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Abstract: Whole genome duplication (WGD) or polyploidization can occur at the cellular, tissue,
and organismal levels. At the cellular level, tetraploidization has been proposed as a driver of
aneuploidy and genome instability and correlates strongly with cancer progression, metastasis, and
the development of drug resistance. WGD is also a key developmental strategy for regulating cell
size, metabolism, and cellular function. In specific tissues, WGD is involved in normal development
(e.g., organogenesis), tissue homeostasis, wound healing, and regeneration. At the organismal level,
WGD propels evolutionary processes such as adaptation, speciation, and crop domestication. An
essential strategy to further our understanding of the mechanisms promoting WGD and its effects
is to compare isogenic strains that differ only in their ploidy. Caenorhabditis elegans (C. elegans) is
emerging as an animal model for these comparisons, in part because relatively stable and fertile
tetraploid strains can be produced rapidly from nearly any diploid strain. Here, we review the use
of Caenorhabditis polyploids as tools to understand important developmental processes (e.g., sex
determination, dosage compensation, and allometric relationships) and cellular processes (e.g., cell
cycle regulation and chromosome dynamics during meiosis). We also discuss how the unique
characteristics of the C. elegans WGD model will enable significant advances in our understanding of
the mechanisms of polyploidization and its role in development and disease.

Keywords: whole genome duplication; polyploidization; tetraploidy; polyploidy; aneuploidy;
Caenorhabditis; adaptation; stress resistance; carcinogenesis; allometric relationships

1. Whole Genome Duplication in Development, Evolution, and Disease

Whole genome duplication (WGD) or polyploidization is vital for normal develop-
ment [1], tissue homeostasis [2,3], and regeneration [4] (Figure 1). It is also a driver of
evolutionary processes [5] including adaptation [6], speciation [7], and crop domestica-
tion [8]. In addition, WGD can drive pathological conditions, especially oncogenesis [1,9,10].
In nature, WGD exists at the cellular, tissue, organ, and organismal levels. Polyploid cells
are normally found in most multicellular diploid organisms [11,12]. In humans, certain
cells from the placenta [13], mammary glands [14], liver [15], heart [16], skin [17], and bone
marrow must become polyploid to perform specialized functions [18], for tissue homeosta-
sis [3], or as part of the wound healing process [19]. For instance, during development,
megakaryocytes acquire 16 copies of the genome and thus become giant cells that are
hypermetabolic. This polyploidization is a basic requirement to produce platelets in the
blood, as platelets are produced by fragmenting the cytoplasm of megakaryocytes [20-22].
In addition, WGD is involved in oncogenesis, metastasis, and the development of resis-
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tance to chemotherapeutic drugs, and polyploid cells may accumulate in patients with
neurodegenerative disorders, cardiovascular disease, and diabetes [23-26].
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Figure 1. Roles of whole genome duplication (WGD). Diagram depicting key examples of processes

affected by polyploidization/WGD. Polyploidy can occur at the cellular, tissue, or organismal
levels. It is a key step in important biological processes affecting cellular metabolism and function,
normal development, tissue homeostasis, regeneration, wound healing, organismal adaptation to the
environment, and speciation. In addition, polyploidization can cause and/or prevent disease and
repair injuries.

Polyploid cells can arise by cell fusion resulting in larger multinucleate cells, by en-
doduplication (alternating cycles between G and S phases without undergoing mitosis or
cytokinesis) resulting in mononucleated cells, or by endomitosis (the cell enters mitosis
but does not complete cell division) to generate either mononucleated giant cells or multi-
nucleated cells [27]. In some cyanobacteria, polyploidy is established and maintained by
misregulation of the replisome machinery [28-30].

1.1. Causes and Downstream Effects of WGD

The outcomes of WGD are diverse in nature—ranging from changes in gene expres-
sion to altered cell size and scaling and to adaptation to stress [31,32] (Figure 2). The
effects of polyploidization are surprisingly similar in different biological contexts (e.g.,
in cells, tissues, and organisms) [4,11,33,34] and regardless of the biological process (e.g.,
during development, evolution, regeneration, and oncogenesis) [1,3,35-41] where WGD
takes place (Figure 2). A common feature of WGD is that it is induced by stress, and it
provides the changes that result in plasticity and thus enhances adaptation to stress in
normal and pathological conditions. For instance, environmental stresses induce WGD
in tissues (e.g., wounding or viral infection) [42—44] or organisms (e.g., large changes
in temperature or water availability and salinity) [45-50]. Furthermore, stress-induced
WGD is a platform for genomic diversity and versatility that provides the means for rapid
adaptability (Figures 1 and 2). Whereas in whole organisms, this can elicit a competitive
advantage in a changing environment [32,51]; in cancer, it elicits an adaptive advantage
that promotes oncogenesis, metastasis, and the development of drug resistance [32,51]. The
latter is similar to how the pathogenic yeast Candida abdicans becomes resistant to antifungal
drugs [6]. Therefore, it is widely expected that queries about mechanisms that give rise
to WGD and its effects in both sub-organismal and organismal systems will likely reveal
additional commonalities across systems and processes.
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Figure 2. Shared causes and downstream effects of WGD across biological settings. Many forms
of stress can lead an organism to undergo WGD. Whether as a response to the stress itself or as a
way to adapt to the changing environment and/or different selective pressures, gene and epigenome
changes lead to an altered proteome that supports an adaptive response to the initial stress exposure.

