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Abstract: Multi-stage intrusive complex mapping plays an important role in regional mineralization
research. The similarity of lithology characteristics between different stages of intrusions necessitates
the use of richer spectral bands, while higher spatial resolution is also essential in small-scale research.
In this paper, a multi-source remote sensing data application method was proposed. This method
includes a spectral synergy process based on statistical regression and a fusion process using
Gram–Schmidt (GS) spectral sharpening. We applied the method with Gaofen-2 (GF2), Sentinel-2, and
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data to the mapping of
the Mountain Sanfeng intrusive complex in northwest China in which Carboniferous intrusions have
been proven to be directly related to the formation of Au deposits in the area. The band ratio (BR) and
relative absorption band depth (RBD) were employed to enhance the spectral differences between
two stage intrusions, and the Red-Green-Blue (RGB) false colour of the BR and RBD enhancement
images performed well in the west and centre. Excellent enhancement results were obtained by
making full use of all bands of the synergistic image and using the Band Ratio Matrix (BRM)-Principal
Component Analysis (PCA) method in the northeast part of the study area. A crucial improvement
in enhancement performance by the GS fusion process and spectral synergy process was thus shown.
An accurate mapping result was obtained at the Mountain Sanfeng intrusive complex. This method
could support small-scale regional geological survey and mineralization research in this region.
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1. Introduction

Multi-stage intrusive phases and hydrothermal fluid-related processes are important conditions
for the formation of a variety of endogenetic deposits [1,2]. The spatial distribution characteristics
of intrusions are usually closely related to regional endogenetic minerals, so successful mapping
of different stage intrusions is useful for regional metallogenic research. Due to electronic and
vibrational processes, rocks and minerals may express different spectral reflection characteristics in
the 400–2500 nm wavelength region [3–5]; therefore, remote sensing has been extensively used for
geological mapping [6–8].

Accurate interpretation of intermediate acid intrusive complexes has always been one of the
difficulties in geological remote sensing. Satellite remote sensing is not considered to be readily
applicable to the mapping of igneous sequences, because in such rocks, lithological contacts are less
predictable and spectral features are less defined [9]. This task may require richer spectral bands in the
visible/near infrared (VNIR) and short-wave infrared (SWIR) wavelength regions (Spaceborne thermal
infrared sensors may lack of spatial resolution). The Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) has been frequently used in the geology community because
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of the suitable spectral setting [10–14], especially the bands in SWIR region, which are effective
for the distinction of granitoids with very similar silica contents by secondary effects related to
hydrothermal and surface alterations. Recently Sentinel-2′s potential for use in geological applications
was proved [15,16], and its four narrow bands in the VNIR region were shown to bring effective
spectral information to ferric and ferrous iron. However, the spatial resolution of these satellite remote
sensed images is not satisfactory for small-scale applications. High spatial resolution datasets such
as QuickBird [17], WorldView [18,19], Systeme Probatoire d’Observation de la Terre (SPOT) [20] and
Chinese Gaofen (GF) [21] can be used to illustrate the boundaries of landmarks better, and their VNIR
bands are sensitive to spectral characteristics related to electronic processes. However, such datasets
mostly lack SWIR bands. Although WorldView-3 data are available and satisfactory, the cost is very
high, especially in regions with no historical data records.

Image fusion has been a significant method to combine spatial and spectral information of
panchromatic (PAN) and multispectral (MS) remote sensing data [22]. In the geological remote sensing
community, image fusion methods are also widely used to produce an ideal dataset with high spatial
resolution and the required spectral bands. Landsat series or ASTER MS data were pan sharpened
with IRS to help geologists find the lithological boundary more easily [23,24]. ASTER MS data were
fused with QuickBird PAN in order to obtain higher spatial resolution, which has been proven effective
for extracting alteration information [2]. Due to the lower cost than commonly used high spatial
resolution data (e.g., WorldView and QuickBird), the Gaofen (GF) series of China were also used in
fusion with ASTER or Landsat in the geological community [21], especially among Chinese researchers
(probably because they can request GF data for free). Since the GF-2, which has a spatial resolution
of 1 m, started distributing its data, several researchers have focused on fusing GF-2 PAN with MS
images. When fusing GF2 PAN with MS itself, Zhang et al. showed that Nearest Neighbor Diffusion
(NNDiffuse) based pan sharpening performed the best in visible light bands, while the Gram–Schmidt
method was better in the near-infrared band [25]. Studies on fusing GF2 PAN with other MS images
(e.g., GF-5 in [26] and GF-4 and Landsat-8 Operational Land Imager (OLI) in [27]) have been published
successively. As mentioned by Ghassemian [22], pixel-level fusion methods are usually divided into
four categories: (1) component substitution (CS), (2) multiresolution analysis (MRS), (3) hybrid and
(4) model based. The first and second methods are those more commonly used in the geological remote
sensing community because they are fast and easy to implement.

