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Abstract: Natural disasters such as landslides often occur in the Eastern Black Sea region of Turkey
owing to its geological, topographical, and climatic characteristics. Landslide events occur nearly
every year in the Arhavi, Hopa, and Kemalpasa districts located on the Black Sea coast in the
Artvin province. In this study, the landslide susceptibility map of the Arhavi, Hopa, and Kemalpasa
districts was produced using the random forest (RF) model, which is widely used in the literature
and yields more accurate results compared with other machine learning techniques. A total of 10
landslide-conditioning factors were considered for the susceptibility analysis, i.e., lithology, land
cover, slope, aspect, elevation, curvature, topographic wetness index, and distances from faults,
drainage networks, and roads. Furthermore, 70% of the landslides on the landslide inventory map
were used for training, and the remaining 30% were used for validation. The RF-based model was
validated using the area under the receiver operating characteristic (ROC) curve. Evaluation results
indicated that the success and prediction rates of the model were 98.3% and 97.7%, respectively.
Moreover, it was determined that incorrect land-use decisions, such as transforming forest areas into
tea and hazelnut cultivation areas, induce the occurrence of landslides.

Keywords: landslides; landslide susceptibility; machine learning; random forest; Artvin

1. Introduction

Landslide is a natural disaster that causes economic damage and fatalities, both in Turkey and
many different regions in the world. In Turkey, the region most affected by landslides in terms of
frequency of occurrence and resultant damage is the Eastern Black Sea region [1-3]. The main factors
that predispose landslide triggering in the Eastern Black Sea region are rugged terrain structure,
climatic conditions with heavy rainfall, weathering, deforestation, dense tea and hazelnut cultivation,
dispersed rural settlements, low-quality transportation network owing to dispersed settlement, and
uncontrolled surface drainage systems created by the transportation network [4].

One of the essential procedures to reduce damage and fatalities caused by landslides is landslide
susceptibility mapping (LSM) [5-9]. Trigila et al. [10] reported that LSM is the first step in estimating
landslide hazard and risk. Landslide susceptibility maps show the regions where future landslides
can occur in the study area [11]. Generally, LSM involves the following steps: collecting spatial data
regarding the factors affecting the occurrence of landslides in the selected study area, determining
landslide susceptibility using the association between existing landslides on the inventory map and
conditioning factors, and validating the results [12]. One of the important steps in this process is
the determination of the method or model to be used for producing the landslide susceptibility map.
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Zhao et al. [5] reported that employing modeling approaches has a significant impact on the quality of
landslide susceptibility maps.

The models used for LSM can be broadly divided into three categories: physical, heuristic, and
statistical models. Physically-based models use mechanical laws to analyze the slope stability in
terms of physical processes leading to landslide events. The main advantages of these models are that
they do not need long-term landslide inventory data and are more useful in areas where landslide
inventories are incomplete [13]. The heuristic approach is a qualitative analysis based on expert
knowledge and previous work experience [14]. In the heuristic approach, investigators rank and weigh
conditioning factors according to their assumed or expected importance in causing landslides [15].
Statistical approaches are based on the analysis of functional relationships between known or predicted
instability factors and past and present distribution of landslides [15]. These methods require landslide
inventory maps to create functional relationships with conditioning factors [14]. Reichenbach et al. [15]
further classified the statistic-based models into six groups, such as “classical statistics, index-based,
machine learning, neural networks, multi-criteria decision analysis, and other statistics.” In particular,
logistic regression [16-23] and the frequency ratio method [24-30] have been the most widely used
classical statistical models around the world. In recent years, there has been a growing interest in
machine learning techniques in LSM studies. Machine learning techniques, such as artificial neural
networks (ANNSs) [31,32], Naive Bayes [33,34], support vector machines (SVMs) [35-37], decision trees
(DTs) [38,39], and random forest (RF) [40—42], have been widely used by researchers. Sevgen et al. [8]
stated that the application of random forest (RF) method in LSM is relatively new; thus, there is limited
research on this method. Merghadi et al. [43] reported that tree-based ensemble algorithms yield
excellent results compared with other machine learning algorithms and that the RF model offers a
powerful performance for accurate LSM. Similarly, numerous studies in the literature have reported that
the RF model provides more accurate results compared with other machine learning models [8,40,44,45].
On the other hand, deep learning has become the new trend in LSM with developments in neural
networks techniques. Deep learning algorithms are defined as a specialized version of machine learning
algorithms [37]. Deep learning is a self-teaching system that learns as it goes by filtering information
through multiple hidden layers, in a similar way to humans [46]. Deep learning techniques, such as
convolutional neural network (CNN) and recurrent neural network (RNN), have been implemented
recently in LSM studies [47-51].

The study region covers the Arhavi, Hopa, and Kemalpasa districts located on the Black Sea coast
in the Artvin province in the Eastern Black Sea region in Turkey. The present research aims to produce
a landslide susceptibility map of this study region using the RF model. This study region was selected
because Artvin is one of the cities in Turkey in which natural disasters most commonly occur and
landslides account for the majority of natural disasters [2,52,53]. Natural disasters, particularly those
of meteorological nature, such as floods and landslides, induced by excessive rainfall, are frequently
observed throughout the province [54,55]. Although all districts of Artvin are affected by landslides to
a certain extent, the districts where landslides most commonly occur are Arhavi, Hopa, and Kemalpasa.
On August 25, 2015, floods and landslides occurred in the Arhavi, Hopa (and Kemalpasa), and Borgka
districts of Artvin owing to heavy rainfall, resulting in 11 deaths (of which six died because of landslide)
and 19 injuries. The factors considered in this study include lithology, land cover, slope, aspect,
elevation, curvature, topographic wetness index (TWI), distances from faults, drainage networks,
and roads.