Polyploidy is often confused with aneuploidy, in part because, in humans, both phe-
nomena are hallmarks of cancer [1,39,40,52]. Observations from numerous studies identify
WGD in about 30% of human cancers [53,54] and as a precursor for many malignancies in
cancer evolution [39,55-59]. Although WGD does not seem to require a preexisting cancer
driver mutation; it most often emerges after oncogenic mutations, such as lesions in the
TP53 genes [53,56]. WGD promotes diversification of copy number alterations (CNAs) and
is permissive for other chromosomal aberrations and genome instability associated with
poor cancer patient prognosis [39,58,59]. Interestingly, a recent study revealed a mechanism
by which WGD enhances cancer-promoting alterations in DNA organization and gene
expression [58]. Induction of WGD can reduce the levels of proteins involved in chromatin
packaging, resulting in reorganization of the 3D DNA compartments and domains. Over
time, loss of this domain structure predisposes the cell to additional cancer-promoting
alterations and expression of oncogenic genes [58]. Polyploidization can also be protective,
as in the liver where it both provides the basis for genetic adaptation to hepatotoxic stress
and also protects from malignant transformations [21,60].

Organismal WGD is common in extant plants [7,32,61-63] and is also observed in
protists [64], fungi [51,65,66], bacteria, and archaebacteria [67,68] and in several animal
clades [2,12,35,36,40,41,69,70]. In both prokaryotes and eukaryotes, the effects of WGD
are comparable with increased resistance to UV irradiation, cell size, adaptability to envi-
ronmental changes, and evolvability [28,71]. Evidence for ancestral WGD events is found
in the genomes of organisms of most clades, including vertebrates [36,72,73]. Polyploid
metazoans arise due to errors during meiosis that result in the formation of diploid gametes
that when fertilized give rise to polyploid organisms. Fertilization between diploid (2n)
and haploid (n) gametes results in a triploid (3n) organism; fertilization between two
diploid (2n) gametes results in a tetraploid (4n) [33,35]. When the diploid gametes of two
related species fuse, the resulting organism is said to be an allopolyploid, whereas when
diploid gametes from the same species fuse the result is said to be an autopolyploid [73].
Polyploidization from the cell to the organismal level most often results in lethality [32,74].
For instance, human triploid and tetraploid embryos die during gestation or soon after
delivery, but triploid and tetraploid mosaic children may survive after birth [75,76]. This
lethality may be caused by errors partitioning the additional chromosomes during cell divi-
sion, by WGD-driven increases in cell size that interfere with tissues or organ scaling, and
by epigenetic changes and gene expression changes that affect dose-dependent processes
and complexes [73]. The latter may be especially true in human triploids and tetraploids
which may have difficulty equalizing expression between the silenced X chromosomes and
the extra sets of autosomes since variable numbers of Barr bodies may be found in these
cells [75]. A newly formed polyploid may very occasionally overcome these obstacles, e.g.,
by establishing balanced genome expression. Then, if polyploidy provides a competitive
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advantage—as in a changing environment—polyploid lineages may outgrow their diploid
counterparts and become established [32,41,73]. The established polyploid population will
continue to evolve and then may “diploidize” to become a new species that has an adaptive
advantage compared to the parental diploid species [32].

1.2. Laboratory Multicellular Organism Models for WGD

A major impediment to studying WGD and its impacts on the physiology and function
of cells, tissues, and organs is the scarcity of laboratory models that permit comparison
between isogenic organisms with differing ploidy [33]. Many laboratory models are sterile
or embryonic lethal when polyploid [77-79]. Generation of autopolyploid laboratory
model organisms that are not sterile (e.g., plants) frequently involves the use of chemicals
such as colchicine, known to cause aneuploidy and genetic mutations. These polyploids,
therefore, may not be truly isogenic with the parental diploid strains they were derived
from [51,73]. The recently developed method for generating tetraploids in Caenorhabditis
utilizes transient knock-down of a meiosis-specific cohesin (i.e., rec-8) by RNA interference
to produce diploid gametes [80]. Therefore, the derived tetraploids are unlikely to differ
significantly from the diploid strains from which they were derived (see Figure 3A for an
overview of the method) [80].
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Figure 3. Method for rapid isolation of C. elegans tetraploids. (A). Diagram of the published method
for generating tetraploid strains from diploids. This protocol relies on the transient knockdown of the
meiosis-specific cohesin rec-8 which results in the production of diploid instead of haploid gametes.
Thus, upon fertilization, tetraploid progeny (which are longer and bigger) are produced. The method
works both during the selfing of the hermaphrodites (left) and during outcrossing (right). Crossing
allows for the generation of tetraploids with two different genetic backgrounds. After two to three
generations of exposure to rec-8 dsRNA, the larger hermaphrodites are individually plated on normal
growth media. Strains that consistently produce large (Lon) hermaphrodites are then screened to
confirm that these strains are tetraploids. (B). Diploid hermaphrodites (left) produce haploid gametes.
Haploid sperm are stored in the spermatheca. Oocytes prior to the meiotic divisions have six pairs of
connected homologous chromosomes that can be visualized by DAPI in the diakinesis-stage oocytes
(Figure 3C, below) just adjacent to the spermatheca (—1, —2, and —3 oocytes based on position).
The oocyte moves through the spermatheca and is fertilized and completes the meiotic divisions to
produce a haploid pronucleus. The tetraploid worms derived from exposure to rec-8 dsRNA, (right)
produce diploid gametes with 12 DAPI bodies. (C) Examples of fixed hermaphrodites stained with
DAPI to screen for ploidy by counting chromosome pairs in the —1, —2, and —3 diakinesis oocytes.
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2. Caenorhabditis Elegans as an Animal Laboratory Model for Understanding WGD

Several attributes of C. elegans nematodes make it an exceptional laboratory model
for querying WGD: (1) it has a small number of chromosomes (five autosomes and a sex
chromosome) allowing for easy visual evaluation of ploidy and differentiation between
polyploidy and aneuploidy [81] (Figure 3B,C). (2) Despite C. elegans being a self-fertilizing
hermaphroditic species, males can arise spontaneously in hermaphrodites by meiotic
nondisjunction at a 0.2% frequency [82-84], allowing for genetic analysis [85]. Males are
also produced by mating between hermaphrodites and males (frequency > 40%). (3) Each
diploid hermaphrodite produces 200-300 offspring and has a lifecycle of three to four days
from egg to egg, both of which facilitate multigenerational ecological and evolutionary
studies. (4) C. elegans is normally a diploid but like vertebrates (including humans), it
has polyploid tissues or cells [86]. These include the intestine (20 cells with a total of
30-34 nuclei and a ploidy of 32C (or 32 chromosome sets) per nucleus) and the hyp7 cell
(a syncytium of 139 nuclei with an average ploidy of 10.7C) [86,87].

