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Abstract: Cities lying in the Indo-Gangetic plains of South Asia have the world’s worst anthropogenic
air pollution, which is often attributed to urban growth. Brick kilns, facilities for producing fired
clay-bricks for construction are often found at peri-urban region of South Asian cities. Although brick
kilns are significant air pollutant emitters, their contribution in under-represented in air pollution
emission inventories due to unavailability of their distribution. This research overcomes this gap
by proposing publicly available remote sensing dataset based approach for mapping brick-kiln
locations using object detection and pixel classification. As brick kiln locations are not permanent,
an open-dataset based methodology is advantageous for periodically updating their locations.
Brick kilns similar to Bull Trench Kilns were identified using the Sentinel-2 imagery around the
state of Delhi in India. The unique geometric and spectral features of brick kilns distinguish them
from other classes such as built-up, vegetation and fallow-land even in coarse resolution imagery.
For object detection, transfer learning was used to overcome the requirement of huge training datasets,
while for pixel-classification random forest algorithm was used. The method achieved a recall of
0.72, precision of 0.99 and F1 score of 0.83. Overall 1564 kilns were detected, which are substantially
higher than what was reported in an earlier study over the same region. We find that brick kilns
are located outside urban areas in proximity to outwardly expanding built-up areas and tall built
structures. Duration of brick kiln operation was also estimated by analyzing the time-series of
normalized difference vegetation index (NDVI) over the brick kiln locations. The brick kiln locations
can be further used for updating land-use emission inventories to assess particulate matter and black
carbon emissions.

Keywords: object-detection; transfer learning; open-data; emission inventory; urban growth;
land-use; environment impact; soil-degradation; SDG

1. Introduction

Background

History of making fired clay-bricks in the Indian subcontinent is almost 4000 years old.
Several brick structures have been excavated in the Indus Valley civilization archaeological sites
where bricks were used for granaries, sewer system and other historic civic infrastructures. In most
South Asia even today bricks are used as ‘building blocks’ in construction. In contrast to the reinforced
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concrete construction based civil engineering practices in the industrialized countries, the South
Asian masonry constructed structures mostly use fired clay-bricks. A primitive brick production
technology is commonly employed where heat by fuel combustion is passed through dry clay-brick
cakes. Facilities where such bricks are produced are called brick kilns and they tend to be concentrated
near large urban agglomerations to supply bricks for construction.

The most common type of brick kiln design used in the Indo-Gangetic plains is Bull Trench Kiln
(BTK). Production of bricks depends on BTK size and varies with region while the number of brick
kilns themselves may correspond to the demand for the bricks. A brick kiln may use a wide variety of
fuels such as coal, biomass, agricultural residue rubber tyres, and industrial byproducts [1] depending
on availability of the fuel and economic incentives. For reference, an average BTK brick kiln in the Uttar
Pradesh state of the Indo-Gangetic plains can produce about 4 million bricks per year by consuming
12,000 tonne soil and approximately 600 tonne coal per year (personal communication with brick
operator). In other regions, production capacity varies from 2.5 million bricks per year to 8 million
bricks per year [2]. This causes large emissions of PM2.5 (particulate matter with aerodynamic diameter
smaller than 2.5 µm), black carbon (BC), sulfure dioxide (SO2) oxides of nitrogen (NOx), carbon dioxide
(CO2) and carbon monoxide (CO) [3]. Even though fine aerosol concentrations are significantly higher
in South Asian cities than elsewhere [4], few studies have investigated the role of brick kilns to urban
air pollution. Maheshwari and Jain [5] measured average carbon footprint of BTK brick kilns around
the Roorkee city to be 427.985 kg CO2/1000 bricks. Field measurements by Center for Science and
Environment [6] identified PM2.5 concentrations at BTK brick kiln sites in West Bengal and Uttar
Pradesh to be above 300 µg/m3, which is more than 30 times the recommended concentrations
by the World Health Organization. By accounting for variations in fuel-usage, Tibrewal et al. [7]
have statistically estimated annual brick kiln emissions in India for PM2.5 (165.9 Gg), BC (119.1 Gg),
SO2 (393.6), CO (2635.7) and NOx (66.2 Gg). Significant impact of brick kilns on urban air pollution
has also been established in Dhaka [8–11], Kathmandu [12], Delhi [13,14], and few other Indian
cities [1,7,15–19]. Not only is the brick kiln industry fuelled by demand for bricks but there also
exists a nexus between rural poverty and brick kilns. Farmers may seasonally lease out their land to
sell its soil during periods of unproductive agricultural activity [20] or to stave off their debts [21].
Often this leads to the farmers turning into laborers for the brick kilns [22]. Such excavation of the
previously fertile agricultural top-soil for making bricks ends up having adverse implications for food
security [23]. Examples of smoke emission and soil excavation are shown in Figure 1 based on the
authors’ field visit to brick kiln sites in Uttar Pradesh. Exposure to smoke emitted from brick kiln
also has severe effect on human health, as identified by vision and pulmonary disorders in the female
site workers in Chennai [24], and emission of carcinogenic dioxins in Pakistan [25]. A recent study
estimated that pollution from brick kilns ended up causing about 6100, 55,000, and 600 deaths in
2015 in Bangladesh, India, and Nepal respectively [26]. In addition to their severe environmental
and human health impacts, brick kilns sites are also strongly associated with promoting modern-day
slavery [27,28].