2. Characteristics of the Study Area

This study was conducted in a region with a total surface area of 621 km?, covering the Arhavi,
Hopa, and Kemalpasa districts in the Artvin province. The study area is located between the northern
latitudes of 41° 05’ 4.99”-41° 31’ 12.93” and the eastern longitudes of 41° 14’ 39.29"-41° 37’ 14.98”
(Figure 1). The elevation in the study area ranges from 0 to 3370 m and the slope from 0° to 76.95°.
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The average elevation is 1098.18 m, and the average slope is 28.38°. The slope is in the range of 0°-5°
for 2.8% of the study area, 5°-10° for 2.35%, 10°-20° for 15.26%, and more than 20° for 79.58%.
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Figure 1. Study area maps (a) location map of the study area in Turkey, (b) location map of the Artvin
region, (c) location map showing settlements and landslides in the study area.

According to the CORINE 2018 land cover data, 62.74% of the study area is covered with forest,
16.08% with agricultural lands, and 8.15% with natural grasslands. The main agricultural products
include tea and hazelnut. Tea and hazelnut cultivation is conducted in 70% of agricultural lands in the
Arhavi district and 53% of agricultural lands in the Hopa and Kemalpasa districts.

According to the Turkish Statistical Institute’s 2019 population data, Arhavi’s population is 20,926,
Hopa’s population is 26,958, and Kemalpasa’'s population is 9224 [56]. The total population of the
study area is 57,108.

According to the data of the General Directorate of Meteorology (2009-2020), the total monthly
precipitation in the study area is 2215.16 mm. In this region, the minimum average monthly precipitation
of 94.25 mm is observed in May and the maximum average monthly precipitation of 345.2 mm is
observed in September. According to the data of the General Directorate of Meteorology (2000-2020),
the maximum average monthly temperature of 27.71 °C is observed in August and the average monthly
minimum temperature of 3.63 °C is observed in January in the study area.

The study area has a rather steep and rough topography. In the region, there are sharp hillsides
from coastal areas to interiors. Deep valleys stand out all across the study area. In accordance with the
morphological structure of the region, there are many streams with regular and irregular flow regimes,
forming a dendritic drainage network. The streams have a high base of slope, which increases the flow
rate, causing more material to be transported [57,58]. Because of the morphology of the region, the
materials carried by streams are deposited along with the flat areas near the Black Sea. Furthermore, it
is seen that the settlement areas are also established in these wide and flat morphologic units.

In addition to this, the geologic formation in the region is formed from rocks belonging to various
geological times. The study area is located in the Northern Zone of East Pontides within the Pontides
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Tectonic Assembly. This section of the Eastern Pontides is separated into two zones. In the north, the
Adjara-Trialeti belt coming from the east continues along with the Black Sea coast. On the other hand,
the Somcheti-Kafan (Karabakh) belt, constituting the south section of Transcaucasia, corresponds to
the Pondites Tectonic Assembly. The study area is rich in volcanic, volcano-sedimentary and intrusive
rocks containing magmatism products that have developed in periods in the Early Jurassic and Late
Cretaceous Eocene age range. During periods when the magmatism was not active, sedimentary stacks
were accumulated [59].

3. Materials and Methods

3.1. Data Used

The first stage of landslide susceptibility assessment is data collection and creation of a spatial
database in which thematic maps of the factors associated with landslides are produced [60]. In this
study, 1:100,000 scale digital geology and 1:25,000 scale digital landslide inventory maps were obtained
from the General Directorate of Mining Research and Exploration (GDMRE), 1:25,000 scale topographic
maps from the General Directorate of Mapping, 1:100,000 scale CORINE 2018 land cover data from
the European Union Copernicus Land Monitoring Service (https://land.copernicus.eu/pan-european/
corine-land-cover), and 1:25,000 scale digital road network data from the Artvin Regional Directorate of
Forestry. Thematic maps of the factors associated with landslides were prepared using ESRI ArcGIS 10.5
software and converted in raster format (ESRI GRID) with a spatial resolution of 10 m. The modeling
operations were conducted in R 3.6.3 software.

3.2. Landslide Inventory

It is necessary to use an accurate and complete landslide inventory for the training and validation
of landslide models [10]. Landslide inventory maps providing basic information to assess landslide
hazards on a regional scale are the most crucial data required to examine the relationship between
landslide occurrence and factors affecting it [61]. However, in Yanar et al. [62], it is clearly expressed
that dense buildings and constructions change the topography, and these areas dramatically prevent
the visibility of the landslides in the urban areas. Therefore, in the residential areas, it is very difficult
to prepare landslide inventory maps. On the other side, Dag and Bulut [58] stated that in the tea
cultivation areas, such as our study area, the vegetation covers the relatively small-scale landslides
(mainly flow debris and rotational slides); thus, making it very difficult to produce the inventory
maps in these tea covered areas. Furthermore, the 1:25,000 scaled regional landslide inventory maps
cannot represent the small-scale landslides as polygons since the small-scale landslide areas are too
small to be represented on this scale. In this study, 1:25,000 scale landslide inventory maps produced
by the GDMRE and updated by the Artvin Provincial Directorate of Disaster and Emergency were
used. This inventory map, which we used in this paper, is the most accurate and the most confident
landslide inventory map for this region. Landslide inventory maps used in Turkey were prepared
within the scope of the “Turkey Landslide Inventory Project,” which was initiated by GDMRE in 1997
on a national scale and completed in 2009. The landslides detected based on the field studies and aerial
images (1:10,000-1:35,000 scale) were processed on 1:25,000 scale basic topographic maps [63].

