphere soils compared to that of healthy
bayberry trees.

Table 1. Diversity indexes and OTU distribution of bacteria and fungi in healthy and decline disease
bayberry rhizosphere soil.

Microorganism Treatment Chao1 Index Shannon Index OTUs

Bacteria
Healthy 2295.77 ± 174.80 8.54 ± 0.17 1685.50 ± 141.60
Diseased 2071.23 ± 234.20 # 7.86 ± 0.76 1575.33 ± 211.98

Fungi Healthy 1005.80 ± 155.13 6.04 ± 0.50 909.67 ± 135.91
Diseased 883.69 ± 68.78 # 6.12 ± 0.28 814.17 ± 70.56

# in the same column indicates significant (p < 0.05) differences between healthy and diseased bayberry within
either bacterial or fungal microbiota.

Rhizosphere soil bacterial and fungal community diversity was determined in this
study based on 16S rRNA and ITS amplicon sequencing analysis, respectively, as well as
calculation of Chao1 and Shannon indexes after normalizing data from each sample to the
same number of reads. As shown in Table 1, the bacterial and fungal Chao1 indexes of the
diseased trees were 9.78% and 12.14% lower than those of healthy trees, while there was no
significant (p < 0.05) difference in bacterial and fungal Shannon indexes between diseased
and healthy trees. Furthermore, bacterial Chao1 indexes were 2.28-fold greater than those
of fungi in healthy rhizosphere soil, while bacterial Chao1 indexes were 2.34-fold greater
than those of fungi in diseased rhizosphere soil. Similarly, bacterial Shannon indexes were
1.41-fold greater than those of fungi in healthy rhizosphere soil, while bacterial Shannon
indexes were 1.28-fold greater than those of fungi in diseased rhizosphere soil.

The results of this study indicated that both bacterial and fungal diversity were lower
in rhizosphere soil from diseased bayberry plants than those of healthy bayberry plants
(Table 1). However, the total number of soil fungal OUTs exhibited a greater reduction
than that of soil bacterial OTUs, suggesting that the soil fungi may be more sensitive to the
soil environment of diseased bayberry trees. Furthermore, the total number of bacterial
OTUs was in general higher than that of the total number of fungal OTUs, regardless of
the healthy or diseased bayberry trees. Indeed, the total number of bacterial OTUs was
1.85-fold of the total number of fungal OTUs in healthy bayberry trees, while the total
number of bacterial OTUs was 1.93-fold of the total number of fungal OTUs in diseased
bayberry trees (Table 1).

In agreement with the results of this study, it has been proposed that soil microbial
diversity may be able to serve as an indicator for the outbreak of plant disease, supporting
the ecological significance of microbial communities in maintaining plant health. Indeed,
Wu et al. [21] found that compared to those of healthy Panax notoginseng, microbial com-
munities in rhizosphere soils of diseased plants showed a decrease in alpha diversity.
Furthermore, previous studies also found that the improvement of rhizosphere microflora
structure was able to increase cucumber, soybean and apple yields by improving the organic
matter and total nitrogen content of plants [22–24]. However, different microorganisms
played various beneficial, neutral and harmful functions in plant growth; therefore, it can
be inferred that the rhizosphere microbial community structure will provide an effective
theoretical base for understanding the cause of bayberry decline disease.
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3.3. Changes in Soil Microbial Community Composition

In order to examine whether decline disease has an influence on the rhizosphere mi-
crobial community structure of bayberry plants, beta diversity analysis was performed to
investigate the structural variation of microbial communities across samples using UniFrac
distance metrics and visualized by PCoA. Indeed, the results of this study showed that the
OTU abundance from six replicates of the healthy and diseased trees were clustered into
two distinct groups and were well separated from each other regardless of soil fungi or bac-
teria, based on the PCoA analysis of unweight_unifrac distance (Figure 2, PERMANOVA;
p < 0.05)—indicating that the microbial community composition varied between healthy
and diseased trees.
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represent healthy tree and diseased trees, respectively.