Critically, the quick and reliable method to generate fertile and viable tetraploid
Caenorhabditis strains from nearly any diploid strain [80] allows direct comparison of
identical cells in isogenic organisms with differing ploidy (Figure 3). The availability of
hundreds of mutant strains that impinge on different aspects of development, aging, stress,
and reproduction will facilitate the directed study of genes in many of the processes that
polyploidy has been reported to affect. The transparency of the worms allows visualization
and direct comparison of physiology and function in the live animal. Combined, these
characteristics make the C. elegans WGD model unique and provide an unprecedented
opportunity to answer long-standing questions about organismal polyploidization and its
effects in a multicellular animal.

2.1. Polyploidy and Aneuploidy in C. elegans

In humans, all monosomies, except for the X or Y chromosomes, are lethal, whereas
trisomies 13, 18, 21, X, and Y are viable. Autosomal trisomies can cause severe devel-
opmental problems; sex chromosome trisomies have comparatively mild effects, pre-
sumably because of Barr body formation (extra X chromosomes) or the dearth of active
genes (Y chromosome). In C. elegans, some aneuploidies are tolerated. These include
X-chromosome trisomies (2A;3X = 13 chromosomes triplo-X hermaphrodites) and mono-
somies (2A;1X =11 chromosomes XO males shown in Figure 4) [88]. Compared to diploid
hermaphrodites, triplo-X animals are shorter and fatter (i.e., Dumpy phenotype), lower
fertility, and slower growth rate [88]. Trisomy of chromosome 4 (LGIV) has also been
reported [89]. Although animals with this autosomal trisomy are viable and have a gen-
eral morphological appearance that seems normal, they produce 50% fewer progeny than
normal hermaphrodites [90]. Interestingly, large chromosomal fragments, generally more
than an Mb in size, have been generated and preserved as free duplications and have been
found for part of each of the chromosomes of C. elegans [91].

Table 1. X/ A ratio determines sex.

Karyotype X/A Ratio Sexual Fate
2A;2X 1 female
2A;1X 0.5 male
3A;3X 1 female
3A;2X 0.67 * Male
4A;4X 1 female
4A;3X 0.75* female
4A;2X 0.5 male

* X/ A limits for female and male development. An X/A ratio > 0.75 yields female fates and an X/A ratio < 0.67
promotes male fates.
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Figure 4. Sexual fate in C. elegans is determined by the X-chromosome/autosome ratio. C. elegans

has six chromosomes, six autosomes, and one X chromosome. Diploid males and hermaphrodites
have two sets of autosomes and one or two X chromosomes, respectively. Triploid males and
hermaphrodites have 3 sets of autosomes and 2 or 3 X chromosomes making 17 or 18 total
chromosomes, respectively. Tetraploid males have 22 chromosomes: 4 sets of autosomes (A)
and 2 X chromosomes. In contrast, tetraploid hermaphrodites have four sets of autosomes and ei-
ther three or four X chromosomes. See Table 1 for a summary of the X/A ratios that determine
sex in C. elegans.

In nature, most triploids are inherently unstable, unless they reproduce asexually [92].
For instance, the parasitic nematodes of the Meloidogyne incognita group (MIG) are stable
hypotriploids that reproduce by asexual parthenogenesis [93]. C. elegans triploid animals
(3A;3X and 3A;2X shown in Figure 4) can be generated by crossing diploid and tetraploid
animals [94]. Only 15% of the embryos produced by triploid animals hatch [94], and those
that do hatch tend to be diploids or become diploid in the next generation [95-97]. Triploid
progeny inviability is likely because the odd number of homologs results in abnormal
meiotic pairing and recombination [95,98,99], yielding aneuploid gametes that produce
embryos that are inviable.

Victor Nigon reported the first induction of polyploid C. elegans—the first in any
animal—in the laboratory in 1949 [96]. These tetraploid strains were generated by treating
spermatogenic animals with either heat shock (several hours at 25 °C) or exposure to
colchicine. Both treatments were followed by screening for ‘larger than normal” animals
and cytological assessment of chromosome numbers in diakinesis-stage oocytes, when
the chromosomes are highly condensed prior to the meiotic divisions (e.g., in Figure 3C).
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Newly formed tetraploids produced a range of phenotypes in offspring that included:
progeny with variable body sizes; infertile hermaphrodites and males; intersexuality; and
progeny that had reverted to diploidy [96,97]. The frequency of these aberrant phenotypes
decreased with continuous passaging but did not disappear, even after 20 generations of
selection for tetraploids with high fecundity. Two major types of tetraploids were identi-
fied [94,96]: about 66% of the induced tetraploids produced very low frequencies of males
(0.6%) compared to the ~0.2% incidence of males in diploids; the remainder produced an
average of ~42% males. Interestingly, tetraploids of both classes could interconvert and
give rise to a proportion of progeny of the other type, albeit at different frequencies [97].
After 30 generations, the patterns of inheritance of high and low incidence of male progeny
did not change. The tetraploid strains that produced high proportions of males are now
known to correspond to a 4A;3X genotype and those that produced a low incidence of
males are known to correspond to a 4A;4X genotype (see Figure 4) [94]. Even in the most
stable lines, tetraploid hermaphrodites had substantially fewer self-progeny (average of
~65 progeny) than diploids (250-300 offspring in wild type, N2) and reduced hatching
(decrease of 13%) [94]. Nigon's tetraploid strains were eventually all accidentally lost after
78 generations. Several other groups have isolated fertile and relatively stable tetraploid
C. elegans and C. briggsae strains [80,94,99-101]. Like their predecessors, each of these
tetraploid strains has been reported to produce reduced numbers of self-progeny and
to sporadically diploidize. Since the diploids can rapidly overtake a population due to
their higher fertility, C. elegans tetraploid strains need to be maintained by continuous
selection for the largest animals—at least for the first tens of generations. Interestingly, an
obligate tetraploid strain has been reported (CB3911) [100]. This strain arose spontaneously
from a diploid carrying a mutation in the dosage compensation gene dpy-27 which causes
the lethality of XX diploids and XXXX tetraploids because of X-chromosome overexpres-
sion (Jonathan Hodgkin, personal communication). However, this strain produces viable
dpy-27(rh18) 4A;3X hermaphrodites and 4A;2X males [100]. Studies of the early events post
tetraploidization (e.g., in generations 1-10) therefore should shed light on how organisms
acclimate to tetraploidy and become established.

