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Abstract: The Hedgehog signalling pathway is evolutionarily highly conserved and essential for
embryonic development of invertebrates and vertebrates. Consequently, impaired Hedgehog
signalling results in very severe human diseases, ranging from holoprosencephaly to Pallister-Hall
syndrome. Due to this great importance for human health, the focus of numerous research groups
is placed on the investigation of the detailed mechanisms underlying Hedgehog signalling. Today,
it is known that tiny cell protrusions, known as primary cilia, are necessary to mediate Hedgehog
signalling in vertebrates. Although the Hedgehog pathway is one of the best studied signalling
pathways, many questions remain. One of these questions is: How do primary cilia control Hedgehog
signalling in vertebrates? Recently, it was shown that primary cilia regulate a special kind of
proteasome which is essential for proper Hedgehog signalling. This review article will cover this
novel cilia-proteasome association in embryonic Hedgehog signalling and discuss the possibilities
provided by future investigations on this topic.
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1. Introduction

In the year 1980, Christiane Nüsslein-Volhard and Eric Frank Wieschaus reported the identification
of 15 loci whose mutations affect the development of the fruit fly Drosophila melanogaster larvae [1].
In the course of these investigations, the hedgehog (hh) gene was also discovered. Soon, it was
evident that this gene is not only essential for the development of invertebrates, like Drosophila,
but also for the development of vertebrates [2–5]. The product of this gene serves as a ligand for an
evolutionarily highly-conserved signalling pathway which was termed hedgehog (HH) signalling
pathway. Important components of the vertebrate HH signal transduction are the glioblastoma (GLI)
proteins—GLI1, GLI2, and GLI3. While GLI1 is a target gene of GLI2-A and GLI3-A, and exclusively
acts as a constitutive transcriptional activator, itself [6,7], GLI2 and GLI3 can function as activators
or repressors [8], revealing the complex nature of regulating GLI processing. The conversion of the
full-length GLI2 and GLI3 proteins into their truncated repressor forms is called proteolytic processing.
This processing event is realised by the ubiquitin-proteasome system (UPS).

The UPS is the major protein degradation system in eukaryotes, important for up to 80%–90% of all
eukaryotic proteins, revealing its importance [9]. It consists of, in simplified terms, ubiquitin-activating
enzymes (E1), ubiquitin-conjugation enzymes (E2), ubiquitin ligases (E3), and the proteasome.
Proteins designated to get degraded become phosphorylated and subsequently ubiquitinated.
The polyubiquitin conjugation is realised by the cooperative action of E1, E2, and E3. The proteasome is
the catalytic component of the ubiquitin-proteasome system consisting of two regulatory 19S subunits
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and a catalytic 20S subunit. Ubiquitinated proteins are recognised by the 19S regulatory subunits and
subsequently degraded by the 20S subunit which contains multiple peptidases [10]. However, not every
proteasomal action results in protein degradation. A few proteins get proteolytically processed from
their full-length form to a shorter repressor form.

As the UPS is not only important for protein processing, but also for protein degradation, it can
influence proteins in different manners. Interestingly, this is also true for HH signalling. For example,
GLI2 and GLI3 are proteolytically processed [11], while GLI1 is not processed, but degraded, by the
UPS [12–14]. Thus, the GLI proteins serve as a very interesting model to analyse the molecular
mechanisms underlying the differences between protein degradation and protein processing. While the
subcellular localisation where GLI1 gets phosphorylated is unknown, the phosphorylation process
of GLI2 and GLI3 is thought to take place at the basal body (BB) of cilia [15]. In the processing event
of GLI2 and GLI3, ubiquitination takes place immediately after phosphorylation. However, it is still
unknown if the polyubiquitination of GLI2 and GLI3 occurs at the BB. Additionally, the ubiquitin E3
ligase JADE-1, which is known to be involved in the ubiquitination of β-catenin [16], has been shown
to be localised at the BB [17]. Furthermore, the key ubiquitin E3 ligase, APC, was found to be located
at the BB [18] supporting the hypothesis that both, phosphorylation and polyubiquitination processes
take place at the BB.

