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Abstract: Wnt signaling regulates cell fate decisions in diverse contexts during development, and 
loss of Wnt signaling in the cranial mesenchyme results in a robust and binary cell fate switch from 
cranial bone to ectopic cartilage. The Extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) 
and Wnt signaling pathways are activated during calvarial osteoblast cell fate selection. Here, we 
test the hypothesis that ERK signaling is a mediator of Wnt-dependent cell fate decisions in the 
cranial mesenchyme. First, we show that loss of Erk1/2 in the cranial mesenchyme results in a di-
minished domain of osteoblast marker expression and increased expression of cartilage fate markers 
and ectopic cartilage formation in the frontal bone primordia. Second, we show that mesenchyme 
Wnt/β-catenin signaling and Wntless are required for ERK activation in calvarial osteoblasts. Third, 
we demonstrate that Wnt and ERK signaling pathways function together to repress SOX9 expres-
sion in mouse cranial mesenchyme. Our results demonstrate an interaction between the Wnt and 
ERK signaling pathways in regulating lineage selection in a subset of calvarial cells and provide 
new insights into Wnt-dependent cell fate decisions. 
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1. Introduction 
The development of the roof of the skull, the calvaria, involves several signaling 

pathways, differentiation program factors, and cellular movements in the supraorbital 
arch (SOA) mesenchyme (SOM) [1,2]. The frontal bone is derived from the cranial neural 
crest, whereas the parietal bone is derived from a combination of cranial neural crest and 
paraxial mesoderm progenitors [3]. Differentiation of intramembranous bone is unique 
from endochondral formation because the SOM condenses and differentiates directly into 
calvarial osteoblasts which give rise to the cranial bone/calvaria. Differentiation of the 
SOM and ossification of the calvaria begin basally and proceed apically, beginning with 
the anterior frontal bones then progressing to the posterior parietal bones during mam-
malian development [1,2]. The calvarial bone consists of two distinct domains, the outer 
periosteal layer and the inner endosteum [4]. Recent studies have identified the perios-
teum as a source of skeletal stem cells which are required for bone growth and repair [5]. 
It is unclear what signaling differences, if any, exist between the cells within the perios-
teum, endosteum, or other bone niches during early calvarial development. 

Calvarial differentiation is regulated by a sequence of transcription factors and sig-
naling pathways. The bone transcription program begins with expression of Runx2 by 
calvarial osteoblast progenitors starting at E11.5 in the mouse. Ossification and differen-
tiation of the bone progenitors into committed osteoblasts is specified by Osx downstream 
of Runx2 by E14.0. These osteoblasts secrete bone-specific extracellular matrix proteins 
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which results in mineralized and ossified bone formation [3,6,7]. Signaling pathways, such 
as BMP, TGF-β, FGF, and Wnt and their target genes, have roles in endochondral and 
intramembranous bone differentiation and morphogenesis. Wnt signaling controls cell 
fate decisions in many contexts, including mammalian craniofacial development [1,2,8]. 
Wnt-dependent cell fate decisions are mediated through the canonical Wnt signaling 
pathway by transcriptional activity of β-catenin, or via the non-canonical Wnt/PCP or 
Wnt/Ca2+ signaling pathways. Importantly, canonical Wnt signaling is necessary in 
providing the osteo-inductive cue that initiates the calvarial differentiation program and 
inhibits cartilage fate [1–3]. Canonical Wnt signaling is initiated with the binding of a Wnt 
ligand to a cell-surface receptor, resulting in stabilization and translocation of β-catenin 
to the nucleus where it acts a transcriptional regulator with TCF/LEF transcription factors 
[8–10]. As mentioned earlier, loss of canonical Wnt signaling is characterized by a robust 
and binary cell fate switch from cranial bone to ectopic cartilage [11–15]. The role of non-
canonical Wnt signaling also plays a role in osteogenic differentiation in vitro and in vivo 
[16–18]. Specifically, the noncanonical Wnt ligand, Wnt5a, is required for mechanical in-
duction of osteogenic differentiation during wound repair [16], and activated Ror2 ho-
modimerization resulting in increased osteoblast differentiation in human embryonic 
stem cells and murine calvarial explants in vitro [17]. While the role of Wnt signaling in 
calvarial bone development is well studied in both in vitro and in vivo, how Wnt signaling 
promotes differentiation of SOM to osteoblasts, while simultaneously repressing chon-
drocyte fate, is still unclear (reviewed in [3]). Identifying downstream regulators of Wnt 
signaling during osteoblast fate decisions will inform our understanding of how Wnt sig-
naling regulates fate decisions in differentiation of other stem cell populations. 

The ERK (extracellular signal-related kinase) signaling pathway cross-talks with 
Wnt/β-catenin signaling during endochondral osteoblast differentiation in vivo and in 
vitro, and may have roles in chondrogenic repression [19,20]. ERK1 and 2 are members of 
the MAPK (mitogen-activated protein kinase) signaling cascade and are typically acti-
vated by growth factor or G-protein ligand binding to a cell surface receptor [21–23]. Ac-
tivation of ERK proteins, through phosphorylation by MEK (mitogen-activated protein 
kinase kinase, MAPKK), regulates several processes, such as cellular growth, prolifera-
tion, and differentiation [20]. The Wnt and ERK signaling pathways can act both up and 
downstream of each other in vitro and in vivo [19,20,24,25]. In NIH3T3 fibroblast cells, 
ERK signaling is activated downstream of Wnt signaling mediated by Wnt3a, independ-
ent of β-catenin, as well as by β-catenin/Tcf4 [24]. ERK signaling can in turn stabilize β-
catenin by phosphorylating GSK3β, a key factor in the β-catenin degradation complex 
[20]. Matsushita et al. have reported diminished β-catenin levels following loss of ERK in 
limb-bud mesenchyme in vivo [19]. Whether ERK signaling is activated downstream of 
Wnt signaling in the cranial mesenchyme before cell fate decisions is not known. 