Despite such multi-dimensional environmental impacts of brick kilns, there is no publicly
available database of brick kiln locations or an official estimate of the number of brick kilns.
It is assumed that India alone has more than 100,000 brick kilns [2]. It may be noted that the
above-mentioned environmental impact studies utilized field visits, manually tagging brick kilns
with satellite datasets or statistical estimation of brick kiln counts (except [28]). For example, Ref. [17]
statistically determined the number of brick kilns in each Indian district by using the district population
as an independent variable to predict brick kiln counts. It is possible that brick kiln locations remain
unmapped due to the unregulated nature of brick kiln operations. The central pollution controlling
body in India recently stated that more than 70% brick kilns were operating without consent [29],
hence possibly remain unmapped. Such lack of data prevents assessing the full scale of regional
environmental impacts of brick kiln operations. For example, contribution of brick kilns to urban
emission and concentrations could not be included in an earlier regional air pollutant emission
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inventory for Asia (REAS v2, [30]) due to lack of sufficient information. The latest version of REAS
v3 [31] employs statistical estimates of brick production to infer their emission. Such assumptions
in the emission inventory lead to uncertainties in simulating pollutant concentrations when using
chemical transport models. For example, Zhong et al. [32] found simulated elemental carbon and
SO2 concentrations in the Kathmandu valley were underestimated compared to observations due to
under-representation of brick kilns in the commonly used global emission inventories. A brick kiln
location inventory is thus, beneficial for reducing emission uncertainties in South Asia and leading to
accountability of their environmental impacts.

The research related to mapping brick locations itself is limited and recent [33]. In high spatial
resolution (<3 m) satellite imagery brick kilns can be identified through three features: brick kiln
chimney, bricks pile and slabs pile [20,33]. Furthermore, in nadir orthometric view these features are
laid out in a ellipsoidal shape (or a circular shape depending on the type of brick kiln). Shadow of
a brick kiln’s chimney for imagery acquired at low sun elevation can be a useful visual indicator of
a kiln in visible satellite bands. These features are shown in Figure 1d. Another reason that prevents
identification of brick kiln through remote sensing is the prohibitive monetary cost associated with
procuring high resolution imagery over a large area, specially where brick kilns are spread sparse.
So far, Foody et al. [28] and Nazir et al. [34] have developed deep learning based methodology for
brick kiln identification by using high resolution images available in Google Earth. However Google
Earth’s high resolution imagery suffers from the drawback that its satellite imagery is infrequently and
non-uniformly updated, spanning intervals of several months over megacities to several years over
rural areas. This is consequential for brick kiln detection due to the semi-permanent nature of brick
kiln operations. New brick kilns are built to meet the brick demand or old ones are dismantled if fine
soil becomes unavailable. Brick kiln operations are dynamic, responding to demand of bricks as well
as availability of fine alluvial soil.