Apart of differences in GLI proteins of being degraded or processed, also differences in
efficiency of processing are noticeable. For example, GLI2 is not as efficiently processed as GLI3 [19].
Previous studies, therefore, tried to examine the differences between these proteins in order to
understand the reason leading to this variation in processing efficiency. Pan et al. hypothesised that
differential GLI2 and GLI3 processing is controlled by the processing determinant domain (PDD) [20]
(Figure 1). Accordingly, they could show that replacement of GLI2-PDD by GLI3-PDD led to a more
efficient processing of GLI2 [21]. Moreover, Schrader et al. examined the difference between GLI1
and GLI3. They found a three-part signal mechanism which is dependent on a zinc-finger domain,
the linker sequence, and the degron, which is essential for GLI3 processing [22] (Figure 1). The first
processing signal is the zinc-finger domain of GLI3. However, this domain is not the crucial difference
to distinguish proteins from being either processed or degraded, because GLI1 also includes a similar
zinc-finger domain. The second processing signal is the linker sequence which is located between
the zinc-finger domain and the lysines of the degron sequence. It is proposed that the proteasome
binds to the linker area which is assumed to be a proteasome initiation region. Finally the degron is
the third processing signal and the starting point of proteasomal processing. The linker sequence in
combination with the degron is missing in GLI1 and, hence, seems to be the critical difference leading
to processing of GLI3, and not of GLI1 [22]. Consequently, the sequence of the respective protein
determines whether it becomes degraded or processed, while the proteasome is not the factor which
distinguishes degradation from processing.

In vertebrates, HH signalling is mediated by cytoplasmic protrusions known as primary cilia.
Primary cilia have a length of 1–15 µm depending on the cell type and basically consist of three
different compartments: the BB, the axoneme and the transition zone (TZ). The BB is a modified
centrosome from which the ciliary microtubule-based framework (axoneme) grows out. The axoneme,
which is comprised of nine doublet microtubules arranged in a circle, gives stability to the cilium and
allows protein transport inside the cilium. The region in between the BB and the axoneme is called TZ.
The TZ acts as a selective barrier controlling ciliary import and export of proteins. Ciliary assembly
and maintenance relies on the bidirectional microtubule-based intraflagellar transport (IFT) that allows
the permanent delivery of axonemal precursors to the assembly site at the ciliary tip [23]. On the basis
of their structure, primary cilia function as sensory antennae at the surface of cells by concentrating
multiple receptors. These receptors then, in turn, mediate the transduction of many signalling cascades
including the HH signalling cascade [24,25].



J. Dev. Biol. 2016, 4, 27 3 of 16
J. Dev. Biol. 2016, 4, 27 3 of 15 

 

 
Figure 1. Schematic illustration of domains in murine GLI1, GLI2, and GLI3. GLI1, GLI2, and GLI3 
bind to DNA via their zinc-finger domains (ZF). While all three proteins contain an activator domain 
(AD), only GLI2 and GLI3 display a repressor domain (RD), a processing determinant domain (PDD) 
and a processing region (PR). The N-terminal degron (DN) plays an important role in the degradation 
of all GLI proteins. The C-terminal degron (DC) acts as a degradation signal in GLI1 and as a 
processing signal in GLI2 and GLI3. 

In summary, a simplified model of HH signal transduction at the primary cilium is conducted 
by different proteins (also see Figure 2): The twelve-pass transmembrane receptor PATCHED1 
(PTC1) is located in the ciliary membrane of vertebrates. After being bound by its ligand HH, the 
HH/PTC1 complex leaves the cilium. Subsequently, the seven-pass transmembrane protein 
SMOOTHENED (SMO) accumulates in the ciliary membrane and converts full-length GLI2 and 
GLI3 (GLI2-FL and GLI3-FL) into transcriptional activators (GLI2-A and GLI3-A) most likely by 
modifying them [26,27]. Afterwards, GLI2-A and GLI3-A induce the expression of HH target genes 
(e.g., GLI1). Without HH, PTC1 remains within the ciliary membrane and SMO is not allowed to 
enter the cilium. In this case, the full-length GLI2 and GLI3 proteins are proteolytically processed 
into transcriptional repressors (GLI2-R and GLI3-R) [11], demonstrating that GLI2 and GLI3 
processing depends on cilia [28]. In detail, the proteolytic processing event of GLI2 and GLI3 
initiates with the phosphorylation of both proteins by protein kinase A (PKA) at the BB [15]. In 
addition to PKA, casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3) are involved in the 
phosphorylation of GLI2 and GLI3 [19,29]. Although GSK3 was detected at the BB [30], there is no 
evidence yet whether CK1 and GSK3 phosphorylate GLI2 and GLI3 at the base of cilia. An 
additional player in regulating GLI processing and activity is the kinesin family member 7 (KIF7) 
protein which localises along the entire cilium [31–35]. However, the mechanism how KIF7 affects 
GLI processing is only poorly understood. 