Similar to Wnt signaling (reviewed in [4,26–29]), the ERK signaling pathway also has 
multiple roles during skeletal differentiation in vivo. Conditional loss of ERK activation 
in limb-bud mesenchyme results in loss of endochondral derived bone differentiation and 
ectopic cartilage in long bone perichondrium [19,23]. Similarly, Prx1-cre; β-cateninfl/fl em-
bryos exhibit ectopic cartilage formation in the periosteum of long bones, ectopic cartilage 
and loss of bone mineralization in the skull and calvarial mesenchyme in vitro and in vivo 
[12]. These data suggest that β-catenin may repress cartilage differentiation through inter-
action with the ERK1/2 signaling pathway. The role of the ERK signaling pathway during 
chondrogenesis is unclear; however, the data suggest a temporally dynamic role based on 
several in vitro studies [20]. One study showed that ERK signaling is required for initial 
SOX9 activation in primary chondrocytes and C3H10T1/2 cells in vitro [30] while another 
noted that ERK activation during late chondrogenic differentiation resulted in increased 
chondrogenesis in limb bud mesenchyme, but only in the presence of p38/MapK signaling 
[31]. Recent studies have identified a unique relationship between ERK signaling and tra-
cheal chondrogenic differentiation, demonstrating the existence of an incoherent feed for-
ward loop where chondrogenesis is activated by SOX9 and simultaneously repressed by 
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ERK [32]. The role ERK signaling plays during calvarial osteoblast fate decisions is un-
clear. 

In this study, we test the hypothesis that ERK signaling is a downstream mediator of 
Wnt-dependent binary intramembranous bone-cartilage cell fate decisions. We found that 
ERK signaling is dispensable for cell-fate specification of calvarial osteoblasts, yet is re-
quired for calvarial bone formation by repression of chondrocyte fate in cranial bone pro-
genitors. We use a suite of genetic tools to dissect the requirement of mesenchyme Wnt/β-
catenin signaling and the other Wnt ligand pathways for ERK activation in the cranial 
mesenchyme during calvarial osteoblast fate decisions. These results demonstrate a ge-
netic interaction between the Wnt and ERK signaling pathways to repress SOX9 and ERK 
signaling is activated downstream of Wnt signaling during calvarial osteoblast fate deci-
sions in vivo. 

2. Methods 
2.1. Mice and Genotyping 

Mouse lines used in the conditional functional studies include En1Cre (gift of Alex 
Joyner, [33]), PDGFRαCreER (Jax stock# 018280), Wls flox (gift of Richard Lang, [34]), β-
Catenin deleted [35], β-Catenin conditional floxed [36]. Erk1-/- [37], and Erk2fl/fl [38] were gra-
ciously gifted from Dr. Guiming Liu. PdgfrαCreER Erk1-/- Erk2fl/fl were maintained on a 
C57BL6 background, all other genetic combinations were maintained in a mixed genetic 
background. Mice were time-mated to yield desired crosses with vaginal plug day as-
signed as E0.5. Dams carrying embryos between E8.5 and E9.5 were orally gavaged with 
tamoxifen dissolved in corn oil (dosage specified with distinct crosses) to activate CreER 
and conditionally delete Wls or Erk2 in the cranial mesenchyme. Embryos were harvested 
and processed for frozen sections as previously described [39]. For each experiment, a 
minimum of four mutants with litter-matched controls were studied unless otherwise 
noted. A minimum of three litters were used for each functional analysis. Case Western 
Reserve University Institutional Animal Care and Use Committee approved all animal 
procedures in accordance with AVMA guidelines (Protocol 2013–0156, Animal Welfare 
Assurance No. A3145–01). 

2.2. Histology and Immunohistochemistry 
Embryos were fixed in 4% paraformaldehyde at 4 °C, sucrose dehydrated, and em-

bedded in O.C.T. Compound (Tissue-Tek Sakura, Sakura Finetek USA, Torrance, CA, 
USA) and sectioned at 14 μm as previously described [39,40]. H&E staining was per-
formed by standard protocol. 

Immunofluorescence (IF) on cryosections was performed as previously described 
[40], and sections were dried at room temperature, washed in 1X PBS or 1X PBS-T (PBS + 
0.5% Tween), and blocked in goat serum or donkey serum. Primary antibodies were incu-
bated overnight at 4 °C, washed the next day in 1X PBS or 1XPBS-T, incubated with spe-
cies-specific secondary antibody (Alexa594, Invitrogen, Waltham, MA, USA) for one hour 
at room temperature, and then washed with DAPI (0.5 μg/mL), and mounted with Fluoro-
shield (Sigma F6057, St. Louis, MO, USA). The following primary antibodies were used: 
rabbit anti-Sox9 (1:1000, Chemicon AB5535, Japan), rabbit anti-Osx2 (1:2000, Abcam 
AB209484, Cambridge, United Kingdom), rabbit anti-Aggrecan (1:1000 for E13.5, 1:1500 
for E16.5, Millipore AB1031, Burlington, MA, USA), rabbit anti-Lef1 (1:100, Cell Signaling 
Technology C12A5, Danvers, MA, USA), rabbit anti-Caspase3 (1:250, Abcam AB13847, 
Cambridge, United Kingdom), and rabbit anti-phospho-ERK1/2 (1:1250, Cell Signaling 
Technology 4370, Danvers, MA, USA). Wide-field images were captured at 20X and 40X 
using the Leica DMi8 inverted microscope using the Leica Application Suite X (LASX) 
software. Confocal images were captured on the Leica TCS SP8 gated STED 3X using a 
40X oil immersion objective (HC PL APO 40X/1.30 NA CS2, Oil, FWD = 0.24 mm) detection 
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by PMT detector or hybrid detectors and LASX software. Images were processed in Adobe 
Photoshop and Fiji/ImageJ [41,42]. 