This result indicated that there was a great difference in bacterial and fungal community
composition at the phylum (Supplementary Figure S1), order (Supplementary Figure S2)
and genus (Figure 3) levels between healthy and diseased bayberry trees, suggesting that
compared to the healthy trees, the microbial community composition of the diseased
bayberry rhizosphere soil was reconstructed. Among the 15 bacterial genera with a relative
abundance greater than 1%, Acidothermus, Burkholderia, Rhizomicrobium and Acidibacter
were the dominant genera (Figure 3A). Compared with the healthy trees, the relative
abundance of Acidothermus was significantly (p < 0.05) decreased by 28.60%, and the
relative abundance of Rhizomicrobium was significantly (p < 0.05) increased by 78.24% in
the diseased trees. There was no significant change in other main bacterial genera. Notably,
Acidothermus cellulolyticus produced two xylanases, which have the ability to efficiently use
xylan, a major component of plant cell walls for conversion of plant biomass to products of
interest [25]. Therefore, the decreased relative abundance of Acidothermus may reduce the
biomass utilization ability of diseased bayberry plants.

Among the 15 fungal genera with a relative abundance greater than 1%, Mortierella,
Trichoderma, Geminibasidium and Cladophialophora were the dominant genera, accounting for
more than 30% of the fungal sequences (Figure 3B). Compared with the healthy bayberry
trees, the relative abundances of Mortierella, Trichoderma and Geminibasidium in diseased
bayberry trees were significantly (p < 0.05) decreased by 57.18%, 38.84% and 68.25%,
respectively, while Cladophialophora in diseased trees was significantly (p < 0.05) increased
by 78.98%. Interestingly, species of Geminibasidium are heat tolerant and xerotolerant, which
makes this genus rich in soil. Furthermore, Mortierella is a kind of fungus that plays a
beneficial role in plant growth promotion [26], while Trichoderma is an important biocontrol
fungus that protects crops against pathogen infection [27].
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3.4. Soil Properties Related to Microbial Communities
3.4.1. Soil Properties

Results from this study indicated that there was a significant (p < 0.05) change in
the pH, organic matter, magnesium, available nitrogen, phosphorus and calcium between
healthy and diseased bayberry rhizosphere soil. Indeed, the pH, organic matter, magne-
sium, available nitrogen, phosphorus and calcium in healthy bayberry rhizosphere soil
were 5.17, 4.38%, 53.58 mg/kg, 147.38 mg/kg, 16.64 mg/kg and 591.50 mg/kg, respectively.
However, compared to the healthy bayberry, the decline disease resulted in a 9.28%, 36.07%,
33.67%, 20.00% and 41.11% reduction in pH, organic matter, magnesium, available nitrogen
and calcium, respectively, but an 84.98% increase in available phosphorus (Table 2).

Table 2. The pH and chemical properties of healthy and diseased bayberry rhizosphere soil.

Parameters Value Parameters Value

pH Available phosphorus (mg/kg)
H 5.17 ± 0.23 H 16.64 ± 0.50
D 4.69 ± 0.39 # D 30.78 ± 0.50 *

Organic matter (%) Available calcium (mg/kg)
H 4.38 ± 0.13 H 591.50 ± 20.17
D 2.80 ± 0.12 # D 348.33 ± 9.49 #

Available nitrogen
(mg/kg) Magnesium (mg/kg)

H 147.38 ± 6.01 H 53.58 ± 3.00
D 117.90 ± 4.58 # D 35.54 ± 1.12 #

H and D represent healthy and diseased trees, respectively. The * and # represent significantly increases or
decreases compared to healthy trees (p < 0.05).

In agreement with the results of this study, previous studies also revealed that there
was a difference between healthy and diseased trees with regards to pH value, organic mat-
ter content, available nitrogen, calcium, magnesium and phosphorus. Indeed, Ren et al. [4]
reported that the pH, organic matter, and available nitrogen, calcium, magnesium, sulfur,
zinc, copper, iron, manganese and boron of rhizosphere soil of diseased trees with disease
degrees of grade 5 were significantly reduced, however, the contents of available phospho-
rus and potassium were significantly increased compared to the healthy trees. Interestingly,
it is well known that most of these elements in rhizosphere soil are essential nutrients for
plants over the whole growth period. In particular, more attention should be paid to the
changes in the three heavy metals iron, zinc and copper, which have been reported to play
fundamental roles in eucaryotes and procaryotes, and as their bioavailability regulates
host–pathogen interactions [28].
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On the other hand, it has been well documented that the growth of soil microbes is
affected by a series of environmental factors such as soil pH, organic matter and magnesium
content, as well as available nitrogen, phosphorus and calcium [29,30]. Furthermore, the
results of this study revealed the complexity of the relationship between microbial growth
and soil nutrient elements due to the fact that a differential change was observed between
diseased and healthy bayberry rhizosphere soil in the contents of available soil nutrient
elements, such as available nitrogen, calcium and phosphorus, as well as the magnesium
content; indeed, nutritional balance may be best for microbial growth. However, the pH and
organic matter have been proposed to exhibit a greater effect on microbial communities
compared to the other soil parameters [31–33]. Therefore, the decrease in soil pH and
organic matter in this study are expected to have a negative influence on microbial growth
and diversity of diseased bayberry rhizosphere soil.

