# Antinociceptive effect of an aqueous extract and essential oil from *Baccharis heterophylla*

Erika Castillejos-Ramírez<sup>1</sup>, Araceli Pérez-Vásquez<sup>1</sup>, Rafael Torres-Colín<sup>2</sup>, Andrés Navarrete<sup>1</sup>, Adolfo Andrade-Cetto<sup>3</sup> and Rachel Mata <sup>1,\*</sup>

- <sup>1</sup> Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, CDMX 04510, Mexico; erikavivani@gmail.com (E.C.-R.), perezva@unam.mx (A.P.-V.), anavarrt@unam.mx (A.N.)
- <sup>2</sup> Instituto de Biología, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico; rafael.torres@ib.unam.mx (R.T.-C.)
- <sup>3</sup> Laboratorio de Etnofarmacología, Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico; aac@ciencias.unam.mx (A.A.-C.)
- \* Correspondence: rachel@unam.mx (R.M.); Tel.: (+52 55 5622 5289)



**Figure S1**. Temporal course of the antinociceptive behavior (the licking time against time) and AUC from the time course curve for the Aqueous Extract (AE, 31.6–316mg/kg). Each measurement represented as mean  $\pm$  SEM of n=6. Significantly different from VEH group (\*\* *p* < 0.01, \*\*\* *p* < 0.001) determined by ANOVA followed by Dunnett's post hoc test.



**Figure S2**. Temporal course of the antinociceptive behavior (the licking time against time) and AUC from the time course curve for the Essential Oil (EO, 30–177 µg/paw). Each measurement represented as mean ± SEM of n=6. Significantly different from VEH group (\* p < 0.05) determined by ANOVA followed by Dunnett's post hoc test.



Figure S3. Total ion chromatograms of volatile components from *Baccharis heterophylla* obtained by extraction of HS-SPME.



**Figure S4.** Representative HPLC chromatogram at  $\lambda$ =327 nm, and UV absorption spectrum (200 to 400 nm) of compound **1**.



**Figure S5.** Representative HPLC chromatogram at  $\lambda$ =327 nm, and UV absorption spectrum (200 to 400 nm) of compound **3**.



**Figure S6.** Representative HPLC chromatogram at  $\lambda$ =327 nm, and UV absorption spectrum (200 to 400 nm) of compound **4**.



Figure S7. Calibration curve (area *versus* concentration) and residual plot for compound 1.



Figure S8. Calibration curve (area *versus* concentration) and residual plot for compound 3.



Figure S9. Calibration curve (area versus concentration) and residual plot for compound 4.