For the p-ERK1/2 IF data, tyramide signal amplification using TSA plus Cyanine3.5 
kit (PerkinElmer NEL763001KT, Akoya Biosciences, Marlborough, MA, USA) was used 
to amplify the signal. Cryosections were dried at room temperature, washed in PBS then 
underwent antigen retrieval at 60 °C for 20 min in a citrate buffer. Slides were washed in 
1X TBS-T (TBS + 0.5%Tween-20) then blocked in 3% peroxide for 10 min, blocked with 
goat serum, and incubated in primary antibody overnight. The slides were then washed 
in 1X TBS-T and incubated in HRP-conjugated goat-anti-rabbit secondary (1:1500, Perki-
nElmer NEF812001EA, Akoya Biosciences, Marlborough, MA, USA) for 45 min. The slides 
were then incubated with the TSA Plus Working solution as per the manufacturer’s rec-
ommendations. Following amplification, the slides were washed with DAPI (0.5 μg/mL) 
and mounted with Fluoroshield (Sigma F6057, St. Louis, MO, USA). Images were cap-
tured on confocal microscopy as described above. 

2.3. Immunofluorescence Quantification 
Fiji/ImageJ was used to generate z-stacks for confocal images max-projected to the 

inner 5 microns. Each image was set to 8-bit and background removed with a 10-pixel 
“rolling ball”. The signal threshold was set to (13,255). “Watershed” was utilized to sepa-
rate individual nuclei, which were then counted using the “Analyze Particles” function 
(circularity set to 0.15–1; particle size set to greater than 70 pixel units). For nuclear protein 
expression patterns (LEF1, SOX9, OSX), data were analyzed as a ratio of targeted nuclei 
to DAPI stained nuclei per region of the SOA (hand traced). For the non-nuclear signal (p-
ERK1/2), total corrected fluorescence was measured using Fiji/ImageJ [43]. Total corrected 
fluorescence of non-nuclear signals was normalized to the number of DAPI-stained nuclei 
in the specified region. For all images, the boundary for the frontal bone primordia is de-
fined on both the expression domain of OSX shown in adjacent sections (where applica-
ble), as well as the morphological boundary between the condensed frontal bone mesen-
chyme as discerned by DAPI staining and the meningeal layers. 

2.4. HCR–In Situ 
HCR–in situ hybridization was performed on cryosections using HCR V3.0 bundle 

set designed by Molecular Instruments (https://www.molecularinstruments.com/prod-
ucts, Los Angeles, CA, USA) following the manufacturer’s protocol. The Col2a1 probe uti-
lized in the assay was designed by Molecular Instruments. 

2.5. RT-qPCR 
The relative expression of mRNA was analyzed using RT-qPCR as previously de-

scribed [40]. Embryos at E12.5 or E13.5 were microdissected to isolate the cranial mesen-
chyme. The resulting tissue population is enriched cranial mesenchyme, following man-
ual removal of the ectoderm and brain tissues. RNA was isolated as previously described 
[40,44]. Relative mRNA expression was quantified using 4 ng of cDNA on a StepOne Plus 
Real-Time PCR System (Life Technologies, Carlsbad, CA, USA) and the ΔΔCT method 
[45]. Commercially available TaqMan probes (Life Technologies, Carlsbad, CA, USA) spe-
cific to each gene were used: Erk1 (Mm01278702_gH), Erk2 (Mm01171077_m1), Lef1 
(Mm00550265_m1), Tcf1 (mm00493445_m1), Axin2 (Mm00443610_m1), Sox9 
(Mm00448840_m1), OSX/Sp7 (Mm04209856_m1), Runx2 (Mm00501584_m1), Col2a1, Ag-
grecan (Mm00545794_m1), β-actin (ActB, 4352933E), Pdgfrα (Mm00440701_m1), and Wls 
(Mm00509695_m1). 
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2.6. Digital Droplet PCR (DD-PCR) 
DDPCR was used to quantify copy number of target transcripts. cDNA isolated as 

described above was used for all samples/targets. Reaction mixtures included ddPCR Su-
permix for Probes (no dUTP) (BioRad #1863023, Hercules, CA, USA), target probe (1 μL), 
and sample cDNA (4 ng/μL; 1 μL/reaction) to a final volume of 20 μL. Each reaction was 
loaded into a sample well of an eight-well disposable DG8 cartridge (BioRad # 1864008, 
Hercules, CA, USA) along with 70 μL Droplet Generation Oil for Probes (BioRad 
#1863005, Hercules, CA, USA) then covered with a gasket and loaded into a QX200 Drop-
let Generator (BioRad Laboratories, Hercules, CA, USA) to form droplets. Droplets were 
then transferred to a 96-well ddPCR plate (BioRad #12001925, Hercules, CA, USA), heat-
sealed with foil, and amplified using a thermocycler using the following parameters: 95°C 
for 10 min, 40 cycles of 94°C for 30 s then 60°C for 1 min, then 98°C for 10 min. Completed 
PCR samples were loaded into the QX200 Droplet Reader (Bio-Rad Laboratories, Hercu-
les, CA, USA) and droplets were analyzed per the manufacturer’s instructions. Data were 
analyzed using QuantaSoft software (Bio-Rad Laboratories, Hercules, CA, USA). 