Figure 1. Schematic illustration of domains in murine GLI1, GLI2, and GLI3. GLI1, GLI2, and GLI3 bind
to DNA via their zinc-finger domains (ZF). While all three proteins contain an activator domain (AD),
only GLI2 and GLI3 display a repressor domain (RD), a processing determinant domain (PDD) and a
processing region (PR). The N-terminal degron (DN) plays an important role in the degradation of all
GLI proteins. The C-terminal degron (DC) acts as a degradation signal in GLI1 and as a processing
signal in GLI2 and GLI3.

In summary, a simplified model of HH signal transduction at the primary cilium is conducted by
different proteins (also see Figure 2): The twelve-pass transmembrane receptor PATCHED1 (PTC1) is
located in the ciliary membrane of vertebrates. After being bound by its ligand HH, the HH/PTC1
complex leaves the cilium. Subsequently, the seven-pass transmembrane protein SMOOTHENED
(SMO) accumulates in the ciliary membrane and converts full-length GLI2 and GLI3 (GLI2-FL and
GLI3-FL) into transcriptional activators (GLI2-A and GLI3-A) most likely by modifying them [26,27].
Afterwards, GLI2-A and GLI3-A induce the expression of HH target genes (e.g., GLI1). Without HH,
PTC1 remains within the ciliary membrane and SMO is not allowed to enter the cilium. In this case,
the full-length GLI2 and GLI3 proteins are proteolytically processed into transcriptional repressors
(GLI2-R and GLI3-R) [11], demonstrating that GLI2 and GLI3 processing depends on cilia [28]. In detail,
the proteolytic processing event of GLI2 and GLI3 initiates with the phosphorylation of both proteins by
protein kinase A (PKA) at the BB [15]. In addition to PKA, casein kinase 1 (CK1) and glycogen synthase
kinase 3 (GSK3) are involved in the phosphorylation of GLI2 and GLI3 [19,29]. Although GSK3 was
detected at the BB [30], there is no evidence yet whether CK1 and GSK3 phosphorylate GLI2 and GLI3
at the base of cilia. An additional player in regulating GLI processing and activity is the kinesin family
member 7 (KIF7) protein which localises along the entire cilium [31–35]. However, the mechanism
how KIF7 affects GLI processing is only poorly understood.
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Figure 2. Simplified scheme of the cilia-mediated HH signal transduction pathway in vertebrates. 
Without HH, PTC1 is located in the ciliary membrane and prevents the ciliary entry of SMO. As a 
consequence, the full-length proteins of GLI2 and GLI3, which are bound to the ciliary tip organizer 
KIF7, are phosphorylated by PKA, CK1, and GSK3, and finally proteolytically processed by the 
cilia-regulated proteasome. KIF7 is essential for this processing event but the mechanism by which 
KIF7 controls GLI processing remains elusive [36]. The products of GLI2 and GLI3 processing are 
their repressor forms (GLI2-R and GLI3-R) which enter the nucleus and block HH target gene 
expression. The repressor form of GLI3 is, thereby, predominant. In the presence of HH, the HH 
ligand binds to PTC1 and, in turn, the HH/PTC1 complex leaves the cilium allowing ciliary entry of 
SMO. By a poorly understood mechanism, SMO causes the conversion of the full-length GLI2 and 
GLI3 proteins (GLI2-FL and GLI3-FL) into GLI2 and GLI3 activator forms (GLI2-A and GLI3-A), 
which induce HH target gene expression. 