The landslides were classified into three types based on their movements: flowing, sliding, and
complex. Fall and tipping type landslides were not considered, owing to scale limitations. Furthermore,
the landslides were classified into two groups based on their relative depths. Accordingly, landslides
with sliding surface of less than 5-m depth were classified as shallow and those with sliding surface
greater than 5-m depth were classified as deep. The landslides were further classified by dividing them
into two groups based on their activities: active and inactive [63,64].

According to the inventory map, there are a total of 85 mapped landslide polygons in the study
area. The landslides in the study area typically fall into the shallow landslide group. The landslides
cover 0.94% of the study area. Moreover, 30 of these landslides belong to the inactive landslide class
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and 55 to the active (45 sliding and 11 flowing types) landslide class. The smallest and largest landslides
on the inventory map have areas of 0.002 and 0.81 km?, respectively. The average area of the landslide
polygons is 0.07 km?. The widths of the landslides in the study region range from 45 to 981 m, while
their lengths range from 60 to 1947 m.

However, models used to produce landslide susceptibility maps require both “landslide (or
positive)” and “non-landslide (or negative)” samples of the study area. Although there is no accepted
rule in the creation of these two subsets, most researchers use a ratio of 70:30 in LSM studies,
particularly in the selection of “landslide” samples. In this approach, 70% of the randomly selected
landslides on the inventory map are used for model training and the remaining 30% are used for model
validation [31,32,44,65]. Huang and Zhao [36] emphasized that the positive and negative samples in
the training and test datasets should be the same, i.e., a ratio of 1:1. Thus, researchers use the same
number of negative and positive samples in their studies [39,66-69]. The landslide inventory map was
converted to a raster format with a cell size of 10 m x 10 m, and the total number of positive samples
in the study area, i.e., the number of pixels with landslides, was determined to be 58,537. The same
number of “non-landslide” pixels was randomly selected in the study area. The positive samples were
provided a value of “1,” and the negative samples were provided a value of “0.” Moreover, 70% of the
dataset comprising a total of 117,074 pixels was used for model training and the remaining 30% was
used for model validation.

3.3. Landslide-Conditioning Factors

One of the important stages of LSM is the determination of topographical, geological,
environmental, and anthropogenic factors affecting the occurrence of landslides in the study area [70].
Vakhshoori et al. [71] reported that there is no standard rule on the selection of the conditioning factors,
and the scale of the study area, geoenvironmental conditions, landslide occurrence mechanism in the
study area, and data availability influence the selection of factors. Considering these criteria, a total
of 10 landslide-conditioning factors, such as lithology, land cover, slope, aspect, elevation, curvature,
TWI, and distances from faults, drainage networks, and roads, were used in the study. The factor maps
prepared in ESRI ArcGIS 10.5 were converted to raster format with a spatial resolution of 10 m.

In this study, a digital elevation model (DEM) with a resolution of 10 m x 10 m was derived from
1:25,000 scale topographic maps with a 10-m contour interval obtained from the General Directorate of
Mapping. The elevation, slope angle, aspect, curvature, TWI, and distance from drainage network
parameters were derived from this DEM.

The elevation is often used in LSM studies [23,34,39,72]. The elevation of the study ranges from 0
to 3370 m (Figure 2a). The elevation is divided into 10 equal parts at 337-m intervals (Table 1).

As reported by Zhang et al. [72], the slope angle is a key factor for slope stability and is one of
the most commonly used parameters in LSM studies [73-75]. The average slope of the study area,
where the slope ranges from 0° to 76.95°, is 28.38°. The slope is divided into 10 classes at 5° intervals
(Figure 2b).

The aspect at a point on the land surface is the direction that faces the tangent plane passing
through that point and is expressed in angles (in degrees). Similar to elevation and slope, aspect is also
widely used in LSM studies [42,45,48]. Bragagnolo et al. [74] reported that aspect has an indirect effect
on slope stability depending on rainfall, wind, and solar radiation. The aspect map of the study area
was derived from DEM and divided into nine classes (Figure 2c).

Curvature, one of the factors associated with the occurrence of landslides, represents slope shape
and terrain morphology [22,76]. Negative curvatures represent concave surfaces, zero curvatures
represent flat surfaces, and positive curvatures represent convex surfaces. In this study, the curvature
was derived from DEM using ArcGIS 10.5 software and divided into three subclasses, i.e., concave, flat,
and convex (Figure 2d).