2.7. Protein Isolation and Immunoblotting 
Enriched cranial mesenchyme was isolated as described above at E12.5 and protein 

was isolated as previously described [40]. Protein was isolated using RIPA buffer. Proteins 
were separated by SDS-PAGE using Mini-PROTEAN TGC gels (BioRad #456–1084, Her-
cules, CA, USA) or Mini-Protean TGX Stain-Free (BioRad #456-8084, Hercules, CA, USA). 
Western blots were performed with the following primary antibodies: rabbit-anti-p-
ERK1/2 (1:500, Cell Signaling Technology 9101, Danvers, MA, USA), rabbit-anti-Erk1/2 
(1:500, Cell Signaling Technology 9102, Danvers, MA, USA), and rabbit-anti-Lef1 (1:500, 
Cell Signaling Technology 2286, Danvers, MA, USA). Species-specific HRP-conjugated 
secondary antibodies were used at 1:10,000. Immunoblots were probed with anti-β-TU-
BULIN (1:400, Santa Cruz 9104, Dallas, TX, USA) as a loading control where indicated. 
Protein was detected using an Amersham ECL Western Blotting Analysis System (GE 
Healthcare RPN2109, Chicago, IL, USA), and developed onto film or imaged using a Bio-
rad Chemidoc gel imager. Relative protein levels were quantified using Image J/Fiji to 
measure band intensity relative to the loading control (β-tubulin), or to total protein 
loaded per lane as measured by ImageLab analysis. 

2.8. Statistics 
All graphs and statistical analysis were generated using GraphPad Prism version 

9.0.2 for Windows (GraphPad Software, San Diego, CA, USA). Data are presented as mean 
± SEM in all graphs. All pairwise sample comparisons were performed using a Student’s 
t-test or Mann–Whitney test where indicated. The p-values for statistical tests in all figures 
are represented as * = p < 0.05, ** = p < 0.01, and *** = p < 0.001. 

3. Results 
3.1. ERK Signaling Is Required for Calvarial Bone Growth and Repression of Chondrocyte Fate 
In Vivo 

To determine the role of ERK signaling in calvarial osteoblast fate decisions, we gen-
erated a cranial mesenchyme restricted loss-of-function ERK signaling mouse model. Pdg-
frαCreER is active broadly across the cranial mesenchyme as early as E9.0 as previously 
described [40,46,47]. We induced CreER recombination in the mouse cranial mesenchyme 
prior to calvarial osteoblast lineage decisions by administering tamoxifen at E8.5 and E9.5 
(Figure 1A). This resulted in the efficient deletion of Erk2 in an Erk1 null background (CM-
Erk1/2) (Figure 1B). We first queried cell fate in the cranial mesenchyme by analyzing ex-
pression of osteoblast and chondrocyte cell fate markers in the frontal bone primordia at 
E13.5 (Figure 1C,D). We found that loss of ERK1/2 did not alter the expression of the key 
osteoblast regulatory factor Runx2 and Osx (Sp7) (Supplemental 1). Though ERK1/2 was 
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not required for the differentiation of the frontal bone primordia into OSX+ osteoblasts 
(Figure 1E,F), we observed a decrease in the domain of OSX protein expression in the 
frontal bone primordia of CM-Erk1/2 mutants compared to littermate controls. Next, we 
examined mRNA expression of cartilage determinants. Relative to controls, we found that 
Sox9 mRNA was reduced by half and Aggrecan was elevated 3.5-fold in our CM-Erk1/2 
mutants relative to controls (Supplemental 1). Despite the significantly diminished Sox9 
gene expression, we observed ectopic expression of SOX9 and its downstream target, Ag-
grecan, within the basal region of the frontal bone primordia of the CM-Erk1/2 mutants 
(Figure 1G,H). This ectopic expression of SOX9 and Aggrecan protein coincides with the 
formation of cartilage nodules within the frontal bone primordia of CM-Erk1/2 mice, 
showing that ERK is required to repress chondrocyte differentiation within the cranial 
mesenchyme during osteoblast cell fate decisions. The discrepancy between mRNA and 
protein expression of key chondrocyte differentiation markers suggests a post-transla-
tional effect of ERK signaling on SOX9 protein stability or degradation [48]. 

 

Figure 1. Loss of ERK1/2 results in diminished expression of OSX, and ectopic expression of chondrocyte fate 
markers at E13.5. Schematic depicting the gavage regimen and timing of deletion of Erk2 (A). (B) Schematic depicting 
the work flow and tissue source for the RNA analysis, RT-qPCR analysis depicting the relative quantity of mRNA 
transcripts for Erk2 demonstrating deletion efficiency of gavage regimen. p(***) = 0.0002. Bone and cartilage cell fate 
and marker schematic (C) and orientation and plane of specimens (D). Immunofluorescence for calvarial progenitor 
marker, OSX (E,F), and chondrocyte markers, SOX9 (G,H) and Aggrecan (ACAN) (I,J) at E13.5. Arrows indicate ec-
topic cartilage formation. fbp, frontal bone primordia; n = 3–5 
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We examined older embryos to determine if cartilage differentiation progresses in 
the CM-Erk1/2 mice. At E16.5, the CM-Erk1/2 mutant exhibits gross morphological defects 
including rounded skull, cleft lip/palate, stunted jaw and snout, polysyndactyly, and 
overall smaller stature (Supplemental Figure S2B). The combination of craniofacial defects 
observed here are similar to those observed in other congenital birth defects such as Robi-
now and Pierre Robin syndromes [49,50]. By H&E staining, the CM-Erk1/2 mutant fail to 
form bone by histology in the frontal and parietal bone region, with complete loss of bone 
histology at the frontal bone region (Supplemental Figure S2D–G’). Despite the lack of 
distinct cartilage cell morphology within the presumed frontal bone region, a subset of 
the CM-Erk1/2 mutant mesenchyme in the medial periosteal region of the frontal bone 
continues to express ectopic SOX9 at E16.5, and SOX9 is expressed throughout the parietal 
bone (Supplemental Figure S2G–K’). Together these data illustrate a specific requirement 
for ERK signaling in repressing SOX9 and chondrocyte fate during calvarial development. 