Indeed, image fusion solves the contradiction between spatial and spectral resolution of a single
sensor. However, different sensors may have spectral bands at different wavelength positions, and
sometimes, they are useful for mapping an intrusive complex. These kinds of bands in different
sensors may be inconsistent in terms of their spectral responses. This paper presents an effective
method that can be used to obtain intrusive complex mapping results by using multi-source satellite
remote sensing data. The Mountain Sanfeng Region, which lies in the key metallogenic belts in
western China was taken as the study area. Alteration extracting and lithological mapping research in
and near the study area were recently published by Sun et al. [28] and Ye et al. [29], both of which
employed WorldView-3 data because of its SWIR bands and high spatial resolution [29]. Chinese GF-2,
Sentinel-2 and ASTER data were used to evaluate the synergy of the multi-source remote sensing
method proposed by this paper in enhancing spectral differences between different stage intrusions
and mapping the intrusive complex.

2. Study Area and Geological Setting

The Mountain Sanfeng intrusive complex is located southwest of the Beishan Mountains, SE of
the Xinjiang Uygur Autonomous Region of China. It lies between 40◦27′ and 40◦30′ north latitude
and 91◦37′ and 91◦45′ east longitude (Figure 1). The Beishan area is a metallogenic belt which
lies in southern margin of Central Asia orogenic Belt and northeastern margin of Tarim Basin [30].
The landforms in the study area are mainly middle–low mountains and saline–alkali plains, with
Kiziltag to the north and the Lop Nur depression to the south. The precipitation level is very low, and
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vegetation is scarce so the area is suitable for the application of satellite remote sensing images for
geological research.

Figure 1. The location and true-color image of the Mountain Sanfeng intrusive complex.

Figure 2 shows a geological map of study area. Intrusion is very active in this area. Multi-stage
magmatic activities occurred in this region and controlled by the regional tectonics [28]. There are
two main stages of magmatic intrusions in the intrusive complex, which are well exposed. The Late
Proterozoic intrusive diorite forms the most widely exposed intrusive masses in the region, which
are intruded by Carboniferous granite and granodiorite. The intrusive rocks in both stages are
intermediate–acidic, and the Late Proterozoic intrusive rocks are more intermediate. Dikes of quartz,
syenite, granite, and diorite occur locally. Feldspars in Carboniferous intrusive rocks have obvious
sericite alterations, while the dark mineral content in Late Proterozoic intrusive rocks (such as biotite
and amphibole) is relatively higher. Notably, the rock samples of the Carboniferous intrusion have
been proven to show an Au anomaly [31], so the magmatic activity in this stage may be directly related
to the formation of Au deposits in the area.
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Figure 2. Geologic map of the study area.

3. Materials and Method

3.1. Data

In order to find an effective and economical way to map the intrusive complex, we chose three
types of satellite remote sensing data: Chinese GF-2, Sentinel-2 and ASTER.