Thus a key challenge remains how can brick kiln be monitored regularly. Specifically, is it possible
to use frequently updated publicly available dataset for detecting brick kilns. The objective of this
study is investigate the use of Sentinel-2 imagery for detecting brick-kilns around Delhi. The originality
of this paper is to demonstrate the use of open imagery for mapping brick kilns.

(a) Soil excavation for clay brick
preparation

(b) Soil subsidence after
excavation

Figure 1. Cont.
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(c) Smoke plume
during operation

(d) Brick kiln from space

Figure 1. Environmental impact of brick kiln operation through soil excavation (a,b) and pollutant
emission (c). A brick kiln as seen in high resolution imagery (Digital Globe, Google Earth),
appears ellipsoidal with a chimney shadow (d).

2. Methodology

The flowchart for mapping brick kiln locations followed in this research is shown in Figure 2.

Figure 2. Processing flowchart for identification of brick kilns.

2.1. Data

Sentinel-2: Surface reflectance of European Space Agency’s Sentinel-2 Level 2 bands (B4: red,
B3: green, B2: blue, B8: near-infrared, B11: shortwave infrared-1 and B12: shortwave infrared-2) was
used. Sentinel-2 images acquired between 1 January 2018 and 1 June 2018 with cloud pixel percentage
lower than 20% were cloud-masked and median-composited. The period of January to June was
chosen for compositing images as brick kilns operate during these dry months. Due to the operation
and preparation of fired red bricks, brick kilns visibly stand apart from the surrounding land-cover.
In other months, due to seasonal suspension of operation, kilns are sometimes covered under small
grass. The visible bands (red, green and blue) each have 10 m resolution making them suitable for
delineating the shape of brick kilns from space and were used for object detection. The other bands
(shortwave infrared-1 and shortwave infrared-2) have coarser resolution of 20 m and were used (along
with visible bands and near-infrared band) for pixel classification. The images were composited over
Google Earth Engine (GEE) [35] platform, where atmospheric and geometrically corrected Sentinel-2
dataset is available, and downloaded for further processing.
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Landsat 7, Landsat 8: Since most of the brick kilns locations were originally agricultural fields
prior to their conversion to brick kiln, a time-series of normalized difference vegetation index
(NDVI = (nearinfrared −red/nearinfrared + red)) over brick kiln location can indicate when the
agricultural field was transformed to brick kiln. Due to availability of a long time-series of USGS’s
Landsat 7 imagery since 1999, they were used for estimating NDVI at brick kiln locations (further
discussed in Section 3.3) after atmospheric correction and cloud-masking. To discuss the relationship
of brick kilns with urban growth of built-up areas in and around Delhi, imagery from 2001 and 2017
was classified using surface reflectance from Landsat 7 and Landsat 8 respectively. These datasets were
prepared over Google Earth Engine (GEE) [35] platform.

Vertical construction: Digital building height (DBH) data was prepared by extracting the
normalized digital surface model from publicly available Japan Aerospace Exploration Agency’s
30 m resolution ALOS World 3D digital surface model (AW3D30) [36]. Misra et al. [37] have already
demonstrated the possibility of extracting digital building heights with a root mean square error of
6.92 m. The DBH represents the building heights for structures built upto 2010, since the AW3D30
digital surface model is a composite of the images acquired between 2005 to 2010.

GIS thematic layers: Road and river network vector shapefiles were obtained from Hijmans [38] to
explore drivers for the location of brick kilns.