|                  | 1     |                     |       | 2                   |       | 3                   |       | 4                   |       | 5                    |  |
|------------------|-------|---------------------|-------|---------------------|-------|---------------------|-------|---------------------|-------|----------------------|--|
| Position         | δc    | δн (J in Hz)        | δc    | δн ( <i>J</i> in Hz) |  |
| 1                | 74.3  |                     | 75.1  |                     | 74.8  |                     | 80.7  |                     | 74.6  |                      |  |
| 2 α/β            | 36.3  | 2.20-2.13(m)        | 37.2  | 2.05-2.32 (m)       | 37.9  | 2.16-2.37 (m)       | 38.7  | 2.09-2.33 (m)       | 35.5  | 2.09-2.18 (m)        |  |
| 3                | 72.1  | 4.15 (br s)         | 71.4  | 5.58(br d, 3.4)     | 72.7  | 5.41-5.39 (m)       | 70.3  | 4.36 (d, 3.6)       | 71.9  | 5.29 (m)             |  |
| 4                | 74.3  | 3.70 (dd, 3.2, 9.0) | 75.2  | 5.35(dd, 3.9,9.0)   | 70.8  | 3.99 (dd, 3.3, 8.0) | 76.7  | 5.14 (dd, 3.0, 9.7) | 69.6  | 3.96 (m)             |  |
| 5                | 72.1  | 5.36 (dd, 3.2, 9.0) | 67.0  | 4.95(dd, 3.3,9.0)   | 72.1  | 5.44 (dd, 3.3,8.0)  | 69.4  | 5.72-5.67(m)        | 72.2  | 5.38 (m)             |  |
| 6α/β             | 37.5  | 2.20-2.13 (m)       | 36.9  | 2.05-2.32 (m)       | 36.1  | 2.16-2.37 (m)       | 40.3  | 2.09-2.33 (m)       | 36.6  | 2.25-2.34 (m)        |  |
| 7                | 166.7 |                     | 177.5 |                     | 177.7 |                     | 178.6 |                     | 175.2 |                      |  |
| 1′               | 125.6 |                     | 127.7 |                     | 127.9 |                     | 127.7 |                     | 127.9 |                      |  |
| 2′               | 112.9 | 7.04 (d, 1.8)       | 115.3 | 7.08 (d, 1.9)       | 115.2 | 7.08 (br d, 2)      | 114.9 | 7.04(d, 2.0)        | 114.8 | 7.05 (d, 2.0)        |  |
| 3′               | 144.5 |                     | 146.6 |                     | 146.8 |                     | 146.7 |                     | 146.9 |                      |  |
| 4'               | 147.3 |                     | 149.8 |                     | 149.6 |                     | 149.6 |                     | 149.6 |                      |  |
| 5'               | 114.2 | 6.77 (d, 8.2)       | 116.6 | 6.80 (d, 8.0)       | 116.5 | 6.80 (dd, 0.9, 8.1) | 116.4 | 6.77(d, 8.1)        | 116.5 | 6.77 (d, 8.2)        |  |
| 6'               | 120.7 | 6.93 (dd, 1.8, 8.2) | 123.1 | 6.92 (dd, 3.0, 8.0) | 123.1 | 6.96 (dd, 2.0, 8.0) | 123.2 | 6.90-6.96 (m)       | 123.1 | 6.95 (dd, 2.7, 8.2)  |  |
| 7'               | 144.7 | 7.56 (d, 15.9)      | 147.4 | 7.59 (d, 15.9)      | 147.2 | 7.61 (d, 15.9)      | 147.6 | 7.63(d, 15.9)       | 147.2 | 7.60 (d, 15.9)       |  |
| 8'               | 113.2 | 6.30 (d, 15.9)      | 115.4 | 6.25 (d, 15.9)      | 115.6 | 6.37 (d, 15.9)      | 115.0 | 6.30 (d, 15.9)      | 115.4 | 6.32 (d, 15.9)       |  |
| 9′               | 166.7 |                     | 168.5 |                     | 168.9 |                     | 168.6 |                     | 167.9 |                      |  |
| 1″               |       |                     | 127.7 |                     | 127.8 |                     | 127.6 |                     | 127.6 |                      |  |
| 2″               |       |                     | 115.3 | 7.08 (d, 1.9)       | 115.1 | 7.08 (br d, 2)      | 114.9 | 7.02(d, 2.0)        | 115.1 | 7.04 (d, 2.0)        |  |
| 3″               |       |                     | 146.6 |                     | 146.8 |                     |       |                     | 146.8 |                      |  |
| 4″               |       |                     | 149.6 |                     | 149.5 |                     | 149.6 |                     | 149.8 |                      |  |
| 5″               |       |                     | 116.6 | 6.80 (d, 8.0)       | 116.5 | 6.80 (dd, 0.9, 8.1) | 116.4 | 6.75 (d, 8.2)       | 116.6 | 6.76 (d, 8.2)        |  |
| 6″               |       |                     | 12.0  | 6.92 (dd, 3.0, 8.0) | 123.0 | 6.96 (dd, 2.0, 8.0) | 123.1 | 6.90-6.96 (m)       | 123.0 | 6.95 (dd, 2.7, 8.2)  |  |
| 7″               |       |                     | 147.4 | 7.59 (d, 15.9)      | 147.0 | 7.61 (d, 15.9)      | 147.4 | 7.55(d, 15.9)       | 147.5 | 7.53 (d, 15.9)       |  |
| 8″               |       |                     | 115.4 | 6.25 (d, 15.9)      | 115.6 | 6.29 (d, 15.9)      | 115.0 | 6.22 (d, 15.9)      | 115.1 | 6.20 (d, 15.9)       |  |
| 9″               |       |                     | 168.5 |                     | 168.4 |                     | 168.4 |                     | 168.8 |                      |  |
| OCH <sub>3</sub> |       |                     |       |                     |       |                     |       |                     | 53.0  | 3.67 (s)             |  |

Table S1. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectral data of compounds 1–5 (400 and 100 MHz respectively; MeOH-*d*<sub>4</sub>) from the aerial parts of *Baccharis heterophylla*.