2.2. Polyploid and Aneuploid Animals Uncover C. elegans Modes of Sex Determination and
Dosage Compensation

One of the most critical developmental decisions that a heterogametic organism must
make early in life is whether to develop as male or female and, concomitantly, whether to
activate dosage compensation. From studies in C. elegans with different ploidies, it became
apparent that sex is assessed by the ratio of sex chromosomes to autosomes (X/A) and
that induction of hermaphrodite fate activates dosage compensation, which is achieved by
reducing expression from the pair of X chromosomes [83,102]. Male phenotypes arose from
animals with 2A;1X, 3A:2X, and 4A;2X, whereas 2A;2X, 3A;3X, 4A;4X, and 4A;3X gave rise
to hermaphrodite phenotypes [94] (Table 1 and Figure 4).

Together, these studies led to the conclusion that an X:A ratio > 0.74 induces fe-
male/hermaphrodite identity and <0.67 promotes male development. Further support
for these conclusions came from manipulation of the X/ A ratio using X-linked gene du-
plications in the 2X;3A triploids to show at least three loci were involved in determining
sex [101]. We now know the molecular details about the genes and processes involved
both in assessing the X/ A ratio and in executing male and hermaphrodite fates and dosage
compensation [103]. Nevertheless, questions remain about how allotetraploids generated
by the hybridization of different tetraploid Caenorhabditis species would assess the X/A
ratio and whether manipulation or modification of this system could be used to stabilize
polyploid organisms.
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3. Utilizing Polyploid C. elegans as Tools to Investigate Developmental Processes

In the last ~50 years, comparisons between C. elegans strains of differing ploidy have
been utilized as tools to query developmental processes including meiosis and embryonic
divisions, in addition to sex determination and dosage compensation.

3.1. Understanding Early Events of Meiotic Prophase |

During meiosis, recombination between the duplicated maternal and paternal homol-
ogous chromosomes transiently connects the homologs to orderly partition them in the
first division while maintaining sister chromatids together until the second division. To
recombine, homologous chromosomes must first find one another in the nucleus (i.e., pair),
become aligned along their lengths, and then stabilize their association by assembling the
synaptonemal complex (i.e., synapse) [104]. Observations of the effects of having additional
chromosomes in C. elegans triploid and tetraploid animals have helped to uncover rules
underpinning homologous chromosome dynamics during meiosis [98,99]. Additional
chromosomes did not significantly alter the initial steps of pairing into groups of three
or four homologs in triploids and tetraploids, respectively. However, full alignment was
often perturbed, and synapsis was frequently incomplete, resulting in the lengthening
of the period in which synapsis normally takes place [98]. The imperfectly synapsed
chromosomes became marked by di-methylation (H3K9me2), which has been proposed
to prevent the synapsis defects from being detected by the quality control system [98].
Further analysis revealed that two pairs of synapsed homologous chromosomes form in
tetraploids [99]. This pairwise synapsis also takes place in germ lines of mutants (i.e., spo-11)
that are deficient in early steps of recombination, as in diploids. In triploid germ lines, one
pair of homologs synapse, and the remaining homolog eventually folds onto itself, in a
process known as self-synapse. In contrast to diploids, pairwise synapsis is disrupted in
the presence of recombination-deficient mutations, suggesting that in C. elegans, as in other
organisms, homologous recombination plays a role in promoting synapsis [99]. Polyploid
animals heterozygous for translocation chromosomes (e.g., nT1(IV;V)) were utilized to test
whether pairwise synapsis is dictated by full sequence homology along the chromosome
length. Synapsis was normal in diploid translocation heterozygotes (i.e., nT1/+ or mlnl/+),
as long as they contained the pairing center sequence that is required for homologous
chromosomes to initially find each other in the nucleus [105]. In tetraploids (nT1/nT1/+/+),
there was no preference for a synapsis partner as translocation chromosomes paired with
normal chromosomes with the same frequency as with themselves. In contrast, associations
and synapsis between pairs of homologous chromosomes were biased towards homologs
with identical sequences in the triploids [99]. These findings support the proposed model
in which the initiation of synapsis depends on pairing center-mediated associations of
homologs, but the completion of synapsis along the homologous pair is promoted by
recombination [99].

3.2. Understanding Meiotic and Early Embryonic Cell Divisions

Female meiotic divisions are asymmetric. Each division gives rise to a large oocyte and
a tiny polar body. The resulting egg contains a haploid set of chromosomes, as half of the
chromosomes in each division are discarded into the polar bodies (Figure 5A,B). Therefore,
C. elegans hermaphrodites trisomic for the X chromosome (2A;3X) would be expected to
produce equal proportions of eggs that carry either one or two X chromosomes (one sister
from the paired homologs +/ — one sister from the self-synapsed chromosome). However,
the observed X:XX ratio in these eggs is 2:1 [88]. Live and high-resolution visualization of
the oocyte cell division in these trisomic worms showed that the self-synapsed chromo-
somes were preferentially partitioned into the polar body during oogenesis [95,106]. In
addition, in triploid animals that have one set of homologous chromosome pairs (bivalents)
and a set of unpaired chromosomes (univalents), the univalents were most often discarded
into the polar body of the first oocyte division [106]. In these triploids, preferential seg-
regation of the single sister chromatids into the polar body could also be observed in the
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second division. These results provide mechanistic insights into why triploid animals
rapidly diploidize.