2.2. Location

The location for this research was the region peripheral to the Delhi state in Indo-Gangetic
plains of India. This region lies in the floodplains of the river Yamuna and its tributary river Hindon.
The floodplains are covered with rich alluvial top soil. The land-use of the peri-urban area varies from
sub-urban to rural settlement and agricultural lands. The last two decades have seen rapid construction
activity in the region surrounding Delhi and its satellite cities. This makes it a suitable region for setting
up of brick kilns due to abundance of raw material (fine top soil) and close proximity to the market
(building construction sites). Additionally this region experiences severe air pollution episodes during
the dry winter season coinciding with the period of brick kiln operations. Fine particulate matter
(PM2.5) concentrations rise to over 250 µg/m3, more than 10 times the World Health Organization
specified daily PM2.5 concentration guideline [39]. Since an earlier research has also explored manual
count of brick kilns for preparing emission inventory around Delhi [13] as part of its emission inventory
preparation effort, selection of the same region allowed for validation of our brick kiln detections.

2.3. Transfer Learning Based Object Identification

Deep learning based object detection approaches have risen in popularity due to significantly
better performance than conventional approaches such as hierarchical segmentation or multi-resolution
segmentation. However deep learning methods require huge training dataset to learn weights and
biases for the artificial neurons. Concurrently, lack of a sufficient annotated training data is a common
concern for application of deep learning based object detection to remote sensing. Transfer learning
is a promising approach for those applications which are constrained by small training dataset.
Transfer learning facilitates application of weights learned on a general domain dataset to be fine-tuned
for a specific domain dataset. Domain adaptation involves two steps, (1) freezing the layers of a
pre-trained model (trained on a general domain) and adding new trainable layers on top of the frozen
layers and training them over the target domain dataset; (2) partially unfreezing the higher layers and
fine-tuning the unfrozen layers by training them at a very low learning rate. Here freezing a layer refers
to not updating the layer parameters while training. Imagenet [40] is a repository of over 14 million
natural color images with more than 20,000 human labeled categories. Several convolutional neural
network architectures pre-trained on the Imagenet are available such as VGG-16 [41], ResNet-50 [42]
and others. Due to the ability of transferring weights learned from a general repository like Imagenet,
transfer learning is becoming popular within remote sensing space for object detection tasks such as



ISPRS Int. J. Geo-Inf. 2020, 9, 544 6 of 16

ship detection in synthetic aperture radar imagery [43,44], airplane detection in very high resolution
imagery [45] and slum detection in medium resolution imagery [46,47].

Training data preparation: For the present study, first the training dataset was prepared over which
transfer learning was performed. Brick kilns locations were identified visually with Google Earth Pro
desktop software, to prepare an inventory of the locations. Unaided identification of brick kilns in
the Sentinel-2 imagery is difficult due to the relative coarse pixel size with respect to the size of the
kilns. Care was taken to ensure that a co-located brick kiln is humanly identifiable in both the Google
Earth as well as the Sentinel-2 image. For example, as can be seen in Figure 3b, a single brick kiln can
have 4 to 10 Sentinel-2 pixels along its one dimension. Brick kiln dimensions also vary at different
locations. After determining the locations of the brick kilns, 200 64 × 64 pixel-sized RGB (natural
color composite) training patches from Sentinel-2 were extracted for each of the 4 classes—brick
kilns, fallow land, built-up and vegetation. 80 additional patches for each class were prepared for
validation and testing. The patches were selected in the RGB bands for transfer learning as these
bands have the highest resolution among other Sentinel-2 bands and because the existing models
are pre-trained on the Imagenet which only has RGB images. Band reflectance of the patches was
scaled from 0 to 1 using a ‘min-max’ scaler. Mean of 1 and 99 percentile reflectance of the brick kiln
patches was used for scaling the respective bands (red: 0.227 to 0.074 sr−1, green: 0.187 to 0.083 sr−1

and blue: 0.148 to 0.059 sr−1) of the training dataset. Examples of scaled patches for the 4 classes are
shown in Figure 4. To enhance training sample size data and prevent overfitting, an augmentation
procedure was performed randomly on 40% training patches. Data augmentation included following
transformations: translation, rotation by 50o and vertical and horizontal flipping.