Due to the severity of the phenotype in CM-Erk1/2 mutants, we observed nearly 75% 
reabsorption and loss of pregnancy. To increase the success rate of pregnancies and via-
bility of mutant embryos, we lowered the tamoxifen dosage, which resulted in a 60–70% 
reduction in Erk2 expression (CM-Erk1/2KD) (Figure 2A,B). In contrast to CM-Erk1/2 mu-
tants, the domain of OSX protein expression was comparable between controls and CM-
Erk1/2KD (Figure 2E,F), demonstrating that 70% Erk expression is sufficient to form frontal 
bone. Notably, there is a twofold increase in the number of SOX9+ cells within the frontal 
bone primordia of CM-Erk1/2KD embryos relative to littermate controls (Figure 2G,H,M). 
Ectopic expression of SOX9 was consistent with the misexpression of the downstream car-
tilage marker, Col2a1, in the frontal bone primordia (Figure 2I,J). Expression of the late 
chondrocyte marker, Aggrecan, is comparable to controls (Figure 2K,L). We did not ob-
serve the formation of cartilage nodules in the CM-Erk1/2KD embryos, suggesting that 
while ERK1/2 is required to repress SOX9 protein expression, the conversion to differen-
tiated chondrocyte fate may be dependent on the level of ERK present in the cell. Together, 
these data suggest that Erk2 activation is required in a dose-dependent manner to regulate 
calvarial growth and is required for repression of cartilage determinants during early cal-
varial osteoblast differentiation, by a mechanism to be determined in future studies. 
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Figure 2. Knockdown of Erk1/2 results in ectopic expression of SOX9 and Col2a1 but not OSX or Aggrecan. (A) 
Schematic depicting the gavage regimen and timing of deletion of Erk2. (B) Schematic depicting the work flow and 
tissue source for the RNA analysis, RT-qPCR analysis depicting the relative quantity of mRNA transcripts for Erk2 
demonstrating deletion efficiency of gavage regimen. 70% knockdown of Erk2 is achieved with a minimal gavage dos-
age (1.25 mg/kg Tamoxifen). p(**) = 0.0036 (C) Bone and cartilage cell fate and marker schematic. (D) Schematic indi-
cating the orientation and plane of specimens. (E,F) Immunofluorescence of OSX at E13.5. (G,H) There is increased 
SOX9 expression in the frontal bone primordia of Erk1/2 mutants relative to controls. (I,J) HCR-Col2a1 in situ stain in 
CM-Erk1/2 mutants and controls. (K,L) Aggrecan (ACAN) immunofluorescence shows no change in the downstream 
marker of SOX9 at E13.5. (M) Percent SOX9+ cells is increased in the mutant relative to the control. White arrows indi-
cate presence of ectopic SOX9 within the fbp. Pink arrowheads and arrows point to edge of Col2a1 expression bound-
ary in the control and mutant, respectively. fbp, frontal bone primordia; n = 3–10. 

3.2. Canonical Wnt Signaling Is Required for Activation of ERK Signaling In Vivo 
Next, we investigated whether ERK signaling is activated downstream of Wnt/β-

catenin signaling during calvarial osteoblast cell fate decisions in vivo. We utilized a 
mouse model in which β-catenin is conditionally deleted in the cranial mesenchyme be-
ginning at E9.5 using En1Cre as previously described [13]. Without β-catenin, the mesen-
chyme cannot transduce canonical Wnt signaling (Figure 3A) and the cranial mesenchyme 
cells undergo a cell fate switch from osteoblast to chondrocyte [13]. Compared to E12.5 
En1Cre; β-cateninΔ/+ control, phosphorylation of ERK1/2 proteins was diminished by 92% 
in En1Cre; β-cateninΔ/fl (CM-β-catΔ/fl) cranial mesenchyme (Figure 3B–D). Total ERK1/2 pro-
tein levels remained unchanged, indicating that the decrease in pERK1/2 was due to di-
minished activation of the ERK signaling pathway rather than changes in transcription of 
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Erk1/2 genes by β-catenin. Spatial analysis of ERK1/2 phosphorylation by immunofluores-
cence confirmed that the pERK1/2 is broadly expressed across the cranial mesenchyme in 
control embryos, and is diminished in CM-β-catΔ/fl (Figure 3F–I’). These data demonstrate 
that β-catenin is required for activation of ERK1/2 in the frontal bone primordia during 
the window of osteoblast cell fate specification in vivo. 

 

Figure 3. ERK signaling is diminished in CM-β-catΔ/fl mutants. (A) Schematic depicting the status of Wnt signaling 
in the cranial mesenchyme and overlying ectoderm in this mouse model of Wnt signaling deletion. br, brain; m, mes-
enchyme; e, ectoderm. β-catenin is deleted in the cranial mesenchyme preventing mesenchyme Wnt signaling. The 
ectoderm is able to secrete Wnt ligands and undergo Wnt signaling. (B) Schematic depicting the work flow and tissue 
source for the protein analysis in panels C and D. (C,D) Expression of activated ERK1/2 (pERK1/2) and total ERK1/2 
relative to β-tubulin expression in En1Cre;β-cateninfl/+ (control) and En1Cre;β-cateninΔ/fl (CM-β-catΔ/fl) normalized to 
control. p(**) = 0.0026 (E) Schematic indicating the plane and orientation of specimens. (F–I’) Immunofluorescence 
staining of pERK1/2 in control and CM-β-catΔ/fl coronal sections at E13.5 in the frontal (F–G’) and parietal bone regions 
(H–I’). Yellow lines demarcate the br, brain; blue lines demarcate the cb, cartilage base; mn, meninges. Arrows denote 
pERK1/2 signal in the bone primordia of the controls and arrowheads denote lack of signal in the CM-β-catΔ/fl. fpb, 
frontal bone primordia; pbp, parietal bone primordia; n = 4. 
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β-catenin is primarily recognized for its importance in transducing canonical Wnt 
signaling, but also functions independent of Wnt signaling during cellular adhesion and 
cadherin signaling [51]. To confirm that the observed decrease in pERK1/2 is due to loss 
of canonical Wnt signaling, and not an alternative function of β-catenin, we utilized an 
alternative conditional loss-of-function model of Wnt signaling in the cranial mesen-
chyme. WNTLESS (Wls) is a transmembrane protein that is specifically required for secre-
tion of all Wnt ligands [34,52,53]. Using Crect, a surface ectoderm restricted Cre line 
[15,54], we conditionally deleted Wls in the surface ectoderm which results in complete 
loss of Wnt signaling in the underlying cranial mesenchyme while leaving β-catenin intact 
(Supplemental Figure S3A) [15]. In this model, we also observe complete loss of pERK 
expression in the mutant cranial mesenchyme (Supplemental Figure S3C,D’). These data 
demonstrate that canonical Wnt/β-catenin signaling is required for ERK activation in the 
cranial mesenchyme during osteoblast fate decisions. 