Several seminal studies have utilized tetraploid and haploid (1A;1X) C. elegans embryos
to query cell division [107-111]. An overview of the relevant early developmental events,
from fertilization to the first embryonic division, is shown in Figure 5.

Fertilization Zygote First embryonic division
A B C D E

Polar Bodies

Female meiosis | Female meiosis Il e Metaphfﬁse plate
S \
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— — = =
\ N\ 2@ st
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Figure 5. Early development from fertilization to the first embryo division. In addition to contributing
a haploid genome, the sperm also contributes a pair of centrioles to the zygote upon fertilization (A).
Fertilization by the sperm triggers the completion of the oocytes” meiotic divisions, each of which
generates a polar body containing half of the chromosomes from the division (A-C). The paired
centrioles separate and remain in the proximity of the male pronucleus and, as they gather maternal
pericentriolar material from the oocyte cytosol (B), they duplicate to form the first pair of centrosomes
of the zygote (C-E) [112]. Concurrently, the male pronucleus grows as DNA decondenses (B,C),
and the centrosomes then become attached to its surface (C) [113]. The female pronucleus migrates
towards the male pronucleus as centriole duplication is completed (C,D). The duplicated centrioles
form the poles of the first bipolar spindle of the embryo (E). The centrosomes and the metaphase
plate make a diamond shape (dashed and red) that defines the length (centrosome-centrosome) and
width of the spindle (longer axis of the metaphase plate at the equator) (E).

One study addressed how paternally inherited centrosomes become associated with
the nucleus. Live imaging comparisons of zygotes with different ploidies suggested
that centrosome attachment to the nuclear membrane depends on the size of the male
pronucleus [107]. Diploid embryos with mutations in nuclear envelope genes that have
aberrantly small male pronuclei initially had only one attached centrosome; the second
centrosome only became attached as the male pronucleus surface increased [107]. This
detached centrosome phenotype was suppressed in zygotes from tetraploid animals that
had larger pronuclei. Conversely, the detached centrosome phenotype was enhanced
in haploid zygotes with smaller pronuclei. It has been speculated that dynein motor
accumulation on the pronuclear surface area is the limiting factor for centrosome attachment
with a threshold of dynein required for both centrosomes to attach [109,114]. Of note, the
haploid embryos in this study were generated utilizing conditional mutant sperm that lack
nuclear DNA (i.e., emb-27(348ts)) [109].

Another important study addressed whether the nuclear-to-cytosol ratio regulates cell
cycle timing, a hypothesis that had been proposed from work in other organisms [115-117].
They compared diploid (N2 Bristol), tetraploid (strain SP343), and haploid embryos (gener-
ated by extracting the pronucleus from the fertilized egg before the zygote formed) [108].
In these embryos, different nuclear/cytosolic volume ratios were examined by extruding
nuclei with little to no cytosol, some cytosol, or increased cytosolic volume, the latter
created by laser-induced cell fusion followed by extrusion of one nucleus. Live imaging
revealed that cell cycle timing was neither affected significantly by altering cell size nor
by nuclear-to-cytosol ratio nor by DNA content [108]. Instead, cell fusion experiments
revealed that cell cycle periods could be altered by the cytosol of a cell in a different cell
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cycle period. Together with other findings, these early results are consistent with studies
that have posited models for the existence of “cytoplasmic factor(s)” that controls cell cycle
timing [118-120]. The cytoplasmic factors that regulate many aspects of the cell cycle and
its timing have now been identified [121].

Alterations of ploidy in embryos were also utilized to assess the scaling of the
microtubule-based spindle [110]. Accurate chromosome partitioning relies on the assembly
of a properly shaped spindle during cell division. The metaphase spindle forms a diamond
shape, with two opposing corners at each centrosome and two at the ends of the metaphase
plate (Figure 5E). The ratio between the spindle length (from the centrosome to centrosome)
and width (of the metaphase plate at the equator) was constant throughout in vitro Xenopus
extract studies that either molecularly or mechanically perturbed the dimensions of the
metaphase spindles [122,123]. In vivo studies in C. elegans have been instrumental to our
understanding of spindle shape. Initial studies showed that spindle length is affected by
cell size as spindle length and width decrease and as embryogenesis progresses [110,118].
Interestingly, a reduction in the spindle width was observed when the spindle length was
decreased by knocking down genes involved in spindle formation (e.g., by RNAi depletion
of tpxI-1 (the C. elegans homolog of Xenopus TPX2 involved in spindle assembly) or spd-2 (in-
volved in multiple aspects of centrosome biogenesis and thus spindle formation)) [124-129].
The opposite was not the case; changing the width of the spindle did not affect its length.
In haploid embryos, the spindle width was reduced, and in polyploid embryos, it was
increased [110]; yet in neither case was the embryo size or spindle length affected [124-128].
Correlation analysis between spindle length and width in haploid, diploid, and polyploid
embryos revealed a simple equation that can predict spindle width based on the spindle
length and ploidy of the embryo [110].