TWI is defined as a theoretical measure of flow accumulation at any point in a basin, and hence,
soil wetness [74]. In other words, TWI measures the degree of water accumulation in one region [77].
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In the study area, the TWI ranges from 2.12 to 27.92 (Table 1). TWI is divided into nine subclasses
using the natural breaks classification method and used in landslide susceptibility analysis (Figure 3a).
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Table 1. Spatial relationship between landslide-conditioning factors and landslides.

Factors Subclasses Pixels .in Pixels With Percer}tage of Percenfage of Fre‘.]uency
Domain Landslide Landslides (%) Domain (%) Ratio (FR)
0-337 1,443,794 23,096 39.46 23.24 1.6976
337-674 1,150,034 8308 14.19 18.51 0.7666
674-1011 810,518 1167 1.99 13.05 0.1528
1011-1348 611,505 6893 11.78 9.84 1.1962
Elevation (m) 1348-1685 591,042 12,484 21.33 9.51 2.2415
1685-2022 442,710 6314 10.79 713 1.5135
2022-2359 381,321 275 0.47 6.14 0.0765
2359-2696 433,915 0 0.00 6.99 0.0000
2696-3033 299,255 0 0.00 4.82 0.0000
3033-3370 47,952 0 0.00 0.77 0.0000
0-5 173,997 1078 1.84 2.80 0.6575
5-10 146,037 5516 9.42 2.35 4.0083
10-15 344,395 12,692 21.68 5.54 3.9109
15-20 603,868 13,550 23.15 9.72 2.3812
(Sl;lr):e) 20-25 876,332 10,711 18.30 14.11 12971
25-30 1,111,771 7335 12.53 17.90 0.7001
30-35 1,201,986 4382 7.49 19.35 0.3869
35-40 965,692 1915 327 15.55 0.2104
40-45 515,204 625 1.07 8.29 0.1287
45-76.95 272,764 733 1.25 4.39 0.2852
Flat 57,225 226 0.39 0.92 0.4191
North 988,912 16,769 28.65 15.92 1.7995
Northeast 792,420 9126 15.59 12.76 1.2222
East 684,258 5022 8.58 11.02 0.7789
Aspect Southeast 541,325 3041 5.20 8.71 0.5962
South 523,134 1971 3.37 8.42 0.3998
Southwest 658,060 2553 4.36 10.59 0.4117
West 927,276 5926 10.12 14.93 0.6782
Northwest 1,039,436 13,903 23.75 16.73 1.4194
2.12-4.85 1,059,034 4897 8.37 17.05 0.4907
4.85-5.96 1,907,594 14,839 25.35 30.71 0.8255
5.96-6.97 1,688,106 17,125 29.26 2717 1.0766
6.97-8.09 864,051 11,582 19.79 1391 1.4225
W 8.09-9.50 365,213 5841 9.98 5.88 1.6972
9.50-11.33 177,124 2930 5.01 2.85 1.7555
11.33-13.65 99,210 1170 2.00 1.60 1.2515
13.65-16.99 38,150 113 0.19 0.61 0.3143
16.99-27.92 13,564 40 0.07 0.22 0.3130
<0 2,962,010 30,380 51.90 47.68 1.0884
Curvature 0 124,224 1049 1.79 2.00 0.8961
>0 3,125,812 27,108 46.31 50.32 0.9203
Qal 144,679 613 1.05 2.33 0.4496
Tet 188,759 0 0.00 3.04 0.0000
Tk2 48,058 0 0.00 0.77 0.0000
Tkd 22,815 0 0.00 0.37 0.0000
Tek 1,097,641 13,738 23.47 17.67 1.3282
Tekba 3375 58 0.10 0.05 1.8237
Tee 65,515 0 0.00 1.05 0.0000
Lithology Tpeb 52,499 1056 1.80 0.85 2.1346
Kk1 195,127 0 0.00 3.14 0.0000
Kklgd 31,231 0 0.00 0.50 0.0000
Kk1kd 225,767 152 0.26 3.63 0.0714
Kkla 455,881 0 0.00 7.34 0.0000
KTe 569,041 8753 14.95 9.16 1.6324
KTct3 270,181 2830 4.83 4.35 11116
KTck 108,527 1089 1.86 1.75 1.0649

7 of 22
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Table 1. Cont.

Factors Subclasses Pixels jn Pixels With Percer}tage of Percenfage of Fre‘.]uency
Domain Landslide Landslides (%) Domain (%) Ratio (FR)