2. The Cilia-Regulated Proteasome is Essential for GLI Processing 

In principle, the mechanism of GLI3 processing is well understood, but the subcellular 
localisation of GLI3 processing is still unknown. As described above, the vertebrate HH signalling 
machinery tightly depends on primary cilia and all key components of the HH signalling pathway 
(including GLI2 and GLI3) display a ciliary localisation. In vertebrate cells, proteasomes exist almost 
ubiquitously within the cytoplasm and the nucleus [37]. Recently, it was shown that proteasomal 
components localise at the primary cilium. All analysed components of the 19S proteasomal subunit 
were detected at the BB, while Psma5, a component of the 20S proteasomal subunit, was located 
along the entire cilium [38]. These localisation studies and the finding that PKA acts at the BB of cilia 
[15] suggest that the processing of GLI2 and GLI3 takes place at the BB. As the existence of a 
centrosome-associated proteasome was already shown before [39,40], the question arises whether 
the cilium is important for the function of the BB-associated proteasome or whether the 
centrosome-associated proteasome and the BB-associated proteasome are one and the same. In 2003, 

Figure 2. Simplified scheme of the cilia-mediated HH signal transduction pathway in vertebrates.
Without HH, PTC1 is located in the ciliary membrane and prevents the ciliary entry of SMO.
As a consequence, the full-length proteins of GLI2 and GLI3, which are bound to the ciliary tip
organizer KIF7, are phosphorylated by PKA, CK1, and GSK3, and finally proteolytically processed by
the cilia-regulated proteasome. KIF7 is essential for this processing event but the mechanism by which
KIF7 controls GLI processing remains elusive [36]. The products of GLI2 and GLI3 processing are their
repressor forms (GLI2-R and GLI3-R) which enter the nucleus and block HH target gene expression.
The repressor form of GLI3 is, thereby, predominant. In the presence of HH, the HH ligand binds
to PTC1 and, in turn, the HH/PTC1 complex leaves the cilium allowing ciliary entry of SMO. By a
poorly understood mechanism, SMO causes the conversion of the full-length GLI2 and GLI3 proteins
(GLI2-FL and GLI3-FL) into GLI2 and GLI3 activator forms (GLI2-A and GLI3-A), which induce HH
target gene expression.

2. The Cilia-Regulated Proteasome Is Essential for GLI Processing

In principle, the mechanism of GLI3 processing is well understood, but the subcellular localisation
of GLI3 processing is still unknown. As described above, the vertebrate HH signalling machinery
tightly depends on primary cilia and all key components of the HH signalling pathway (including GLI2
and GLI3) display a ciliary localisation. In vertebrate cells, proteasomes exist almost ubiquitously
within the cytoplasm and the nucleus [37]. Recently, it was shown that proteasomal components localise
at the primary cilium. All analysed components of the 19S proteasomal subunit were detected at the
BB, while Psma5, a component of the 20S proteasomal subunit, was located along the entire cilium [38].
These localisation studies and the finding that PKA acts at the BB of cilia [15] suggest that the processing
of GLI2 and GLI3 takes place at the BB. As the existence of a centrosome-associated proteasome was
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already shown before [39,40], the question arises whether the cilium is important for the function of
the BB-associated proteasome or whether the centrosome-associated proteasome and the BB-associated
proteasome are one and the same. In 2003, it was suggested that proteasomes might exert different
functions depending on their subcellular localisations and that these differences might be governed
by their association and interaction with specific regulatory proteins [41]. Indeed, in silico studies
using a systematic network-based approach to work out the “cilia/centrosome complex interactome
(CCCI)” showed that the greatest community of the CCCI consists of proteasomal components [42]
indicating that the association of ciliary proteins and the proteasome might be of particular significance.
Accordingly, the ciliary proteins Bardet-Biedl syndrome (BBS) 1, BBS2, BBS4, BBS6, BBS7, BBS8,
inversin (INVS; also known as NPHP2), IQ motif-containing protein B1 (IQCB1; also known as
NPHP5), oral-facial-digital syndrome 1 (OFD1), and retinitis pigmentosa gtpase regulator interacting
protein 1-like (RPGRIP1L; also known as FTM, NPHP8, or MKS5) interact directly with different
proteasomal components [38,43–45] (Figure 3). In case of BBS4, Gerdes et al. demonstrated for the
first time that a ciliary protein is involved in the proteasomal regulation [46]. It is now known that the
loss of BBS4, BBS7, OFD1, or RPGRIP1L leads to a reduced proteasomal activity thereby impairing
intercellular signalling pathways [38,43,46,47]. Interestingly, the absence of the proteins BBS4, BBS7,
OFD1, or RPGRIP1L result in a severe ciliopathy phenotype in mouse embryos, being associated
with multiple defects and increased lethality. For instance, Bbs4-negative embryos exhibit defects in
brain, eye, kidney, and liver development and become obese [48–52], while Bbs7−/− embryos suffer
from brain, eye, and sperm defects, as well as from getting obese [53]. Ofd1-deficient embryos show
defects in brain, limb, lung, heart, and kidney development [54,55], and Rpgrip1l-negative murine
embryos display brain, eye, limb, lung, heart, kidney, and liver defects [56–58]. Analysing effects on
lethality, Bbs7−/− mice are viable [53], while Bbs4−/− mice display a higher perinatal lethality [49] and
Rpgrip1l−/−, as well as Ofd1−/−, mice are not viable at all [54–56].