Another important correlation that was observed with the reduction in cell size during
embryogenesis is related to chromosome condensation, a chromosome feature that is im-
portant for accurate chromosome inheritance [129-133]. Haploid and tetraploid embryos
produced by diploid kip-18(RNAi) mothers show differences in the extent of chromosome
condensation compared to diploid control embryos [130]. Chromosome condensation
decreased in haploid embryos in comparison to diploid embryos, whereas condensation
increased in tetraploid embryos. Differential condensation was independent of cell size, the
speed of spindle elongation, and spindle length [110,130]. Therefore, an inverse correlation
between nuclear DNA density and chromosome condensation was proposed and tested
by observing chromosome condensation in dividing diploid and kip-18(RNAi) haploid
embryos, during divisions as the size of the nucleus decreases during development [130].
The relationship between the DNA density in the nucleus and chromosome length (a mea-
sure of chromosome condensation) fits a regression line for the dividing diploid embryo.
Importantly, this regression line also suitably fits the measurements of both the dividing
haploid embryo and also embryos produced upon RNAI of factors that affect nuclear size
including ima-3 (nuclear pore import protein) and ran-3 (ortholog of the human RCC1
regulator of chromosome condensation) [130]. These analyses revealed an allometric rela-
tionship between chromosome length/condensation and the relative ratio of DNA amount
per nucleus size which is consistent with the hypothesis that chromosome condensation is
regulated to adapt to fit the amount of DNA in the physical space within the nucleus.

4. Utilizing Caenorhabditis to Understand the Effects of Polyploidization

In addition to being utilized as tools to study development, C. elegans polyploids have
also been used to study the process of polyploidization itself and its immediate after-effects.

4.1. Polyploid Tissues in C. elegans

At least two tissues are polyploid in C. elegans: the intestine and hypodermis (part of
the nematode epidermis) (Figure 6) [86]. The intestine is a tube responsible for digestion and
makes up nearly a third of the animal’s body. All intestinal cells are derived from a single
blastomere (E) which is designated at the eight-cell embryo stage [134,135] (Figure 6A). E
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divides by mitosis, and then its progeny undergo rounds of endoduplication to allow the
intestinal cells to massively increase nuclear output per unit volume which is thought to be
necessary to meet the extensive enzymatic needs of this tissue.

B.
Intestine Hypodermis
Blastomere E
(8 cell stage)
Embryo
2n
23 i
1% Mitosis diploid nuclei
hyp7
Larvae
i | | Endocycle 116
diploid nuclei
hyp7  *

Adult hyp7
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average 10.7C

Figure 6. Polyploid tissues in C. elegans. (A) During embryogenesis, the E blastomere undergoes
mitotic divisions to give rise to 20 intestinal diploid cells [86]. During the L1 stage, six of these cells
neither divide nor replicate their DNA, four cells may or may not replicate their DNA or divide, and
ten cells replicate their DNA and divide by endomitosis, producing cells with two diploid nuclei each.
Therefore, by the end of the L1 stage, the 20 cells of the intestine have 30-34 diploid nuclei. Prior
to the transition molt to the L2 stage, all nuclei of the intestine endoduplicate their DNA (4C each
nucleus). Nuclei continue to endoduplicate prior to the molts between larval stages: the L2 (8C each
nucleus), the L3 (16C), and finally the L4 (32C) larval stages. Thus, the adult intestine is composed
of 20 cells with a total of 30-34 nuclei, each with 32C ploidy [86]. (B) Formation of the hypodermis.
During embryogenesis, 23 cells fuse to the hyp7 cell. Post-embryonically, 116 cells fuse to the hyp7
syncytium. About 96 nuclei from these cells undergo one round of endoduplication. Most of these
cells undergo two more rounds of endoduplication that take place post-embryonically to give rise to
the adult hyp?7 syncytium that contains 139 nuclei with 10.7C on average by the fully grown adult
stage [87].

The hypodermis has many roles in development including the establishment of the
basic body plan in the embryo such as body shape and size, regulation of cell fate specifi-



J. Dev. Biol. 2023, 11, 26

12 of 22

cation, and guidance of migrating axons and cells [136-138]. The hypodermal cell hyp7
is a multi-nucleated syncytium that encases most of the adult animal body (the tail and
head of the animal are covered by smaller hypodermal cells) [86]. The hyp7 syncytium
ultimately contains 139 nuclei in the adult which arise from cell fusions (Figure 6B) [86,139].
The embryonically derived nuclei in hyp7 remain as diploids, whereas ~98 cells generated
post-embryonically endoduplicate to become tetraploids [86,87,139]. The ploidy of the
hyp7 cell is key for adult animal size regulation, (see the section on allometric studies,
below) [140].

In diploid cells, coordination of the centrosome and cell cycle ensures a single du-
plication of the centrosome per mitotic cycle, which is crucial to prevent supernumerary
centrosome accumulation which can lead to genomic instability [140,141]. In cells that
undergo endocycles, regulating the number of centrosome cycles is equally important for
maintaining genome stability [142]. In the intestinal and hypodermal lineages of C. elegans,
the centrioles become refractory to S-phase cues, and thus centriole duplication becomes
uncoupled from the cell cycle, likely due to the loss of pericentriolar material, including
the SPD-2 protein. After halting centriole duplication, these cells also eliminate all but one
of the already duplicated centrioles [143]. Phosphorylation of the SPD-2 protein regulates
centriole duplication; therefore, it represented a likely candidate for regulation of the centri-
oles during endocycles [144-146]. A CDK phospho-mutant, SPD-255454 prevents intestinal
divisions due to a lack of centrosome duplication. In contrast, the phosphomimetic mutant,
SPD-255%5E Jeads to supernumerary centrosomes in the intestinal cells [143]. The effect of
this allele is not observed in the hypodermis, suggesting cell-type-specific specializations
in centriole control. SPD-25*5F does not completely suppress the effects of cdk-2(RNAi),
suggesting that additional phosphorylation sites are also involved. Indeed, SPD-2S*” was
found to be regulated by Polo-Like Kinase-1 (PLK-1 in C. elegans), and a phosphomimetic
mutation at this site resulted in the prolonged persistence of SPD-2 on centrioles and
delayed centriole elimination in some of the intestinal nuclei. Surprisingly, PLK-1 does not
seem to regulate either SPD-2 stabilization or centriole elimination [143] but appears to
affect SPD-2 accumulation through its effect on the cell cycle [143]. Instead, knockdown of
the proteasome b-subunit (pbs-3) results in both SPD-2 persistence indicative of a lack of cen-
triole elimination in many of the intestinal cells. This finding implicates ubiquitin-mediated
proteolysis in the uncoupling of the endocycle and centriole cycle in the intestine [143].