(a) Brick kiln at 0.5 m
resolution

(b) Brick kiln at 10 m
resolution

(c) Brick kiln at 0.5 m
resolution

(d) Brick kiln at 10 m
resolution

Figure 3. Brick kiln examples as seen in the reference high resolution (0.5 m) imagery (Digital Globe,
Google Earth) (a,c), and the medium resolution (10 m) Sentinel 2A imagery (b,d).
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(a)
brick
kiln

(b)
brick
kiln

(c)
brick
kiln

(d)
brick
kiln

(e)
fallow
land

(f)
fallow
land

(g)
fallow
land

(h)
fallow
land

(i)
built-up

(j)
built-up

(k)
built-up

(l)
built-up

(m)
vegetation

(n)
vegetation

(o)
vegetation

(p)
vegetation

Figure 4. Examples of 64× 64 pixel sized training patches of brick kiln (a–d), fallow land (e–h), built-up
(i–l) and vegetation (m–p).

Transfer learning and prediction: Keras Python library [48] with Tensorflow [49] backend was
used for transfer learning. VGG-16 network was used due to the ease of training the model (due to
less number of hyperparameters) and early convergence of training. VGG-16 has 16 layers in total,
12 convolutional layers with 3 × 3 kernel-sized filters and 4 four fully-connected layers. VGG-16
weights pre-trained on the Imagenet dataset is also available as part of the Keras package. The network
takes in a 224 × 224 RGB patch as input and outputs the probability of that patch belonging to each of
the 1000 classes on which the VGG-16 network was trained. Transfer learning of brick kilns patches
using the pre-trained VGG-16 network was performed in the two steps mentioned earlier: adding
layers to VGG-16 and training added layers, and fine-tuning the network. Firstly, the output layer of
the VGG-16 network was replaced by two successive fully connected layers with the penultimate layer
having 512 nodes with a ReLU (rectified linear) activation and the final layer having 4 nodes with a
‘softmax’ activation. The 4 nodes of the final layer output the classification probability of the target
4 classes (that is, brick kiln, fallow-land, built-up, and vegetation). The modified architecture is shown
in the Table S1. The weights and bias of the fully connected layers were trained for 300 epochs with a
batch size of 64 with the ‘Adam’ (Adaptive Moment Estimation) optimizer using a moderate learning
rate (0.001) and ‘categorical cross entropy’ loss function. The goal of the optimizer is to minimize
the loss function. Categorical cross entropy loss is used for multi-class classification tasks. Secondly,
fine tuning was performed wherein the initial 12 convolutional layers were frozen. Unfreezing more
initial layers always runs the risk of overfitting. This is because the initial layers learn general features
(such as edges or lines) while the layers near the output learn features specialized for the target domain.
The weights of the unfrozen layers were fine-tuned for 1000 epochs with stochastic gradient descent
(SGD) optimizer using a smaller learning rate (0.0001) with momentum (0.9) and a ‘categorical cross
entropy’ loss function. Providing a momentum prevents the SGD optimizer from getting stuck in
local minima despite a low learning rate. Finally, by giving a RGB patch as an input, this network
outputs the probabilities of that patch belonging to each of the classes, brick kiln, fallow-land, built-up,
and vegetation.

As VGG-16 itself is not a localization algorithm, brick kiln location within the patch was further
identified using a sliding-windows approach. The 64 × 64 pixel sized patch window was slid with
a 75% overlap with its neighbors in each directions. Thus any given patch partially overlapped
with 15 other patches (excluding itself). In presence of a ground truth brick kiln, all the partially
overlapping patches containing that brick kiln must identify the brick kiln with the highest probability.
Consequently when at least 5 partially overlapping patches detected brick kiln with the highest
probability, the overlapping region was assigned to contain a brick kiln.
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2.4. Random Forest Based Pixel Classification

Although deep learning methods are quite adept at object identification, the relative coarse
resolution of Sentinel-2 imagery with respect to the brick kiln features (such as chimney or presence
of bricks) gives rise to several false positive identification. False positives occur due to those
land-use objects which share geometric features similar to brick kilns in coarse resolution imagery
such as red rooftops of round-shaped buildings or playgrounds. To remove such false positive
detections, pixel-wise spectral classification was performed for the same target area using random
forest classification. Random forest algorithm was chosen as it is non-parametric, not prone to
over-fitting and good at dealing with any outliers in training data [50]. Sentinel-2 bands (red, green,
blue, near-infrared, shortwave infrared-1, and shortwave infrared-2) and derived NDVI was used for
random forest based classification (with 100 decision trees) to the class brick kiln soil, fallow-land,
built-up, vegetation and water.