The proteasome is essential for the development and function of numerous organs and structures
of the human body [59–69]. Thus, reduced activity of the cilia-regulated proteasome is a possible cause
of ciliopathies. Further evidence highlighting the importance of cilia-regulated proteasomes arises
from rescue experiments in vivo. The injection of proteasomal component mRNA or treatment with
the proteasome activators mevalonolactone or sulforaphane restored defective convergent extension
and somatic definition in zebrafish embryos treated with bbs4 or ofd1 morpholinos [43]. However,
it would be presumptuous to assume that ciliopathies are exclusively caused by the reduction of
proteasomal activity. For example, ciliary length defects can occur independently of the reduced
proteasomal activity in Rpgrip1l-negative murine embryos [38]. Potentially, the decreased proteasomal
activity enhances the severity of a ciliopathy. To test this hypothesis, it would be necessary to quantify
proteasomal activity in mouse embryos suffering from milder ciliopathies as for example Nphp1-,
Nphp4-, or Nek8-mutant embryos which exclusively display eye or kidney defects [70–72]. Moreover,
future studies are indispensable to answer the question whether the data about the cilia-regulated
proteasome of different model organisms is translatable to humans.

Remarkably, ciliary proteins seem to use different mechanisms with which they regulate
proteasomal activity. In the absence of BBS4, BBS7 and OFD1, the reduced proteasomal activity
is based on a decreased amount of different proteasomal components revealing that these proteins
control the composition of the proteasome [43]. On the contrary, RPGRIP1L deficiency leads to an
accumulation of 19S and 20S proteasomal subunit components at the ciliary base [38] indicating that
RPGRIP1L regulates proteasomal activity differently. Since RPGRIP1L directs proteasomal activity
by the interaction with Psmd2, a component of the 19S proteasomal subunit, it was hypothesised
that RPGRIP1L changes the conformation of Psmd2 in order to control proteasomal activity [38].
While analysing the relationship between RPGRIP1L and the proteasome, a novel kind of proteasome
was found. Loss of RPGRIP1L provoked a decreased proteasomal activity exclusively at the base of
cilia [38]. Consequently, the proteasome located at the base of primary cilia seems to be differently



J. Dev. Biol. 2016, 4, 27 6 of 16

regulated from all proteasomes that are present at other subcellular localisations. Importantly, this kind
of proteasome which was termed “ciliary proteasome” is essential for GLI3 processing [38].J. Dev. Biol. 2016, 4, 27 6 of 15 
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proteasomal subunit (black lid of the proteasome). The transition zone protein RPGRIP1L interacts 
with components of the 19S proteasomal subunit. IQCB1 is present at the transition zone and the 
basal body and interacts with components of the 20S proteasomal subunit. OFD1 localises to the 
basal body and interacts with components of the 19S proteasomal subunit. Components of the 
BBSome are located at the basal body and interact with components of the 19S and 20S proteasomal 
subunit. 