As we know, bacteria of the Acidothermus genus were able to grow under acidic
conditions and degrade plant tissues [25,34], which normally cause increases in organic
matter and magnesium content, as well as available nitrogen and calcium. Interestingly,
most of these soil parameters are associated with soil pH [35]. Thus, it can be inferred that
the lower pH in diseased bayberry rhizosphere soil may be partially due to the reduction in
the relative abundance of Acidothermus. Similarly, the relative abundances of Mortierella and
Trichoderma are higher in healthy than in diseased bayberry rhizosphere soil, while fungi
from the two genera can not only promote plant growth [26,27], but also degrade lignin
and cellulose [36,37], which results in increases in organic matter and magnesium content,
as well as available nitrogen, calcium and phosphorus. However, bacteria from the genus
Rhizomicrobium have been reported to participate in phosphate and phosphite metabolism
in soil [38]. Therefore, it can be speculated that the increase in available phosphorus in
diseased bayberry rhizosphere soil may be due to the fact that Rhizomicrobium has a greater
effect on available phosphorus compared to Acidothermus, Mortierella and Trichoderma.

3.4.2. RDA of Soil Properties and Microbial Communities

In this study, the association of soil properties with rhizosphere microbial community
composition was examined using a redundancy discriminant analysis (RDA), which has
been used previously to explore the relationship between environmental factors and
microbial communities. Results from this study showed that there was a total of 96.68% and
90.23% of the cumulative variance of the rhizosphere microbial community-factor correction
at the bacterial (Figure 4A) and fungal (Figure 4B) genus level, respectively. For bacterial
communities at the genus level, the contributions of the six main variables were 36.6%
by magnesium, 33.9% by available nitrogen, 33.3% by organic matter, 33.1% by available
phosphorus, 30.6% by available calcium and 19.5% by pH. For fungal communities at
the genus level, the contributions of the six main variables were 30.1% by organic matter,
28.8% by magnesium, 25.3% by available phosphorus, 24.5% by available calcium, 22.6%
by available nitrogen, and 14.9% by pH, respectively (Table 3). In general, the results of this
study showed that the compositions of the bacterial and fungal communities in bayberry
rhizosphere soil were significantly affected by different soil properties. Although both
bacterial and fungal communities were affected by the six main variables, the six main
variables exhibited a greater influence in bacterial communities than in fungal communities.
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mental data to realize the effective prediction of different samples. Results showed that 
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Figure 4. Redundancy discriminant analysis (RDA) of the rhizosphere bacterial (A) and fungal (B)
community compositions at genus levels with soil physicochemical properties. Aci: Acidothermus;
Bur: Burkholderia; Rhi: Rhizomicrobium; Acd: Acidibacter; Can: Candidatus Solibacter; Bry: Bryobacter;
Sph: Sphingomonas; Art: Arthrobacter; Muc: Mucilaginibacter; Var: Variibacter; Pse: Pseudomonas; Myc:
Mycobacterium; Gem: Gemmatimonas; Miz: Mizugakiibacter; Lep: Leptospirillum; Mor: Mortierella;
Tri: Trichoderma; Gei: Geminibasidium; Cla: Cladophialophora; Umb: Umbelopsis; Sol: Solicoccozyma;
Ari: Articulospora; Seb: Sebacina; Fus: Fusarium; Cli: Clitopilus; Tre: Trechispora; Cha: Chaetomium;
Cer: Ceratobasidium; Lue: Luellia; Aur: Auricularia; OM: organic matter; AN: available nitrogen; AP:
available phosphorus; AC: available calcium; MA: Magnesium. Green squares: samples from healthy
bayberry; Blue diamonds: samples from diseased bayberry.

Table 3. Contribution of soil environment to bacteria and fungi taxa at the genus level.