If a region that was proposed by the transfer learning algorithm as containing a brick kiln also
contained at least 5 pixels classified as brick kilns by random forest classifier, then that region was
accepted as the brick kiln location. Regions of brick kiln locations overlapping more than 70% were
removed during post-processing through ‘faster non-max suppression’ algorithm [51].

3. Result and Discussion

3.1. Brick Kiln Identification

Initial transfer learning was able to achieve a training and validation accuracy as 65.42% and
66.33%, and the categorical cross entropy loss as 0.84 and 0.86. After fine tuning, there was further
improvement to training and validation accuracy as 85.12% and 86.67%, and the categorical cross
entropy loss as 0.36 and 0.52. The fine tuning learning is shown in Figure 5. This was further enhanced
by taking intersections of the identified regions with the spectrally classified pixels. Figure 6 shows
the brick kilns identified by the current methodology in the north-eastern portion of Delhi. It can
also be seen that patches of bare-land are located near brick kilns. These patches are used for drying
molded clay bricks before firing them in the kilns. The final confusion matrix is shown in Table 1.
Precision (true positive/(true positive + false positive)) and Recall (true positive/(true positive + false
negative)) of brick kiln detections in the north-eastern portion of the study domain was 0.99 and 0.72
respectively. This signifies that underestimation of brick kiln counts by about 28%. In all 1564 brick
kilns were detected around Delhi. If we account for 28% underestimation, the true count of brick kilns
would be about 2172 brick kilns.

The overall F1 score (2 × (Recall × Precision)/(Recall + Precision)) of our hybrid object
detection and pixel classification approach is 0.83. This score is considerably lower than that
obtained by using very high resolution imagery. For example using Google Earth imagery for
brick kiln detection Nazir et al. [34] and Foody et al. [28] obtained F1 score of 1 and 0.94 respectively.
Possible reasons for a lower F1 score for detections using a coarser resolution Sentinel-2 imagery
were explored. Brick kilns operate in the dry season from November to July as mentioned earlier.
Brick kilns are detected with high accuracy if the kilns are surrounded by vegetation or soil such
that the geometric shape of the kiln is discernible. However accuracy of the detection is low when
the soil is spectrally similar to the brick kilns. This is true for kilns operating in arid soils lacking
any vegetation such that the kilns are not discernable to the object detection algorithm. An example
of one such false negative is shown in Figure 7 where the brick kilns could not be identified in the
Sentinel-2 imagery. On the other hand, some temporarily inactive brick kilns had grass growing on
them, leading to difference in spectral properties compared to other active brick kilns and causing
their pixels not being classified as brick kilns. Brick kilns that were located completely adjacent to
each other in the ground truth, were not detected as it was impossible to segregate or identify them
as two distinct brick kilns in the Sentinel-2 imagery. Our count of 1564 kilns (as shown in Figure 8a)
is almost 1.5 times the number of brick kilns discussed earlier by Guttikunda and Calori [13] over
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the same area in 2013. Although their data collection was performed 5 years prior to the Sentinel-2
data used in the present study, several brick kilns locations in the south-western portion of the study
domain (around the city of Gurgaon as shown in Figure 8c) were missed by their manual tagging
approach. This suggests that the calculated contribution of brick kiln emission to Delhi’s urban air
pollution (PM2.5) was underestimated by the authors of [13].

Figure 5. Training and validation accuracy and loss result.