KTet2 16,917 45 0.08 0.27 0.2823

K¢bh 89,658 412 0.70 1.44 0.4877

Kca 1,914,832 26,387 45.08 30.82 1.4624

Kt 994 0 0.00 0.02 0.0000

Kgatl 90,683 1068 1.82 1.46 1.2498

Kk 349,483 2184 3.73 5.63 0.6632

Kkdt 7494 0 0.00 0.12 0.0000

K¢ 250,947 152 0.26 4.04 0.0643

Jh 10,743 0 0.00 0.17 0.0000

0-100 3,451,459 38,738 66.18 55.56 1.1911

100-200 1,947,340 15,236 26.03 31.35 0.8303

200-300 718,748 4212 7.20 11.57 0.6219

Difsr:,alffe 300-400 86,479 302 0.52 1.39 0.3706

drainage 400-500 7071 48 0.08 0.11 0.7204

network (m) 500-600 412 1 0.00 0.01 0.2576

600-700 187 0 0.00 0.00 0.0000

700-800 209 0 0.00 0.00 0.0000

800-926.55 141 0 0.00 0.00 0.0000

0-200 4,005,718 40,707 69.54 64.48 1.0784

200-400 1,234,833 11,524 19.69 19.88 0.9904

400-600 480,588 4477 7.65 7.74 0.9886

Distance 600-800 232,012 1566 2.68 3.73 0.7163

from roads 800-1000 116,327 263 0.45 1.87 0.2399

(m) 1000-1200 70,106 0 0.00 1.13 0.0000

1200-1400 35,956 0 0.00 0.58 0.0000

1400-1600 15,301 0 0.00 0.25 0.0000

1600-1800 7652 0 0.00 0.12 0.0000

1800-2868.48 13,553 0 0.00 0.22 0.0000

112 37,568 0 0.00 0.60 0.0000

121 5670 73 0.12 0.09 1.3663

122 42,234 1056 1.80 0.68 2.6534

123 4738 0 0.00 0.08 0.0000

131 21,588 872 1.49 0.35 4.2866

133 2768 0 0.00 0.04 0.0000

222 821,867 14,706 2512 13.23 1.8989

242 17,710 0 0.00 0.29 0.0000

CORINE 2018 243 159,487 3789 6.47 2.57 2.5212

311 1,143,634 13,626 23.28 18.41 1.2644

312 45,538 0 0.00 0.73 0.0000

313 2,708,333 22,087 37.73 43.60 0.8654

321 506,223 2328 3.98 8.15 0.4880

324 81,469 0 0.00 1.31 0.0000

332 101,735 0 0.00 1.64 0.0000

333 496,238 0 0.00 7.99 0.0000

511 15,246 0 0.00 0.25 0.0000

0-1000 1,663,388 27,557 47.08 26.78 1.7581

1000-2000 1,376,852 17,711 30.26 22.16 1.3651

2000-3000 961,994 2938 5.02 15.49 0.3241

Distance 3000-4000 634,006 6345 10.84 10.21 1.0620

from faults 4000-5000 423,053 3323 5.68 6.81 0.8336

(m) 5000-6000 354,957 361 0.62 5.71 0.1079

6000-7000 289,889 302 0.52 4.67 0.1106

7000-8000 207,933 0 0.00 3.35 0.0000

8000-9000 150,900 0 0.00 243 0.0000

9000-13102.31 149,074 0 0.00 2.40 0.0000

8 of 22
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Figure 3. Landslide-conditioning factor maps: (a) topographic wetness index (TWI); (b) distance from
drainage; (c) distance from roads; (d) land cover.

The proximity of the slopes to a drainage network is another important factor in terms of stability.
This is because rivers disrupt the stability of slopes by eroding the toe of the slopes or saturating the
section of the material constituting the slope under the stream level [78]. The drainage network of the
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study area was derived from DEM using the hydrological analysis module in ArcGIS 10.5 software.
Drainage buffers were calculated using the Euclidean distance function in ArcGIS 10.5 and reclassified
at 100-m intervals and divided into nine subclasses (Table 1). The maximum distance to the drainage
network was calculated to be 926.55 m (Figure 3b).

In regions with rugged topography, landslides occur on the slopes near the road. Road
constructions, particularly on hillsides with a high slope, may reduce the load on the slope toe,
form stress cracks behind the slope, and lead to the occurrence of landslides owing to the disrupted
slope structure [21]. Therefore, in this study, the distance from roads was considered as a conditioning
factor. The road network data of the study area were digitally provided by the Forest Information
System of Artvin Regional Directorate of Forestry. This 1:25,000 scale dataset includes highways,
village roads, and forest roads. In ArcGIS 10.5 software, the road buffer map was produced using the
Euclidean distance function. The road buffers were divided into 10 categories at 200-m intervals to
obtain a map of the proximity from roads (Figure 3c).

Land cover is an indirect indicator of slope stability. Areas covered with barren and sparse
vegetation show more instability than forests. Moderately sloping agricultural lands are susceptible to
landslides because of repetitive irrigation processes [79]. In this study, CORINE land cover (CLC 2018)
data, which were provided by Copernicus Land Monitoring Service (CLMS), a European Union Earth
Observation Programme service, updated in 2018, were used. According to this dataset, the study area
includes 17 different classes of land cover (Figure 3d). Moreover, 62.74% of the study area is covered
with forests, 16.08% with agricultural lands, 8.15% with natural grasslands, and 7.99% with sparsely
vegetated areas (Table 1).