3. GLI2-R and GLI3-R Are Essential for Proper Embryonic Development in Vertebrates 

The relationship between the cilia-regulated proteasome and HH signalling is essential for 
homeostasis and embryonic development in vertebrates. For example, an alteration of proteasomal 
activity is thought to be involved in the development of cancer [73–93]. In this context, the 
cilia-regulated proteasome might have an essential role, a topic which was extensively reviewed 
elsewhere [45]. Here, we will focus on the meaning of HH signalling in vertebrate embryogenesis. 
Regarding HH signalling, the products of the cilia-regulated proteasome are GLI2-R and GLI3-R. 
Although it was reported that GLI2 is not processed as efficiently as GLI3 [19], both proteins play 
decisive roles during vertebrate development in their truncated forms. GLI2-R takes part in the 
development of the brain and the limbs in mice as well as the neural tube in zebrafish [94–96]. 
Together with GLI3-R, GLI2-R controls anterior limb patterning and digit number [96]. However, 
the scope of GLI3-R in vertebrate development is much broader than that of GLI2-R. In addition to 
limb development [97], GLI3-R was shown to be involved in the development of the vertebrate lung, 
kidneys, ureter, mammary gland, ears, and the CNS. In mice, GLI3-R controls proper lung 
organogenesis [98], the nephron number [99,100], the functional development of the ureter [101], the 

Figure 3. Interactions between ciliary proteins and the cilia-regulated proteasome. INVS is located
in the Inversin compartment and in the transition zone and interacts with components of the 19S
proteasomal subunit (black lid of the proteasome). The transition zone protein RPGRIP1L interacts
with components of the 19S proteasomal subunit. IQCB1 is present at the transition zone and the basal
body and interacts with components of the 20S proteasomal subunit. OFD1 localises to the basal body
and interacts with components of the 19S proteasomal subunit. Components of the BBSome are located
at the basal body and interact with components of the 19S and 20S proteasomal subunit.

3. GLI2-R and GLI3-R Are Essential for Proper Embryonic Development in Vertebrates

The relationship between the cilia-regulated proteasome and HH signalling is essential
for homeostasis and embryonic development in vertebrates. For example, an alteration of
proteasomal activity is thought to be involved in the development of cancer [73–93]. In this context,
the cilia-regulated proteasome might have an essential role, a topic which was extensively reviewed
elsewhere [45]. Here, we will focus on the meaning of HH signalling in vertebrate embryogenesis.
Regarding HH signalling, the products of the cilia-regulated proteasome are GLI2-R and GLI3-R.
Although it was reported that GLI2 is not processed as efficiently as GLI3 [19], both proteins play
decisive roles during vertebrate development in their truncated forms. GLI2-R takes part in the
development of the brain and the limbs in mice as well as the neural tube in zebrafish [94–96].
Together with GLI3-R, GLI2-R controls anterior limb patterning and digit number [96]. However,



J. Dev. Biol. 2016, 4, 27 7 of 16

the scope of GLI3-R in vertebrate development is much broader than that of GLI2-R. In addition to limb
development [97], GLI3-R was shown to be involved in the development of the vertebrate lung, kidneys,
ureter, mammary gland, ears, and the CNS. In mice, GLI3-R controls proper lung organogenesis [98],
the nephron number [99,100], the functional development of the ureter [101], the induction of
mammogenesis [102], and the dorsoventral patterning of the inner ear [103]. As another review
article has previously discussed, the cilia-regulated proteasome seems to be involved in most if
not all cilia-mediated signalling pathways [45]. Consequently, all defects caused by a decreased
activity of the cilia-regulated proteasome are most likely a consequence of numerous disturbed
cilia-mediated signalling pathways. However, the outstanding importance of the association between
the cilia-regulated proteasome and HH signalling for vertebrate development is highlighted by
investigations using the Gli3∆699 mouse mutant which is considered to express a constitutively active
GLI3-R protein. The Gli3∆699 allele was generated by an insertion of a selection marker cassette into the
Gli3 locus [104]. This mutant allele terminates just C-terminally of the zinc-finger domain (amino acid
position 699). Gli3∆699/+ mice are viable and fertile with exhibiting polydactyly of the forelimbs at
very low frequency. However, Gli3∆699/∆699 mice died within 12–18 h after birth. Mouse embryos
homozygous for Gli3∆699 suffer from skeletal and limb defects, imperforate anus, visceral abnormalities,
loss of the adrenal gland, and kidney defects. Remarkably, the introduction of GLI3∆699 restores several
aspects of brain development, like telencephalic patterning, olfactory bulb morphogenesis, and the
agenesis of the corpus callosum in Rpgrip1l-negative mouse embryos [105,106].