(a) North-eastern Delhi (b) Zoomed-in inset

Figure 6. Brick kilns around Delhi identified by the current methodology. Brick kilns detected in the
north-eastern portion of Delhi (a) and a zoomed-in view (b) of the detection. Base imagery is the
Sentinel-2 composite.

Table 1. Confusion matrix for identification of brick kilns.

Predicted True Predicted False Recall

Actual true 221 61 0.72
Actual false 2 -

Precision 0.99 F1 score: 0.83
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(a) Sentinel-2 imagery (b) Google Earth (Maxar Technologies)
imagery

Figure 7. Brick kilns in a arid south-western region around Delhi (28◦14′17.96′ ′ N, 76◦33′50.09′ ′ E)
are not discernible in the (a) Sentinel-2 imagery, while visible in the (b) reference high resolution
imagery in Google Earth (Maxar Technologies). Such brick kilns could not be detected accurately by
the current methodology.

(a) Delhi and surrounding satellite cities (b) Road and river network

(c) Horizontal growth (d) Digital building height

Figure 8. Brick kiln are located in (a) low-priced agricultural land away from major urban
agglomeration, but (b) with proximity to road network and fine-alluvial soil provided by the rivers.
Brick kilns population is driven by (c) outward urban expansion as well as (d) construction of tall
buildings. Brick kilns are shown by red dots. (d) shows the location Ghaziabad as annotated over in (c).
In (a–d), the base image is nighttime light from the Visible Infrared Imaging Radiometer Suite (VIIRS)
day-night band.
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3.2. Drivers of Brick Kiln Locations

Brick kilns around Delhi are located in clusters situated between urban agglomeration of satellite
towns (Figure 8a). The brick kilns are located along the flood-plains (river Yamuna) and along
secondary roads (Figure 8b). Flood-plains provide access to the raw materials such as fine alluvial
clayey soil and water, for producing bricks. Network of secondary roads is used for transporting bricks,
possibly due to the current guideline of the Central Pollution Control Board (CPCB) that bars brick
kilns from being located next to highways. Construction of buildings requires bricks, and brick kilns
are located close to wherever dense horizontal expansion has taken place (Figure 8c). Brick kilns exist
at the built-up edge of city or in the rural-urban zone where urban growth is taking place. Similarly,
brick kilns are also located less than 10 km from multi-storey residential buildings (Figure 8d).

3.3. Age of Brick Kiln Operations

Based on field surveys, it was noticed that active brick kiln sites were covered with soil and red
dust whereas abandoned brick kilns were covered under vegetation of grass and shrubs. This can
provide additional information about a brick-kiln’s operational status from satellite. Figure 9 shows
an abandoned brick kiln and newly constructed brick kilns between 2006 and 2018 in northern Delhi.
Time series of NDVI, an index of vegetation greenness, was calculated using cloud-free Landsat
7 imagery over brick kilns to determine their period of activity. NDVI varies between −1 to 1,
with agricultural vegetation showing NDVI higher than 0.4 while sparse vegetation has NDVI between
0.2 to 0.4. NDVI of bare soil is lower than 0.2. NDVI over sample brick kiln locations are shown in
Figure 10. An agriculture land is identifiable by its crop calendar of seasonal planting and harvesting
of the crops. This is reflected as periodic variation of NDVI values. On the other hand if a low
NDVI persists for a duration longer than the usual crop calendar, then that suggests the onset of brick
kiln construction at that location. Figure 10a shows NDVI over a brick kiln whose operations have
continued since prior to 1999 until present. Figure 10b shows NDVI over a crop field that was converted
to brick kiln in 2008. Some brick kilns were also abandoned as shown by Figure 10c, where the location
was undergoing agricultural activity until 2008, followed by brick kiln construction and then possible
abandonment in 2017. The sharp increase of NDVI post 2017 suggests that brick kiln operation was
suspended at that location.