3.3. Mesenchyme Wnts Are Required for ERK1/2 Activation in the Cranial Mesenchyme 
We next investigated the role of mesenchyme Wnt ligands on ERK1/2 phosphoryla-

tion. Notably, Wnt5a and Wnt11, the classical non-canonical Wnt ligands, are broadly ex-
pressed in the cranial mesenchyme, making this model a useful tool to study the contri-
bution of non-canonical Wnt signaling [15]. Therefore, we conditionally deleted Wls in the 
cranial mesenchyme using PdgfrαCreER as previously described [34,55] (CM-Wls) (Figure 
4A,B). At E12.5 protein expression of Lef1, a readout of canonical Wnt signaling, was com-
parable in Cre-; Wlsfl/fl controls and CM-Wls, indicating that canonical Wnt signaling re-
mained intact at E12.5 (Figure 4C–E). Next, we determined if phosphorylation of ERK1/2 
is diminished in the cranial mesenchyme of the CM-Wls. We observed a 90% reduction in 
pERK1/2 levels in the cranial mesenchyme of CM-Wls embryos compared to controls (Fig-
ure 4C–E). Total ERK1/2 protein expression levels were comparable in controls and CM-
Wls. These data show that mesenchyme Wnt ligand secretion is required to activate ERK 
signaling in the cranial mesenchyme. 

We next explored whether CM-Wls resulted in discriminate changes in the level of 
canonical Wnt signaling before cell fate decisions in the cranial mesenchyme. Wnt ligands, 
inhibitors, and target genes are patterned in distinct domains in the cranial mesenchyme. 
Graded expression of nuclear β-catenin protein, Axin2 mRNA, and Lef1 mRNA in the cra-
nial mesenchyme between E11.5–12.5 suggest that ectoderm Wnts contribute to a gradient 
of Wnt signaling response in the mesenchyme [15]. In addition, Wnt responsive target 
genes across tissues, such as Tcf1 and Lef1, require different levels of Wnt signaling for 
transcription [56,57]. To query for subtle and dynamic changes in levels of Wnt signaling 
in the cranial mesenchyme of the CM-Wls mutant, we used droplet digital PCR (DDPCR) 
to measure discrete copy numbers of Axin2, Tcf1, and Lef1 mRNA. We saw a significant 
decrease in copy number of Tcf1 (−33%) and Axin2 (−25%) in our mutants compared to the 
controls, while there was no effect in Lef1 copy number (Supplemental Figure S4). The 
significant changes in Axin2 and Tcf1 expression suggest modest and detectable change in 
the levels of Wnt activation in the cranial mesenchyme at E12.5. All together, we show 
that loss of mesenchyme Wls results in a disruption of Wnt signaling response in the mes-
enchyme visualized by the significant changes in Wnt target gene expression. These 
changes are sufficient to diminish activation of ERK through an unknown mechanism. 
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Figure 4. Mesenchyme Wnts are required for ERK1/2 activation in vivo. (A) Schematic depicting the gavage regimen. 
(B) Schematic depicting the status of Wnt signaling in the cranial mesenchyme and overlying ectoderm in this mouse 
model of Wnt signaling deletion. br, brain; m, mesenchyme; e, ectoderm. β-catenin remains intact within the cranial mes-
enchyme. The ectoderm is able to secrete Wnt ligands and undergo Wnt signaling. The mesenchyme cannot secrete Wnt 
ligands but can transduce Wnt signaling from the Wnt ligands secreted by the overlying ectoderm. (C) Schematic depicting 
the work flow and tissue source for the protein analysis. (D,E) Expression of activated ERK1/2 (pERK1/2), total ERK1/2, 
and LEF1 relative to total protein and normalized to controls in E12.5 control and CM-Wls. n = 4 biological replicates. p(**) 
= 0.0026. (F) Schematic indicating the plane and orientation of specimens. (G,H) Expression of LEF1 is decreased fbp of 
PdgfrαCreER;Wlsfl/fl (CM-Wls) relative to controls. (I,J) CM-Wls express ectopic SOX9 in the fbp relative to controls. (K,L) 
H&E shows ectopic cartilage nodules in CM-Wls but not controls. (M–N’) Immunofluorescence of control and CM-Wls 
showing diminished pERK1/2 in the CM-Wls relative to the controls. (O) Quantification of pERK1/2 IF by corrected fluo-
rescence using ImageJ. n = 7 controls; 5 mutants. p(**) = 0.0026. (P) Summary schematic illustrating the role of Wnts on 
ERK activation and downstream effect on cell fate decisions in calvarial osteoblast progenitors. (*): Goodnough et al 2016. 
Arrows point to ectopic cartilage nodule. Yellow line demarcates brain in IF panels; black line demarcates brain in panels 
K & L. fbp, frontal bone primordia. 