Until now, the existence of the cilia-regulated proteasome was reported in the model organisms
mouse and zebrafish [38,43], suggesting that this kind of proteasome is present in all vertebrates.
However, to consider the impairment of the cilia-controlled proteasome as a candidate factor for human
diseases (e.g., ciliopathies or cancer), it is inevitable to perform future experiments demonstrating the
existence of a cilia-regulated proteasome in humans. To analyse the link between the cilia-governed
proteasome and HH signalling, these future studies should also address the question whether human
GLI2 and GLI3 are processed by this kind of proteasome.

4. Is the Role of the Cilia-Regulated Proteasome Evolutionarily Conserved?

The cilia-regulated proteasome is essential for HH signalling and for embryonic development
in mice [38,43]. Until 2014, the general view was that HH signalling was extremely important
for embryonic development of the invertebrate Drosophila, but operating in a cilia-independent
manner [107]. It was thought that HH signalling in Drosophila mainly occurs over the entire plasma
membrane of its cells. Thus, PTC localises at any place of the plasma membrane and inhibits the
presence of SMO in the membrane. The binding of HH to PTC allows SMO to enter the plasma
membrane after membrane exit of the HH/PTC complex. As a consequence, cubitus interruptus (CI),
the Drosophila homolog of the GLI proteins, is converted into CI-A in the cytoplasm. In the absence of
HH, CI is processed to CI-R by proteasomes in the cytoplasm [108–113]. To our knowledge, a specific
subcytoplasmic localisation of these proteasomes has never been reported. After the conversion of CI,
CI-A or CI-R translocates into the nucleus to regulate HH target gene expression [113–115]. In contrast
to vertebrates, Drosophila seems to form cilia exclusively on sensory neurons and spermatozoa [116,117].
In 2014, Kuzhandaivel et al. reported the transduction of HH signals by the immotile cilia of olfactory
sensory neurons (OSNs) in Drosophila [118]. PTC, SMO, and COS2 were demonstrated to localise
along the whole cilium of OSNs and it was shown that the ciliary presence of SMO is important for
proper HH signalling. Although the general view is that HH signalling cannot function without CI
in Drosophila [119], CI was not detectable in OSN cilia [118]. However, ciliary localisation of SMO
induces the expression of HH target genes in OSNs. Since CI gets proteolytically processed by the
proteasome [108–113], the question arises whether the proteasome which processes CI is regulated by
ciliary proteins in Drosophila OSNs. Until now, it is even unknown whether proteasomes are present at
the base of OSN cilia. A detection of proteasomal components at the base of OSN cilia would make
the existence of an evolutionarily conserved cilia-regulated proteasome likely. If future investigations
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demonstrated that proteasomal components are absent from the ciliary base of OSNs, it would be
interesting to analyse where the processing of CI takes place in OSNs. Furthermore, if proteasomal
components are missing at the base of OSN cilia, the fact that CI was not detected in OSN cilia [118]
raises the question whether HH signal transduction in OSN cilia is able to function without CI.
Since this finding would be rather surprising, and highly interesting, it should be a topic of future
studies. However, previous studies could show an association between HH signalling and cilia in
planarians [120], but the localisation of HH pathway components at cilia or even the mediation of HH
signalling by cilia was never shown for other invertebrates than Drosophila. The fact that RPGRIP1L,
the ciliary protein being known to exclusively control the cilia-localised proteasome in mice [38],
is missing in Drosophila [56] gives two possibilities: the first possibility is that the cilia-regulated
proteasome does not exist in Drosophila and, consequently, RPGRIP1L is not needed in Drosophila.
The second possibility is that other proteins than RPGRIP1L control the activity of the cilia-governed
proteasome in Drosophila. If future studies in vertebrates lead to the identification of new proteins that
control the cilia-regulated proteasome, the presence of these proteins should be analysed in Drosophila.
Furthermore, it would be of great interest to understand how these ciliary proteins control the ciliary
proteasome. These findings might reveal a conserved regulatory mechanism in evolution, but if
Drosophila lacks the cilia-controlled proteasome, another hypothesis is conceivable: Since RPGRIP1L
is conserved from cnidarians to humans, but is absent in arthropods and nematodes [56], Drosophila
could be an exception regarding the presence of the cilia-regulated proteasome. Remarkably, PSMA5,
a component of the 20S proteasomal subunit, was detected along the whole cilium in mice [38].
Within flagella of the green alga Chlamydomonas reinhardtii, the components of the ubiquitin conjugation
system, but no proteasomal components, have been found [121] suggesting that the cilia-localised
proteasome might have developed later in evolution.