One of the most important parameters affecting the stability of the slopes is lithology. This is
because lithological and structural variations often cause a difference in the strength and permeability
of rocks and soils [80]. The lithological units and faults used in this study were obtained from the
1:100,000 scaled geology map obtained from the GDMRE [59]. According to the geological map, there
are 24 different lithological units in the study area (Figure 4). The Liyas-aged Hamurkesen formation
(Jh), which is considered the oldest unit in the study area, consists of basaltic, andesitic, dacitic lava and
pyroclastics and sandstone, marn, limestone, and shale. Among volcanic units, Late Cretaceous-aged
(Turonian-Conasian) Catak formation (K¢) consists of basaltic, andesitic lava and pyroclastics, and
intermediate levels of clay limestone, marn, sandstone, siltstone, and claystone. The stack of dacitic
lava-tuffs in the study area is discriminated by the symbol “Kkdt.” The Santonian-aged Kizilkaya
formation (Kk) consists of dacitic, thyodacitic lava and pyroclastics. The Campanian-Maastrichtian
aged Caglayan formation (K¢a), the main lithological unit in the study area, comprises basaltic and
andesitic lava and pyroclastics along with mudstone, sandstone, argillaceous limestone, marn, and tuff
interlayers. In the study area, the red limestones with sand-clay-Globotruncana, which are observed
in the areas where the Caglayan formation outcrops, is shown by the symbol “K¢t,” and the stack of
clay tuff, tuff sandstone, sandy limestone and breccia is shown by the symbol “Kc¢atl.” In the unit
that outcrops in the study area and is called Hematite dacite (K¢bh), the dacite is brown, since it
contains hematite. The unit was effectively clayed. These units include the Maastrichtian-Danian
(Early Paleocene) aged Cankurtaran formation (KTc) consisting of sandy limestone, micritic limestone,
tuff, marn, and volcanic sandstone. The intercalation of tuff, marn, and fine-grained agglomerate is
discriminated by the symbol KTct2; the grey and red limestone is discriminated by the symbol KTck;
and the intercalation of tuff, marn, limestone, volcanic sandstone, and agglomerate is discriminated
by the symbol KTct3. Accordingly, volcanic intercalations are seen to be present within the unit.
The Bakirkoy formation (Tpeb), consisting of siltstone, claystone, sandstone, conglomerate, clayey
limestone, and marn, is Paleocene-Early Eocene aged [59].
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Figure 4. Geological map of the study area [59,81].

The Cankurtaran and Bakirkoy formations were cut by Kagkar granitoid-I (Kk1) consisting of
acidic and basic intrusive rocks that have continued to develop in the Late Cretaceous period and
completed their intrusion at the end of Paleocene. In the study area, the superficial adamellite is
discriminated by (Kkla), granodiorite by (Kklgd), and quartz diorite, diorite by (Kklkd). In the
study area, the unit consisting of the Middle Eocene aged (lower level of the Middle Eocene) is called
the Erenler formation (Tee), which consists of the mudstone, claystone, and sandstone intercalation.
The volcanics, which are discriminated as basalt and andesite and rest conformably on this unit, are
shown by “Tekba” (Figure 4). In this unit, there is the Kabakoy formation (Tek), a volcano-sedimentary
stack consisting of conglomerate, sandy limestone, sandstone, marn, and tuff, and Middle Eocene aged
andesitic, basaltic lava and pyroclastics. The first of the two rocks that cut this formation consists of
Diorite-Quartz Diorite-Granodiorite-Gabbro, which is a black and dark green color, with a compact
appearance, and is not fractured, is shown by the symbol “Tkd.” The other is a blackish-dark green
rock, which consists of diorite-quartz diorite-granodiorite-gabbro, and shown as Kackar Granitoid-II
(Tk2). Dacitic and andesitic volcanites and volcano-clastic Tagpinar formation (Tet) rest conformably
on the Eocene aged rocks. The Quaternary-aged alluvial sediments (Qal) are the youngest units in the
study area [59].

Regmi et al. [82], Pourghasemi et al. [22], and Wang et al. [70] reported that landslides mainly
occur along faults. In fact, areas close to the faults are highly susceptible to landslides because the
rock around the faults is severely broken and the strength of the rock decreases owing to tectonic
breaks [34]. The fault buffers were also produced using the Euclidean distance function. The fault
buffers were reclassified by dividing them into 10 classes at equal intervals of 1000 m to obtain a map
of the distance from the fault lines (Figure 5).
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Figure 5. Map of the distance from the fault lines.
3.4. Landslide Susceptibility Assessment Using Random Forest (RF) Model

RF classification, which was originally developed by Breiman [83], is a machine learning algorithm
for nonparametric multivariate classification [84]. RF is a popular ensemble learning method that
is widely used for classification and regression. Generally, a single DT individually exhibits weak
prediction performance because of a high variance or bias [64,85]. Therefore, RF creates numerous DTs
for classification [86]. RF can also be perceived as a group of random DTs. Because the performance of
an ensemble model is better than that of individual models, individually created DTs are combined to
form a decision forest, i.e., an RF. Each tree in the forest has independent and identical distribution
(iid), and thus, they are relatively uncorrelated with each other. This property makes the RE, which is
formed by the iid DTs, far from the overtraining risk [83]. Here, the DTs are a subset that is randomly
selected from the corresponding dataset. The results obtained from all DTs are combined to obtain the
result of the RF.

To establish a classification model in RF, two parameters should be defined: ntree parameter,
corresponding to the number of DTs produced by RF, and mtry parameter, referring to the number
of factors or variables used in the node of each DT. Taalab et al. [85] reported that there is no rule
regarding the number of trees that should be established in RF, and increasing the number of trees
will not increase the accuracy of the model. However, Chen et al. [38] emphasized that the number of
variables to be used in DTs should equal the square root of the number of causal factors. RF algorithm
was explained in detail by Breiman [83], Catani et al. [84], and Taalab et al. [85]. In this study, the
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“caret” package [87] is used in R 3.6.3 to employ the RF model. Herein, the number of trees (ntree) is
set to 50 and the mtry parameter is set to 8 after several attempts. RF is performed using a 10-fold
cross-validation approach to reduce the variability of the model results and to limit overfitting.