As development proceeds, the calvarial bone primordia develops away from the ec-
toderm and needs to generate its own Wnt ligands for canonical Wnt signaling and non-
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canonical Wnt ligand expression as well as osteoblast differentiation [15]. At E13.5, we 
begin to see diminished expression of Lef1 within the frontal bone primordia of CM-Wls 
embryos relative to controls (Figure 4G,H). In the controls, SOX9 expression is restricted 
to the cartilage base and faintly in the basal meninges (Figure 4I). In CM-Wls, SOX9 is 
ectopically expressed in the medial periosteum of the basal frontal bone primordia accom-
panied by ectopic cartilage formation and diminished frontal bone formation by E14.5 
(Figure 4I–L). Furthermore, pERK1/2 is significantly decreased in the cranial mesenchyme 
of CM-Wls embryos relative to controls (Figure 4M–O). These data demonstrate a con-
served yet delayed cell fate switch phenotype as observed within the CM-β-catΔ/fl mutant 
(Figure 4P). Together, these results suggest a requirement of different arms of the Wnt 
signaling for activation of ERK1/2 in the cranial mesenchyme during calvarial develop-
ment and repression of SOX9 and cartilage fate (Figure 4P). 

3.4. β-Catenin and ERK1/2 Signaling Can Interact to Repress SOX9 Expression in Cranial 
Mesenchyme 

Finally, to test if β-catenin and the ERK signaling pathway genetically interact in the 
cranial mesenchyme, we generated a novel compound heterozygous conditional mouse 
model for the β-catenin, Erk1 and Erk2 alleles (Figure 5A) using both PDGFRαCreER and 
En1Cre lines. Individual heterozygous mutants for either Erk1, Erk2, or β-catenin proceed 
with normal calvarial development (Supplemental Figure S2A,B, Figure 3A,F) [13,58]. Rel-
ative to the Cre- controls, we found ectopic expression of SOX9 protein in the most medial 
region of the frontal bone primordia (OSX + cells) in two different Cre+ triple compound 
heterozygotes (Figure 5B–H’’’). The spatial localization of ectopic SOX9 resembles the 
CM-Erk1/2KD and CM-Wls mutants, indicating that heterozygosity of the β-catenin and 
Erk1/2 alleles is sufficient to phenocopy loss of ERK and loss of mesenchyme Wnts at the 
level of SOX9 repression (Figures 2G,H and 4I,J). These results indicate that both Wnt/β-
catenin and ERK signaling pathways are simultaneously required to repress SOX9 during 
calvarial bone development in mice. Our data show that ERK signaling is highly respon-
sive to variations in cranial mesenchyme Wnt signaling, and propose a model wherein 
ERK is activated downstream of Wnt signaling and mesenchyme Wnts to repress SOX9 
during calvarial cell fate specification in mouse (Figure 4P). 
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Figure 5. Triple heterozygous β-catenin;Erk1/2 mutants demonstrate genetic interaction between the Wnt and ERK 
signaling pathways in SOX9 transcription. (A) Schematic describing genetic interaction hypothesis between Wnt and 
ERK signaling pathways to repress SOX9. (B) Schematic illustrating coronal sections. Immunofluorescence of OSX 
(C,D) and SOX9 (E,F) at E13.5 in β-cateninΔ/+; Erk1-/+; Erk2 fl/+ and Pdgfrα β-cateninΔ/+; Erk1-/+; Erk2 fl/+ heterozygous em-
bryos. Immunofluorescence of SOX9 at E14.5 in β-cateninΔ/+; Erk1-/+; Erk2 fl/+ and En1Cre β-cateninΔ/+; Erk1-/+; Erk2 fl/+ em-
bryos (G–H’’’). Yellow line demarcates brain, white dashed lines demarcate fbp and region of interest. Arrows iden-
tify ectopic SOX9 expression within the fbp. fbp, frontal bone primordia; n = 3. 

  



J. Dev. Biol. 2021, 9, 23 14 of 18 
 

 

4. Discussion 
Wnt-dependent repression of cartilage fate during calvarial development is poorly 

understood. Using a suite of conditional genetic mouse models, our data suggest a new 
working model that identifies ERK signaling as a key downstream mediator for Wnt-de-
pendent chondrocyte repression in a subset of calvarial osteoblast precursors during cell 
fate selection. ERK signaling activation is dependent on β-catenin and Wnt ligands in the 
cranial mesenchyme. Our in vivo genetic mutants also demonstrate that β-catenin and 
ERK1/2 interact genetically to repress SOX9 expression and chondrocyte fate in the cranial 
mesenchyme in vivo. 

Our in vivo analysis shows that Wnt signaling is required for ERK pathway activa-
tion in the cranial mesenchyme, but how is unclear. β-catenin is a transcriptional regulator 
which binds to TCF/LEF to initiate transcription during canonical Wnt signaling. Down-
stream of canonical Wnt signaling, and a putative candidate for Wnt/β-catenin ERK acti-
vation, are the Twist genes. Our lab has demonstrated that expression of the transcription 
factors Twist1/Twist2 is regulated by Wnt/β-catenin signaling. Although Twist1 represses 
Sox9 mRNA expression [14,59], conditional deletion of Twist1 in the cranial mesenchyme 
only results in a partial phenocopy of cartilage conversion of the occipital bone [14]. Twist 
can activate ERK signaling in vitro and overexpression of Twist is sufficient to increase 
ERK activation during EMT in breast cancer cells [60]. However, these data do not demon-
strate that Twist1 is necessary for ERK pathway activation. Future studies will be neces-
sary to understand the mechanism of Wnt/β-catenin ERK activation and to determine if 
Twist1 is required for ERK activation during calvarial osteoblast fate decisions in vivo. 