5. Is the Cilia-Regulated Proteasome Involved in the Regulation of PTC and/or SMO Action?

Even at the level of PTC and SMO, proteasomes exert essential functions in HH signalling.
In vitro studies in vertebrate systems using primary cells, as well as cell lines from different vertebrate
species, demonstrated that, in the presence of HH, PTC1 was ubiquitinated at K1413 in its C-terminal
domain by the E3 ligases ITCH and WWP2 and finally degraded by the proteasome [122]. In the
absence of HH, SMO is not allowed to enter the cell membrane and to localise at the cell surface.
Several examinations in Drosophila revealed that SMO gets ubiquitinated, internalised, and degraded by
lysosome- and proteasome-dependent mechanisms in lack of HH [123–126]. Interestingly, SMO is able
to form a complex with an E3 ligase called SMURF which directly controls proteasomal degradation of
HH-unbound PTC [127].

Consequently, positive, as well as negative, regulation of HH signalling depends on proteasomal
intervention. Due to the close relation of vertebrate HH signalling to cilia, the question arises
whether the cilia-regulated proteasome or another kind of proteasome realises the degradation
of PTC and/or SMO. Considering that loss of RPGRIP1L reduces exclusively the activity of the
BB-localised proteasome, SMO would be expected to accumulate at cilia in the absence of RPGRIP1L.
However, the localisation of SMO is unaltered upon RPGRIP1L deficiency [38] suggesting that the
cilia-regulated proteasome might not be responsible for the degradation of SMO. To definitely evaluate
the contribution of the cilia-regulated proteasome, it is imperative that further investigations take place.

6. Conclusions

The HH signalling transduction cascade is involved in the development of almost every
vertebrate organ and structure [128]. Consequently, impaired HH signalling results in severe human
diseases [24,129–131]. In this context, the precise coordination between positive and negative regulation
of HH signalling is of eminent importance. Since it is yet unknown whether the cilia-regulated
proteasome is involved in the regulation of PTC and SMO, this review focuses on the negative
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regulation mechanisms via proteolytic processing of the GLI2 and GLI3 transcription factors by the
cilia-regulated proteasome. Two major questions have to be addressed on this topic:

(1) Is the proteolytic processing of the GLI2 and GLI3 proteins by the cilia-regulated proteasome
evolutionarily conserved?

The HH transduction pathway is evolutionarily highly conserved. In vertebrates, HH signalling
is mainly transduced by primary cilia. Within this cilia-mediated HH signalling, the cilia-regulated
proteasome plays a decisive role. Previously, it was shown that cilia of sensory neurons are able
to mediate HH signalling [118]. Thus, Drosophila is a well-suited model organism to examine if the
cilia-regulated proteasome also exists in invertebrates and, if this is the case, to analyse whether the
proteolytic processing of CI is facilitated by this kind of proteasome. Since several experiments are
easier to perform in Drosophila than in mice, the presence of the cilia-controlled proteasome in Drosophila
could give the opportunity to gain more insight into the mechanisms underlying the regulation of this
proteasome by ciliary proteins.

(2) Does the cilia-regulated proteasome play a role in the control of HH signalling during human
embryonic development?

As early as 1995, Denys Wheatley proposed primary cilia to be necessary for human
homeostasis [132]. Today, the outstanding importance of primary cilia for human development
is indisputable, but it has to be shown whether the cilia-regulated proteasome participates in human
embryonic development. If this is true, it should be analysed whether this participation is involved
in the control of HH signalling (GLI3 processing) and to what extent the cilia-governed proteasome
affects embryonic development in humans. The precondition for these studies is the existence of the
cilia-controlled proteasome in humans. Previously, interactions between proteasomal components
and ciliary proteins have been shown in murine as well as in human cells [38,43,44] indicating that
the cilia-regulated proteasome might exist in humans. If future studies reveal that the cilia-regulated
proteasome is essential for human embryonic development, novel therapies against severe human
ciliopathies are possible. In this context, proteasome activators were successfully used for treatment
of ciliopathic zebrafishs and cells isolated from ciliopathic mice [38,43]. It is plausible that a prenatal
application of proteasome activators to pregnant women could be a curative treatment of ciliopathies
in the future.
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