4. Results and Discussions

4.1. Landslide Susceptibility Mapping Results

Figure 6 shows the landslide susceptibility map produced using the RF model in the R program
and divided into five classes (very low, low, moderate, high, and very high) using the natural breaks
classification method.
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Figure 6. Landslide susceptibility map produced using the random forest model.

According to this map, 61.25%, 17.70%, 10.46%, 6.05%, and 4.54% of the study area exhibit a very
low, low, moderate, high, and very high susceptibility to landslide, respectively. Although only 10.59%
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of the study area is highly and very highly susceptible to landslides, approximately 96% of the existing
landslides were in these two classes (Table 2).

Table 2. Percentages of different landslide susceptibility classes and existing landslide pixels.

Class Number of Pixels Relative Area (%) Lallrclil:ltil};:;’?iels Relative Area (%)
Very low 3,804,888 61.25 33 0.06

Low 1,099,613 17.70 476 0.81
Moderate 649,705 10.46 2000 3.42

High 375,520 6.05 7481 12.78
Very high 282,316 4.54 48,547 82.93

The importance levels of the factors used in the study are shown in Figure 7. According to Figure 7,
slope, elevation, lithology, distance from faults, and land cover are the most important factors in the
landslide susceptibility analysis in the study area, while TWI and curvature are the least important
factors. Lin et al. [88] and Pourghasemi and Rahmati [33] reported that the relative importance of
conditioning factors depends on the characteristics of the study area.
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Figure 7. Importance of landslide conditioning factors.

The relative importance levels of the factors as well as the probability of landslides in each subclass
of each factor were evaluated using the frequency ratio (FR) values provided in Table 1. Table 1 shows
the relationship between the subclasses of conditioning factors in the study area and the occurrence of
landslides. Similar to the relative importance values, the slope factor was one of the factors with the
greatest FR value. In terms of the slope factor, 5°-10° (FR = 4.0083), 10°-15° (FR = 3.9109), 15°-20° (FR
= 2.3812), and 20°-25° (FR = 1.2971) slope classes exhibited the greatest FR values and the probability
of occurrence of landslides decreased as the slope increased above 25° (Table 1). Wang and Li [89],
Vakhshoori et al. [71], and Nohani et al. [90] reported that the probability of the occurrence of landslides
increased to some extent with increasing slope and then decreased.

Kavzoglu et al. [80] reported that the effect of elevation on landslide susceptibility is a controversial
topic and has not yet been clarified by researchers. However, as shown in Figure 7, the elevation was
the second most important factor in the landslide susceptibility analysis in the study area. In terms
of elevation, the elevation classes in the range of 1348-1685 m (FR = 2.2415), 0-337 m (FR = 1.6976),
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1685-2022 m (FR = 1.5135), and 1011-1348 m (FR = 1.1962) were found to be susceptible to landslide
(Table 1). The results of this research revealed that the elevation class of 0-337 m was particularly
susceptible to landslide because the residential and tea cultivation areas in the study site are located
within this elevation class. The study conducted by Can and Duman [91] reported that the landslides
induced by heavy rainfall in Hopa district in Artvin province on August 24, 2015 showed distributions
along the coastline, and 80% of the landslides occurred in zones with an elevation of less than 350 m.

Approximately 83% of the landslides in the study area occurred in three lithological units:
Caglayan formation (Kga), Kabakoy formation (Tek), and Cankurtaran formation (KTc). These three
units cover approximately 58% of the study area (Table 1). Gokge et al. [52] reported that the Cretaceous
and Eocene volcanisms in the Eastern Black Sea formed the source areas for the occurrence of landslides,
and the landslides were primarily flowing type in areas where the Eocene and Cretaceous volcanic
rocks formed as a result of the Pontid volcanism in the Eastern Black Sea.

Approximately 77% of landslides in the study area occurred at a distance of 2000 m from faults.
Areas near the fault lines have high FR values, while the probability of the occurrence of landslides
decreases with increasing distance from faults (Table 1). Similarly, Althuwaynee et al. [92] stated that the
probability of landslide occurrence decreases as the distance from faults increases. In terms of proximity
to faults, Chen et al. [68] and Wang et al. [70] found that the <1000-m class exhibited the greatest
probability of the occurrence of a landslide, which decreased as the distance from faults increased.

When Table 1 is examined, it can be seen that 31.6% of landslides in the study area occurred in
agricultural areas, while 61.01% occurred in forested areas. In terms of land cover, the classes with
131 (mineral extraction sites), 122 (road and rail networks and associated land), 243 (land principally
occupied by agriculture, with significant areas of natural vegetation), 222 (fruit trees and berry
plantations), 121 (industrial or commercial units), and 311 (broad-leaved forest) CORINE 2018 land
cover codes exhibited the greatest probability of the occurrence of a landslide. In a study in which the
landslide susceptibility of Arhavi and its surroundings was evaluated by Aksoy [2], it was determined
that the landslides in this region generally occurred in tea plantation areas where the slope was
relatively low and the decomposition depth was not considerably high. The study by Bulut et al. [93]
investigated the causes of landslides occurring in the eastern parts of the Findikl: district in the Rize
province (which is located in the west of the Arhavi district and has similar topographical, climatic,
and environmental factors as Arhavi), and reported that the landslides mostly occurred at hillsides
with a slope ranging from 10° to 25°. The study also stated that the fact that 77% of landslides occurred
in residential areas and tea cultivation areas was important owing to the effect of altered vegetation on
the occurrence of a landslide. In a study conducted by Erener et al. [64] in the Savsat district in the
Artvin province in Turkey, the landslide activity was reported to increase in areas where the original
vegetation was removed or altered.