A central question in the WGD field has been whether there is a significant func-
tional difference between mononucleated polyploidy (restricted to a single nucleus) and
multinucleate polyploidy (in more than one nucleus) [2,147]. The developing intestine
in C. elegans was used to address this question by converting the normally binucleated
intestinal cells into mononucleated cells of identical ploidy using auxin-induced degra-
dation [148] of either a regulator of mitotic entry (i.e., CDK-1) or a kinetochore protein
required for chromosome partitioning in mitosis (i.e., KNL-1) to block endomitosis [38].
Whereas the absence of CDK-1 prevents entry into mitosis and essentially converts the
endomitosis into an endocycle, degradation of KNL-1 allows for entry into mitosis but
prevents the chromosome partitioning into two nuclei [38]. Knock-down affected neither
cell size nor morphology, but the nuclear surface-to-volume ratio decreased in the mononu-
cleated cells [38]. Single-worm transcriptome analyses revealed that the vitellogenin genes
(vit-1 to vit-6) are downregulated in these mononucleated intestines. Vitellogenins are yolk
proteins that are required for lipid transport to oocytes and embryos and are important
determinants of progeny fitness. Accordingly, embryos from mothers with mononucleated
intestines have reduced survival. Similarly, decreasing vitellogenin expression in binucleated
gut cells phenocopies the impact on progeny fitness, and increasing vitellogenin expression,
by overexpressing their transcriptional activators, results in mothers producing progeny
with similar fitness regardless of whether they had mono- or bi-nucleated intestines [38].
Importantly, many of the genes that are downregulated in animals with mononucleated
intestines normally increase in expression during the L4 to adult transition, implicating a
major role in binucleation at this developmental stage [38].
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4.2. Biological Size and Scaling (Allometry)

Regulation of cell size and scaling of tissues and organs are critical for development
and influence homeostasis, metabolism, and function [33]. Polyploidization has been
generally associated with increases in cell and organism size. For example, genome size
and ploidy correlate linearly with cell volume in yeast [149-151]. However, the effects of
polyploidy are cell-type specific in many multicellular organisms, with different cell types
having a nonlinear relationship between ploidy and cell size [152]. For instance, in plants,
there is a strong correlation between ploidy and cell volume in epidermal pavement cells,
but the volume of palisade mesophyll cells remains at a constant size despite changes in
ploidy [153]. These and other observations [154-157] make it apparent that the DNA mass
does not fully explain the effect of ploidy on cell (and nuclear) size [158-160]. In most
polyploidization models, including plants, interpreting the direct effect of ploidy is complex
because the increase in cell size in tissues and organs is balanced by a reduction in cell
number [33,157,160,161]. The invariant cell lineage in C. elegans simplifies the identification
of mechanisms underpinning correlations between ploidy and scaling of cells, tissues,
and organs.

Allometry studies related to the effects of ploidy in C. elegans have been performed
for cells and animals [87,97,110,130,162-166]. Nigon (1949) [96] reported that compared
to the 1300 pm-long diploid hermaphrodites, the 4A;3X hermaphrodites were on average
1360 pm and the 4A;4X hermaphrodites were 1560 pm long. The more profound increase
in the 4A;4X hermaphrodites containing 24 chromosomes (See Figure 3) compared to the
4A;3X hermaphrodites (23 chromosomes) is surprising and suggests that gene expression
from the X chromosome may contribute to an animal'’s size significantly more than gene
expression from autosomes.

The hypodermis secretes the cuticle forming the exoskeleton that houses the nema-
tode’s internal organs and nervous system. There is a proportional relationship between
the size of the C. elegans body and the size of the hypodermal cells (seam cells and the syn-
cytium hyp?) [163,167,168]. Comparison of 12 nematode species from the order Rhabditida
revealed a weak correlation between the number of nuclei and hypodermal volume (hyp7 in
C. elegans), suggesting that body size was at least partly independent of cell number [87]. A
significant correlation between animal size and the product of the number of nuclei and the
ploidy was observed across species. Therefore, unlike most organisms where the evolution
of body size relies on changes in cell number, in nematodes, body size evolution was likely
driven by the size of the hypodermal syncytium [87]. A comparison of a tetraploid strain
and its diploid revertant revealed a 39% increase in the adult body size of tetraploids [162].
The unexpected 1.4-fold increase in volume (instead of the expected 2-fold increase) in
tetraploids is at least in part explained by the lower-than-expected ploidy in the hyp?7 cell
(16.7C instead of 22C) and the small reduction in the number of cells (by less than two
nuclei) [162]. However, one should be careful in making conclusions from this comparison
because it is likely that the reverted diploid differed from the original, but these were not
examined. Multiple independent tetraploid strains from nearly any diploid strain provide
the possibility of conducting this comparison more rigorously. Levels of endoduplication
in hyp?7 of C. elegans were found to be important in the regulation of the adult animal size.
When C. elegans young adults were exposed to the DNA replication inhibitor hydroxyurea
(HU), endoduplication of the hyp7 nuclei was inhibited, and a reduction in body size was
observed [162]. Cyclin E is required for endoduplication in mice and Drosophila [169,170].
Null mutants carrying mutations of the C. elegans homolog of Cyclin E, cye-1, have an
~1.8-fold reduction in the size of the hyp7 syncytium and are 35-54% the size of wild-type
worms [162].