|          |       | 6             |       | 7             |       | 8             |  |  |
|----------|-------|---------------|-------|---------------|-------|---------------|--|--|
| Position | δc    | δн (J in Hz)  | δc    | δн (J in Hz)  | δc    | δн (J in Hz)  |  |  |
| 2        | 163.7 |               | 167.8 |               | 164.0 |               |  |  |
| 3        | 102.9 | 6.76 (s)      | 103.4 | 6.85 (s)      | 103.6 | 6.86 (s)      |  |  |
| 4        | 181.7 |               | 183.8 |               | 182.3 |               |  |  |
| 4a       | 103.7 |               | 105.9 |               | 104.4 |               |  |  |
| 5        | 161.5 |               | 157.7 |               | 161.4 |               |  |  |
| 6        | 98.8  | 6.18 (d, 2.1) | 99.1  | 6.38 (d, 2.1) | 99.1  | 6.19 (d, 2.3) |  |  |
| 7        | 164.1 |               | 167.2 |               | 163.9 |               |  |  |
| 8        | 94.0  | 6.46 (d, 2.1) | 93.3  | 6.78 (d, 2.1) | 94.1  | 6.49 (d, 2.3) |  |  |
| 8a       | 161.2 |               | 159.2 |               | 157.8 |               |  |  |
| 1′       | 121.2 |               | 118.8 |               | 123.3 |               |  |  |
| 2'       | 128.5 | 7.91 (d, 8.9) | 129.2 | 7.96 (d, 8.9) | 127.9 | 8.04 (d, 8.8) |  |  |
| 3′       | 116.0 | 6.91 (d, 8.9) | 116.3 | 6.93 (d, 8.9) | 114.3 | 7.11 (d, 8.8) |  |  |
| 4'       | 157.3 |               | 161.8 |               | 162.5 |               |  |  |
| 5'       | 116.0 | 6.91 (d, 8.9) | 116.3 | 6.93 (d, 8.9) | 114.3 | 7.11 (d, 8.8) |  |  |
| 6'       | 128.5 | 7.91 (d, 8.9) | 129.2 | 7.96 (d, 8.9) | 127.9 | 8.04 (d, 8.8) |  |  |
| OH-5     |       | 12.95 (s)     |       | 12.97 (s)     |       | 12.91 (s)     |  |  |
| OCH3     |       |               | 55.8  | 3.87 (s)      | 55.3  | 3.86 (s)      |  |  |

**Table 2.** <sup>1</sup>H NMR and <sup>13</sup>C NMR spectral data of compounds **6–8** (400 MHz, and 100 MHz respectively; DMSO-*d*<sub>6</sub>) from the aerial parts of *Baccharis heterophylla*.

#### *α*-Pinene (9):



# **β-Pinene (10):**



## Myrcene (11):



#### *o*-Cymene (12):

Peak True - sample "RM20BHF8:1", peak 4, at 375.243 s



#### *d*-Limonene (13):



*p*-Cymenene (14):



## δ-Elemene (15):

Peak True - sample "RM20BHF5:1", peak 4, at 523.194 s



#### Cedrene (16):

Peak True - sample "RM20BHF5:1", peak 6, at 563.744 s



# β-Caryophyllene (17):

Peak True - sample "RM20BHF5:1", peak 7, at 564.044 s



#### Isogermacrene D (18):



#### Aromadendrene (19):



## *α*-Caryophyllene (20):

Peak True - sample "RM20BHF6:1", peak 11, at 576.51 s



#### Germacrene D (21):



#### γ-Elemene (22):



#### $\alpha$ -Selinene (23):

Peak True - sample "RM20BHF5:1", peak 14, at 588.794 s



# β-Cadinene (24):

Peak True - sample "RM20BHF8:1", peak 12, at 591.443 s



#### β-Amorphene (25):

Peak True - sample "RM20BHF9:1", peak 14, at 591.325 s



#### β-Himachalene (26):

Peak True - sample "RM20BHF5:1", peak 15, at 593.794 s



#### δ-Amorphene (27):

Peak True - sample "RM20BHF2:1", peak 10, at 600.109 s



#### Calamenene (28):



#### *α*-Cadinene (29):



#### $\alpha$ -Calacorene (30):



Figure S10: EI-MS of the volatile constituents 9–30 from Baccharis heterophylla.