Our results suggest that mesenchyme Wnts mediating β-catenin-independent Wnt 
signaling may function in either a parallel or linear pathway to canonical Wnt/β-catenin-
dependent signaling to activate ERK signaling (Figures 5C–E and S3B). Using CM-Wls 
mutants, we were able to further dissect the role of Wnt signaling beyond canonical 
Wnt/β-catenin signaling. In support of a linear pathway, we previously showed that ca-
nonical Wnt signaling is required to transcriptionally regulate non-canonical Wnt ligands 
Wnt5a and Wnt11 in the cranial mesenchyme, suggesting that non-canonical Wnt signal-
ing is downstream of canonical Wnt signaling [15]. Our results with PDGFRαCreER dele-
tion of Wntless support a linear pathway because there is a temporal delay in the observed 
cell fate switch to chondrocyte fate in the CM-Wls mutants (Figure 5). Alternatively, our 
data also provide some evidence towards a parallel pathway. At E12.5, canonical Wnt 
signaling is comparable to controls in the CM-Wls mutants by LEF1 protein expression. 
Yet, we observe significantly decreased levels of ERK activation in our CM-Wls embryos 
(Figure 5). These data demonstrate a requirement of mesenchyme Wnts, independent of 
canonical Wnt signaling, for ERK activation during early calvarial cell fate decisions. In 
this model of parallel pathways, both mesenchyme Wnts and β-catenin are required to 
activate ERK signaling and converge at the point of SOX9 expression, but whether they 
negatively regulate SOX9 expression by the same mechanism is unknown. Another con-
sideration is that the canonical and non-canonical Wnt signaling pathways may exist 
within a feed-forward loop to activate ERK signaling. Our CM-Wls embryos show signif-
icant but modest decreases in two canonical Wnt signaling target genes, Axin2 and Tcf1. 
These decreases may indicate that canonical Wnt signaling is just beginning to decrease 
by E12.5 as a result of spatial differences as the mesenchyme grows away from the ecto-
derm, or as a result of changes in a gradient of Wnt signaling present in the cranial mes-
enchyme following loss of mesenchyme Wnts. Further studies will be necessary to under-
stand how mesenchyme Wnt ligands and non-canonical Wnt signaling change through-
out the cranial mesenchyme to activate the ERK signaling pathway, and how they inter-
sect with canonical Wnt/β-catenin dependent activation of ERK. Future studies using spe-
cific mouse models targeting the functions of the Wnt/PCP and Wnt/Ca2+ signaling are 
necessary to test the roles of the non-canonical Wnt signaling pathway on ERK activation 
in the cranial mesenchyme in vivo. 
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The role of Wnt signaling on the ERK signaling pathway is well studied in individual 
cell types in vitro. However, there are several limitations in understanding how these two 
signaling pathways guide calvarial osteoblast fate decisions from in vitro studies which 
do not capture the complexity of the environment in which the calvaria develops in vivo. 
Unlike long bones, calvarial osteoblasts develop between the brain and meningeal mes-
enchyme medially, and dermal fibroblasts and surface ectoderm laterally. The close prox-
imity of each cell type results in cross-talk of cell signaling and communication between 
cell populations. Furthermore, there are mechanical cues and regional differences in the 
composition and signaling of the extracellular matrix in the cranial mesenchyme as the 
cranial bones expand apically [61]. These regional differences can impact how cell fate 
decisions are made and are difficult to recapitulate in vitro, leading to an incomplete un-
derstanding of cell signaling mechanisms across tissue types. Our in vivo studies demon-
strate that ERK signaling is required to repress the chondrocyte determinants in a subset 
of calvarial osteoblasts in a dose-dependent manner. The spatial restriction of this pheno-
type is limited to a small subset of cells located in the medio-basal region of the frontal 
bone primordia and corresponds to the future periosteum of the frontal bone, suggesting 
heterogeneity among the cells. It is not clear what differences exist within the signaling 
requirements for this subset of cells. This effect is not restricted to the frontal bone; how-
ever, the level of ectopic SOX9 observed in the E16.5 CM-Erk1/2 mutant is more subtle, 
suggesting that there may be variability in the survival of the calvarial osteoblasts. Our 
data suggest a conserved role in the function of mesenchyme Wnts and ERK signaling on 
cell fate regulation within this subpopulation of calvarial osteoblasts. The phenotype of 
the CM-Wls mutants resembles CM-Erk mutants in the localization of ectopic SOX9 and 
cartilage nodule formation. Spatial segregation of Wnt ligands, Wnt inhibitors combined 
with graded expression of Wnt signaling target genes, suggests there can be regional var-
iation in the level of Wnt signaling experienced by individual calvarial osteoblasts [15,56]. 
The subset of cells within the region where ectopic SOX9 is observed in our CM-Erk and 
CM-Wls mutants may experience less canonical Wnt signaling due to the high levels of 
the Wnt inhibitor DKK2, and the increased distance from the ectoderm Wnts [15]. Re-
gional variation in levels of Wnt signaling may contribute to the heterogeneity of the cal-
varial osteoblasts and their ability to repress the cartilage fate. Currently, quantification 
of Wnt signaling at the cellular level is not possible in vivo. Techniques such as single-cell 
sequencing can be utilized in the future to reveal if there are differences amongst the cal-
varial osteoblasts that contribute to the periosteum, endosteum, and osteogenic front and 
identify the differences in Wnt and ERK signaling levels. 

In summary, our data reveal that Wnt/β-catenin signaling can activate ERK signaling 
to ensure a subset of calvarial osteoblasts are specified towards the intramembranous dif-
ferentiation and repress the cartilage fate. We show a distinct requirement of ERK signal-
ing in cell fate specification during early calvarial development, and demonstrate cross-
talk between Wnt signaling and ERK signaling on cartilage repression that is required for 
normal calvarial development. Our results provide evidence towards identifying a spe-
cialized subset of periosteal cells that are highly sensitive to signaling dynamics of the 
Wnt and ERK signaling pathways. Our conclusions provide broad insights into Wnt-de-
pendent cell fate specification that will be informative for intramembranous bone repair 
and regeneration. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/jdb9030023/s1, Figure S1: RT-qPCR of cartilage and bone lineage markers in CM-Erk1/2 
and controls. Figure S2: Loss of ERK1/2 in the cranial mesenchyme results in diminished calvarial 
bone and ectopic expression of SOX9 at E16.5. , Figure S3: Ectoderm Wntless (Wls) mutants lose ERK 
activation in cranial mesenchyme. Figure S4: Mesenchyme Wntless (Wls) is required for variable 
expression of Wnt target genes. 
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