Conversely, approximately 68% of the current landslides were found to have occurred at slopes
with north, northwest, and northeast aspects. The slopes with these three aspects were found to be at a
higher risk of landslides (Table 1). It is assumed that the general rainfall direction of the region and the
general morphological structure of the study site play a significant role in the fact that landslides mostly
occurred in the north aspect. In a study conducted by Dag and Bulut [58] in the Cayeli district in the
Rize province in Turkey, most landslides in the study area occurred on the slopes with a north-northeast
aspect. In the study by Bahrami et al. [94] in Sarv-Abad (Iran), the frequency rates of landslides with
north, northeast, and northwest aspects were found to be higher than other directions.

Approximately 66% of landslides in the study area occurred at 100 m distance from drainage
networks, and 70% of them at 200 m distance from roads. As distances from drainage networks
and roads increase, the likelihood of landslides decreased (Table 1). These results have shown that
uncontrolled road excavations in the region and carving of slope heels in areas close to drainage
networks have been effective on landslides. Similarly, Yilmaz [95], in his study on the general
characteristics and causes of landslides occurring in the Eastern Black Sea Region, found that two of
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the main factors affecting landslides in the region were associated with excavations made by locals for
road and home constructions as well as erosion along the stream side.

The curvature results show that 51.90% of landslides occur on concave slopes and 46.31% on
convex slopes (Table 1). Concave areas are seen to have the highest FR (1.0884) value. It was determined
that based on TWI, the landslide occurrence probability has gradually increased up to the 9.50-11.33
subclass, reaching the maximum value in the 9.50-11.33 subclass (FR = 1.7555), which then gradually
decreased (Table 1).

4.2. Model Performance and Validation

Validation is an important step in assessing the quality of the landslide susceptibility model.
The quality or performance of the RF model used in the study was evaluated using the success and
prediction rate curves based on the receiver operating characteristic (ROC)/area under the curve (AUC).
Seventy percent of the dataset, consisting of landslide (positive) and non-landslide (negative) pixels,
was used for model training, and the remaining 30% was used for model validation. The success rate
curve was produced using examples from the training dataset (Figure 8a). Pourghasemi et al. [12]
noted that the success rate curve may help to determine how well landslide susceptibility maps classify
existing landslide areas. In this study, the AUC value for the success rate curve was found to be 98.3%.
However, several researchers have stated that there is no established method to evaluate the prediction
capability of the model as the success rate curve is generated from the training dataset [12,66,92]. To
explain how well landslide models and landslide-conditioning factors predict landslides, the prediction
rate curve produced using the verification dataset should be used [12,66,92,96,97]. The AUC value for
the prediction rate curve generated using the verification dataset was found to be 97.7% (Figure 8b).
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Figure 8. (a) Success and (b) prediction rate curves for random forest.

Lin et al. [88] reported that the AUC values greater than 0.7 for the ROC curves are generally
considered good, whereas values greater than 0.9 indicate excellent model compatibility. According to
the success and prediction rate values, the model used in this study showed excellent performance in
predicting landslide susceptibility in the study area. In the LSM study conducted by Dou et al. [40],
using DT and RF models in Izu-Oshima Volcanic Island of Japan, the authors found that the RF model
with 95.6% AUC exhibited better performance than the DT model. In the landslide susceptibility
study conducted by Achour and Pourghasemi [45] using the RF, SVM, and boosted regression tree
models, researchers found that the RF model with 97.2% AUC exhibited the highest prediction accuracy
compared with other models.
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5. Conclusions

In this study, LSM of the Arhavi, Hopa, and Kemalpasa districts in the Artvin province was
prepared using the RF machine learning technique and various factors, such as lithology, land cover,
slope, aspect, elevation, curvature, TWI, and distances from faults, drainage networks, and roads. The
landslide susceptibility map was divided into five susceptibility classes: very low, low, moderate, high,
and very high. The results show that approximately 96% of the landslides were observed in high and
very high susceptibility classes. The landslide susceptibility map was validated using the success
and prediction rate curves. The area below the prediction rate curve was found to be 97.7%. This
value reveals the accuracy of the generated landslide susceptibility map. It was found that the most
important factors in the occurrence of landslides in the study area were slope, elevation, lithology,
distance from faults, and land cover. The majority of the tea and hazelnut cultivation areas in the region
were obtained by transforming forests into agricultural lands. Therefore, incorrect land-use decisions,
such as the removal of natural vegetation at hillsides with a high slope, transformation of these areas
into tea and hazelnut cultivation areas, and building and road construction works performed by tea
and hazelnut producers at these regions, lay the foundation for landslides, which are also triggered by
heavy rainfall. Consequently, necessary measures should be taken to prevent landslide in the tea and
hazelnut agricultural areas, and the establishment of new agricultural areas should not be allowed.
Furthermore, in areas susceptible to landslides, forestation should be performed with deep-rooted
forest trees and any human activities creating any additional burden on hillsides with a high slope
should not be allowed.
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