Taxa Soil Environment Contribution (%)

Bacteria
pH 19.5

Organic Matter 33.3
Available Nitrogen 33.9

Available Phosphorus 33.1
Available Calcium 30.6

Magnesium 36.6
Fungi

pH 14.9
Organic Matter 30.1

Available Nitrogen 22.6
Available Phosphorus 25.3

Available Calcium 24.5
Magnesium 28.8

3.5. Change in Rhizosphere Soil Metabolomics

A total of 223 rhizosphere soil metabolites were identified in this study using GC–MS
analysis. Furthermore, a score map of metabolites was successfully constructed based on
orthogonal partial least squares-discriminant analysis (OPLS-DA, a supervised statistical
method of discriminant analysis), which can reduce intragroup differences, enlarge inter-
group differences, and eliminate the influence of irrelevant factors on the experimental data
to realize the effective prediction of different samples. Results showed that the distribution
of healthy bayberry rhizosphere soils was well separated from that of diseased bayberry
rhizosphere soils. Indeed, the healthy samples (H) were all distributed in the negative area
of t[1] (principal component 1), while the decline disease samples (D) were all distributed
in the positive area of t[1] (Figure 5). Furthermore, the parameters of the OPLS-DA are
R2X(cum) = 0.425, R2Y(cum) = 0.974, R2 = 0.646, Q2(cum) = 0.237 (R2 > 0.5 and Q2 < 0.5), re-
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vealing the great interpretability and prediction ability of the H–D OPLS-DA model. These
results suggests that the metabolite changes in bayberry rhizosphere soil are associated
with decline disease.
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3.6. Analysis of Differential Metabolites

Amino acids, organic acids and other secondary metabolites are the biological sources
of carbon and nitrogen for soil microbial growth and rhizosphere colonization, symbiosis
and pathogenesis; they also play an important role in plant root growth, including regulat-
ing ion transport, participating in heavy metal detoxification and affecting the synthesis
and activity of many important cellular enzymes [7,39]. In order to observe the change
rules of metabolites, the metabolites with significant differences were normalized and the
clustering heat map was drawn. Results indicated that the main intermediates were signifi-
cantly changed between healthy and diseased bayberry rhizosphere soil (Figure 6, Table 4).
Indeed, the contents of palatinitol and cytidine in diseased trees rhizosphere soil were
234.67% and 1007.80% higher than those of the healthy trees, respectively, suggesting that
the two metabolites may be harmful to bayberry. In agreement with the results of this study,
previous studies showed that some soil metabolites have toxic effects on plants [40,41] and
change the richness of the bacterial community in rhizosphere soil [42].

Conversely, soil secondary metabolites are also beneficial to plants, contributing to
changes in soil properties and regulation of rhizosphere soil microbial communities [43].
For example, phenolic compounds play important roles in weed growth inhibition by
obtaining nutrients, allelopathy, regulating pH and enzyme activity, and participating in
scavenging processes of plant reactive oxygen species and other ecological processes [44,45].
The increases in phenol and flavonoid metabolites can regulate nitrogen fixation and
promote the growth of beneficial bacteria in maize rhizosphere soil [46]. In this study, the
contents of the other 40 metabolites were 17.37–68.74% lower than those of the healthy
trees (Figure 6, Table 4). Indeed, the relative contents of sugars (D7 glucose, xylonolactone,
xylose, etc.) and organic acids (malic acid, citric acid) in diseased bayberry rhizosphere soil
decreased significantly compared to the healthy bayberry rhizosphere soil. Furthermore, a
significant reduction was also found in the content of tyrosine, which can regulate plant
root tips and maintain root cells [43,47].
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Figure 6. Thermogram analysis of different metabolites in bayberry rhizosphere soil. H and D
represent healthy and diseased trees, respectively. The color scale is representative of the relative
content of metabolites, where a high relative content is indicated in red and a low relative expression
is indicated in green.

Table 4. The relative contents of the differential metabolites in rhizosphere soil between healthy and
decline disease trees.

Metabolite Name Relative Content Metabolite Name Relative Content

Palatinitol Benzoic Acid
H 1.03 ± 0.12 H 3.69 ± 0.28
D 3.44 ± 0.79 * D 2.45 ± 0.40 #

Cytidine 2-Hydroxypentanoic Acid
H 1.66 ± 0.15 H 1.96 ± 0.23
D 18.40 ± 3.39 * D 1.51 ± 0.16 #

Citraconic Acid 2-Ketoglucose Dimethylacetal
H 7.05 ± 0.67 H 0.23 ± 0.03
D 5.12 ± 0.51 # D 0.16 ± 0.05 #

Hexadecyl glycerol 1-Kestose
H 5.89 ± 0.75 H 52.15 ± 4.21
D 3.87 ± 0.40 # D 24.28 ± 2.97 #

Guanidinosuccinate D7-Glucose
H 0.50 ± 0.05 H 2.29 ± 1.00
D 0.36 ± 0.02 # D 0.87 ± 0.21 #
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Table 4. Cont.