(a) 2006 (b) 2018

Figure 9. Abandoned and newly constructed brick kiln operations between (a) 2006 and (b) 2018.
Central coordinate of each figure is 29◦ 3′35.54′ ′ N, 77◦12′38.46′ ′ E.
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(a) Kiln operating since before 1999

(b) Kiln operating since 2008

(c) Kiln operating between 2008 to 2017

Figure 10. Brick kiln’s age of operation can be deduced from the sudden changes in NDVI over the
brick kiln. Three cases are shown, (a) a brick kiln active since prior to 1999 and (b) an agricultural
land-use was converted to brick kiln since 2008 and (c) an agricultural land getting converted to brick
kiln active in 2008 which was later abandoned around 2017. NDVI of vegetation is usually higher than
0.4 while NDVI of bare-soil is lower than 0.2. Dashed vertical line denotes possible year of conversion
of land-use.

3.4. Future Work

Future directions involve preparing a comprehensive regional dataset of brick kiln locations
as well as their operational characteristics. Our methodology demonstrates the utility of publicly
available Sentinel-2 imagery for brick kiln detection. This shall be further useful for mapping brick
kilns over the whole South Asian region. Such a dataset would be useful for assessing drivers and
impacts of brick kiln in different cities. As demonstrated in this paper, sudden and persisting shift in
NDVI could indicate the duration of brick kiln operation. This could be further employed for assessing
the net historical coal consumption and emission of trace gases from each brick kiln. However brick
kilns do not operate all year round and not all brick kiln start or stop their operations at the same
time. To accurately assess the contribution of brick kiln emission to air quality, exact operation months
are needed. Such brick kiln dynamics cannot be inferred from NDVI trends. Availability of high
spatio-temporal resolution imagery, for example Planet’s daily 3 m spatial resolution imagery, can help
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in identifying the operation duration each year by tracking presence or absence of molded clay bricks
outside the brick kiln (shown in Figure S1). Such an information will be useful for inferring activity
status of individual brick kilns. Recent guidelines from India’s CPCB have instructed kiln operators to
upgrade to the relatively less polluting ‘zig-zag’ type brick kilns, having a rectangular shape and a taller
chimney stack height for better dispersal of pollutant plume. The methodology proposed in the present
work cannot distinguish between kiln types due to the limited resolution of the Sentinel-2 imagery.
However changes in time series of surface backscatter from synthetic aperture radar (SAR) imagery,
such as Sentinel-1, over the brick kiln locations may be used for inferring whether any upgradation
of the brick kilns took place. Thus, information of brick kiln location identified in Sentinel-2 optical
imagery can be combined with their SAR backscatter to assess which operators are complying with
emission guidelines.

4. Conclusions

Brick kilns are known to be major emitters of black carbon, sulfur dioxide and other fine particulate
matter, yet their spatial distribution remains largely unknown. We successfully demonstrated the
first use of publicly available dataset, Sentinel 2, with deep learning methodology to detect brick kiln
locations on a large spatial scale with a recall of 0.72, precision of 0.99 and F1 score of 0.83. 1564 brick
kilns were detected around Delhi, higher than previously reported. Brick-kilns lie at urban-rural
interface and are usually less than 10 km away from urban boundaries. The location of brick kiln
is dependent on resource availability, such as fine clay from river-beds and access to road network.
Brick kiln clusters were located near urban areas with tall buildings or areas where outward urban
expansion has take place in last 16 years. Brick kilns are non-permanent structures whose duration
of operation were estimated by a time-series of NDVI values over their location. As several current
emission inventories under-represent the contribution of brick kilns to air pollution in South Asian
cities, this dataset and methodology will be useful to adequately reveal their impact on air quality.

Supplementary Materials: The following are available online at http://www.mdpi.com/2220-9964/9/9/544/s1,
Table S1: The modified VGG-16 architecture used for transfer learning, Figure S1: (a) Absence or (b) presence of
rows of clay bricks often found drying outside brick kilns informs the status of brick kiln operation. Manually
annotated rows of drying bricks are shown in red box while brick kilns are marked with yellow box. The base
image is PlanetScope 3 m resolution visible band from “Planet Labs”. Coordinates of the image center are
28◦46′05′ ′ N, 77◦21′26′ ′ E.
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