Many signaling pathways and genes affecting diploid animal size have been charac-
terized in C. elegans. These include pathways that only regulate embryo size, that regulate
multiple developmental stages, and that influence adult body size. The TGF[3 /BMP signal-
ing pathway has a major role in the response to ploidy as it regulates both adult size and
hyp7 ploidy [162,167,168,171-173]. The TGFf signaling pathway that regulates body size
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in C. elegans includes the DAF-4 type-two receptor, the DBL-1 ligand, and the downstream
SMADs (SMA-2, SMA-3, SMA-4, and SMA-6) [174]. DBL-1, the ortholog of human BMP?7,
is required for post-embryonic growth [87,166,175]. Whereas DBL-1 overexpression results
in longer-than-normal animals (Lon phenotype) [172], mutations in the dbl-1 gene cause a
dwarf phenotype (Sma) and reduced hypodermal ploidy [162,172]. Interestingly, as with
the cye-1 mutant, exposure of dbl-1 mutants to hydroxyurea neither further reduced hyp?7
ploidy nor affected its body size, suggesting that DBL-1 normally promotes hyp7 endodu-
plication [162]. Together, these and other findings [162,168] suggest that DBL-1 regulates
adult growth in a dose-dependent manner [165,172] by promoting endoduplication in the
adult hypodermis (hyp?7) [168], likely via CYE-1 cyclin [162].

The regulation of body size by the DBL-1 pathway is complex. Many of the molecular
components in the DBL-1 pathway and other pathways affecting endoduplication in
the hypodermis have been identified, and their localization and molecular or genetic
interactions have been described. For instance, overexpression of LON-1, a member of the
conserved PR-protein superfamily [164,176], causes hypo-endoduplication, and the absence
of the LON-1 protein causes hyper-endoduplication in the hypodermis [164]. Specifically,
the levels of the lon-1 transcript depend on the dosage of the dbl-1 gene and TGFf{ signaling.
Other genes and processes affecting diploid animal size are also likely to play important
roles in this process. These include cuticle collagens, 3-H Spectrin, TOR kinase, MAPK
signaling, Hippo—Warts signaling, and the insulin signaling pathway [166,177-186]. These
genes are expected to show altered expression in polyploid animals [33,41,187,188]. Global
metabolic genes, such as TRNA or tRNA genes, are likely also involved in regulating
biological scaling in polyploid animals [33,189]. Whether these pathways contribute equally
to growth regulation in polyploids remains an open question.

5. Potential Future Queries Utilizing C. elegans Polyploids

The ease of creating synthetic autotetraploids from any strain utilizing RNAi is shep-
herding in a new era. We can now expand the use of C. elegans polyploids to study cellular
and developmental processes (e.g., allometric relationships of different cell types and cell
division dynamics) and disease (e.g., genome instability, pathological cell divisions, and
cancer) by comparing equivalent organisms, tissues, organs, and cells from isogenic diploid,
triploid, and tetraploid animals. This method allows for the first time in C. elegans the
ability to query the direct impact of organismal polyploidization on individual tissues
across time. In addition, this polyploid model’s unique features will be of particular benefit
for advancing our understanding of WGD and its effect on genome structure, transcrip-
tome size (total RNA per unit of DNA mass) [190], specific-gene expression, regulation of
gene expression by chromatin modification, and importantly how these changes affect the
physiology, metabolism, and developmental character of the organism.

In the course of evolution, parts of the genomes of polyploids are lost [191-193], a
process known as fractionation [194]. This can occur because the purifying selection—the
drive to remove mutated genes—is relaxed on duplicated genes, leading to both gene
and regulatory element loss [194,195]. In allotetraploids, allele dominance can facilitate
gene retention/fractionation, but genes involved in multi-subunit complexes (ribosomes,
polymerases, etc.) tend to be retained [194]. Previous observations in plants showed that
they undergo loss of repetitive sequences, mostly transposable elements, by recombina-
tion [187-189]. This can reduce the genome by up to 25% within the first few generations of
newly formed autopolyploids [196]. Synthetic auto- and allo-tetrapolyploid C. elegans will
allow both short-term and longitudinal studies of the process of genome downsizing given
the nematodes’ short life cycle and their ability to manipulate their environment. Addition-
ally, these animals would facilitate the study of tissue-specific differences and the mitotic
stability of ploidy during development. Of particular interest will be comparative analyses
of the endopolyploid hyp7 and intestinal cells to determine how their DNA size/mass
scales with ploidy.
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Gene expression studies have been performed to assess differential gene expression
in allopolyploid plants, often comparing diploids to an ancestral hybrid species [33]. An
important mystery remaining is the stoichiometry of the changes in whole transcriptomes
of similar cells from animals with differing ploidy [190,197]. Two competing hypotheses
regarding the effect of organism polyploidization on global gene expression have been
proposed: (1) each duplicated genome retains diploid transcription levels or (2) all gene
loci are affected by dosage compensation to maintain a gene dose similar to that of diploids.
Although very few studies have been carried out to compare the effect of differing ploidy on
transcriptome size, neither global suppression nor doubling of expression is uniquely likely
since allopolyploid studies have shown an intermediate transcriptome size. Importantly,
single-cell transcriptomic studies have shown high variability or noise in gene expression
within a cell type and between different cell types. Specific regulatory genes (e.g., RNA
polymerase 2 and 5.85 rRNA) have been found to differentially increase in expression
with increasing ploidy [198]. Global and specific gene expression can also be affected by
chromatin remodeling (e.g., chromatin and histone modifications), and specific histone
modifications, particularly histone H3K56 acetylation, are thought to buffer increases in
mRNA synthesis due to an increased number of gene copies [199].

The ability to create tetraploids with any strain facilitates longitudinal studies of the
tetraploid. For example, one can now create recombinant inbred strains of auto- and
allotetraploids to address how the genome changes over ten to hundreds of generations.
Combining these studies with exposure to environmental stressors, such as disease, tem-
perature, infection, and DNA damage, has the potential to shed light on genomic changes
that provide flexibility and drive adaptation. A greater understanding of WGD and the
mechanisms of tolerance to polyploidy will also have important implications for the treat-
ment of cancer and other human pathogens which may gain a selective advantage over
endogenous cells through these mechanisms.
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