Metabolite Name Relative Content Metabolite Name Relative Content

Udp-N-Acetylglucosamine Tocopherol Acetate
H 0.98 ± 0.09 H 3.84 ± 0.89
D 0.77 ± 0.07 # D 1.20 ± 0.16 #

2,3-Dihydroxybutanoic Acid 1-Hexadecanol
H 1.28 ± 0.08 H 6.59 ± 1.11
D 1.06 ± 0.10 # D 4.22 ± 0.61 #

Tyrosine Carnitine
H 2.70 ± 0.32 H 9.95 ± 1.73
D 1.91 ± 0.12 # D 4.33 ± 0.97 #

Threonine Beta-Sitosterol
H 2.21 ± 0.24 H 2.64 ± 0.65
D 1.68 ± 0.17 # D 1.64 ± 0.12 #

Catechol 5-Methoxytryptamine
H 0.37 ± 0.02 H 57.95 ± 5.44
D 0.28 ± 0.08 # D 38.13 ± 2.79 #

Zymosterol Glucoheptulose
H 0.85 ± 0.09 H 5.51 ± 0.35
D 0.46 ± 0.03 # D 3.90 ± 0.51 #

Deoxycholic Acid 2-Picolinic Acid
H 0.76 ± 0.09 H 3.03 ± 0.28
D 0.45 ± 0.01 # D 1.81 ± 0.10 #

Tyrosol Gamma-Tocopherol
H 0.66 ± 0.05 H 1.88 ± 0.17
D 0.45 ± 0.03 # D 1.09 ± 0.17 #

2-Deoxyerythritol 3,4-Dihydroxybenzoic Acid
H 2.48 ± 0.17 H 9.86 ± 0.82
D 1.52 ± 0.18 # D 5.52 ± 0.18 #

2-Hydroxybutanoic Acid Malic Acid
H 2.07 ± 0.14 H 1.65 ± 0.12
D 1.11 ± 0.13 # D 1.26 ± 0.15 #

P-Hydroxylphenyllactic Acid 4-Methyl-5-Thiazoleethanol
H 1.38 ± 0.18 H 0.36 ± 0.03
D 0.69 ± 0.09 # D 0.28 ± 0.07 #

Digitoxose Myristic Acid
H 6.62 ± 0.48 H 3.14 ± 0.15
D 3.30 ± 0.29 # D 2.19 ± 0.23 #

Threonic Acid Isopentadecanoic Acid
H 1.45 ± 0.12 H 0.51 ± 0.04
D 0.86 ± 0.04 # D 0.38 ± 0.01 #

Xylonolactone Phthalic Acid
H 1.68 ± 0.14 H 2.14 ± 0.29
D 1.28 ± 0.14 # D 1.70 ± 0.30 #

Xylose Palmitic Acid
H 1.16 ± 0.14 H 13.90 ± 1.03
D 0.79 ± 0.10 # D 10.39 ± 2.02 #

P-Tolyl Glucuronide Udp-Glucuronic Acid
H 0.48 ± 0.05 H 0.41 ± 0.04
D 0.31 ± 0.08 # D 0.32 ± 0.05 #

H and D represented healthy trees and diseased trees, respectively. “*” and “#” represent significantly increases or
decreases compared to healthy tress (p < 0.05).

3.7. Analysis of Differential Metabolic Pathways

The pathway enrichment analysis of different metabolites in healthy and diseased
trees was conducted with the KEGG (Kyoto Encyclopedia of Genes and Genomes) database.
Results showed that there was a significant difference between healthy (H) and dis-
eased (D) trees in six metabolic pathways, including thiamine metabolism, phenylalanine–
tyrosine–tryptophan biosynthesis, valine–leucine–isoleucine biosynthesis, phenylalanine
metabolism, fatty acid biosynthesis and fatty acid metabolism (Figure 7), while there no
significant difference between healthy and diseased trees in four other metabolic pathways
including aminoacyl-tRNA biosynthesis, ubiquinone and other terpenoid–quinone biosyn-
thesis, tyrosine metabolism and the citrate cycle. In agreement with the results of this study,
phenylalanine, tyrosine and tryptophan are three aromatic amino acids involved in the
synthesis of a variety of proteins, plant hormones, biopolymers and secondary metabolites.
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Tyrosine and phenylalanine are precursors of phenylalanine, alkaloids and glucosino-
lates, and their upregulated expression in whole-plant tissue indicates the activation of its
defense system [48].
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3.8. Correlation Analysis of Soil Microorganisms and Metabolites

This result revealed a correlation at the phylum, order and genus levels between
microbial groups and secondary metabolites of bayberry rhizosphere soil (Figure 8,
Supplementary Figures S3 and S4). At the genus level, digitoxose and threonic acid were
positively correlated with Mycobacterium, Geminibasidium and Sebacina. There was a positive
correlation between 1-hexadecanol and Arthrobacter,Mycobacterium and Geminibasidium.
Cytidine and palatinitol were negatively correlated with Gemmatimonas and Candidatus
solibacter, but positively correlated with Mizugakiibacter. The other 40 metabolites were
positively and negatively correlated with Gemmatimonas and Mizugakiibacter, respectively.
The other 40 metabolites, except glucoheptulose, were positively correlated with Candidatus
solibacter (Figure 8).

On the other hand, at the genus level, Sphingomonas was positively correlated with
threonic acid, p-hydroxylphenyllactic acid and UDP-glucuronic acid. Arthrobacter was
positively correlated with xylose, D7-glucose, tocopherol acetate and 1-kestose. Variibacter
was positively correlated with benzoic acid. Mycobacterium was positively correlated
with 2-hydroxypentanoic acid, xylose, tyrosine, carnitine, D7-glucose, tocopherol acetate
and 1-kestose. Geminibasidium was positively correlated with carnitine. Sebacina was
positively correlated with xylose, xylonolactone, P-hydroxylphenyllactic acid, citraconic
acid, tyrosine, UDP-glucuronic acid, carnitine and phthalic acid. Trechispora was negatively
correlated with P-hydroxylphenyllacticacid, 2-picolinic acid, palmitic acid, UDP-glucuronic
acid, 5-methoxytryptamine, myristic acid, malic acid, glucoheptulose and 4-methyl-5-
thiazoleethanol. Gemmatimonas and Mizugakiibacter are likely to be the core microbes
mediating microorganisms and metabolites (Figure 8).
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Figure 8. Heatmap of correlation analysis between microorganism relative abundances at genus level
and metabolite relative contents. * and ** indicate a significant correlation at p < 0.05 and p < 0.01,
respectively. The depth of the orange scale represents the magnitude of the correlation coefficient,
where the darker the color, the greater the positive correlation.

4. Conclusions

The results of this study indicated that there was a significant difference in bayberry
rhizosphere soil microbiota between healthy and diseased samples. Indeed, the relative
abundances of Rhizomicrobium and Cladophialophora in diseased trees was greater than that
of healthy trees, while the relative abundances of Acidothermus, Mortierella, Trichoderma and
Geminibasidium in diseased trees was less than that of healthy trees. Furthermore, RDA of
microbial communities and soil properties indicated that pH, organic matter, magnesium,
available phosphorus, nitrogen and calcium are the main variables of bacterial and fungal
communities, where the influence of these six main variables in bacterial communities was
greater than that in fungal communities. In addition, changes in microbial community
structure may be able to be supported by high correlations between microorganisms at the
phylum, order and genus levels and secondary metabolites. Indeed, GC–MS metabolomics
analysis of bayberry rhizosphere soil showed that the healthy and decline disease trees
differed over six metabolic pathways, including thiamine metabolism, phenylalanine–
tyrosine–tryptophan biosynthesis, valine–leucine–isoleucine biosynthesis, phenylalanine
metabolism, fatty acid biosynthesis and fatty acid metabolism, where the contents of
palatinitol and cytidine were higher in the rhizosphere soil of diseased trees than those of
the healthy trees, but the contents of the other 40 different metabolites, including sugars,
organic acids and secondary metabolites, were lower than those of healthy trees. Overall,
the results of this study revealed significant changes between healthy and diseased trees
in microbiota, chemical properties, and secondary metabolites of their rhizosphere soils,
which provides us with a new way to explore the cause of this bayberry disease.
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