The Chinese GF-2 satellite, launched by the Chinese government in August 2014, was the first
high resolution earth observation program to reach a spatial resolution of 1 m in China. It provides
data with 4 multispectral (MS) bands in the VNIR at a spatial resolution of 4 m and a panchromatic
(PAN) band of 1 m. ASTER, with MS bands in the VNIR, SWIR, and Thermal infrared (TIR) at spatial
resolutions of 15, 30, and 90 m respectively, is a type of data that is widely used in geological remote
sensing research. Its parameters have been discussed in detail in many previous studies such as that
by Rowan and Mars (2003). The European Commission (EC) and the European Space Agency (ESA)
established the European Earth Observation programme Copernicus, which launched a set of satellite
missions: Sentinel 1 up to 5. Sentinel-2 provides data with a moderately large band set (13 spectral
bands) with different levels of spatial resolution. A comparison of GF-2, Sentinel-2, and ASTER bands
is shown in Figure 3.
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Figure 3. Spectral settings of Gaofen-2 (GF-2), Sentinel-2 and Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER).

Table 1 shows the characteristics of the three sensors applied in this paper, including the revisit
time, spectral band settings and spatial resolution information. As the well-documented spectral
absorption features of minerals [3–5], electronic spectral absorption caused by ferric and ferrous in iron-
bearing minerals can be detected by the GF2 MS bands, and narrow bands in the VNIR of Sentinel-2 can
be useful (e.g., Band 6 mentioned by de Lucia Lobo et al. [32] and Band 8a mentioned by Hu et al. [33]).
The ASTER SWIR bands can resolve the Al-OH or Mg-OH molecular spectral absorption features
associated with sericite, biotite, epidote and chlorite in hydrothermally altered granites [12–14]. Such
minerals may be essential for mapping intrusive complexes with granitoids of similar silica content.
A satisfactory dataset resulting from the synergy process discussed in the subsequent section of this
paper would include the same spectral band setting as all of the GF2 bands, the Sentinel-2 bands
5/6/7/8A, and the ASTER SWIR bands.

Table 1. GF-2, ASTER and Sentinel-2 sensors characteristics.

Sensor Revisit Time (day) Spectral Bands Wavelength (nm) Spatial Resolution (m)

Gaofen2
5 days when side swing

is applied

Pan 450-900 1
MS Band1 450–520 4
MS Band2 520–590 4
MS Band3 630–690 4
MS Band4 770–790 4

ASTER
16

(Unable to obtain new
valid data now)

VNIR Band1 520-600 15
VNIR Band2 630–690 15
VNIR Band3 760–860 15
SWIR Band4 1600–1700 30
SWIR Band5 2145–2185 30
SWIR Band6 2185–2225 30
SWIR Band7 2235–2285 30
SWIR Band8 2295–2365 30
SWIR Band9 2360–2430 30
TIR Band10 8125–8475 90
TIR Band11 8475–8825 90
TIR Band12 8925–9275 90
TIR Band13 10,250–10,950 90
TIR Band14 10,950–11,650 90

Sentinel-2
10 (5 days based on

2 satellites)

Band1 433-453 60
Band2 457–522 10
Band3 542–577 10
Band4 650–680 10
Band5 679–718 20
Band6 732–747 20
Band7 773–793 20
Band8 784–899 10

Band8a 855–885 20
Band9 935–955 60

Band10 1360–1390 60
Band11 1565–1655 20
Band12 2100–2280 20
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GF-2 level 1A data in this study were acquired on 17 September 2015, while ASTER level 1B and
Sentinel-2 level 1C data were acquired on 13 May 2002 and 15 May 2019, respectively. All data collected
from the study area were georeferenced to UTM zone 46 North and rectified with WGS-84 datum.
GF-2 and ASTER data underwent radiation calibration and orthorectification. Note that the crosstalk
effect caused by signal leakage from ASTER Band 4 to other SWIR band detectors was corrected using
crosstalk correction software [34]. Atmospheric correction was done by Fast Line-of-sight Atmospheric
Analysis of Spectral Hypercubes module (FLAASH). The processing of GF-2 and ASTER was done
with ENVI 5.3 software, while the pre-processing of Sentinel-2 data was done with the Sen2Cor module
using Sentinel Application Platform (SNAP) software provided by ESA automatically. Because the
study of this paper focused on a small scale and one single scene of each sensor could cover the whole
study area, a mosaicking process was unnecessary. After pre-processing, relative geometric registration
was done to ensure the consistency of the relative pixel positions of the three datasets.

3.2. Synergy of Multi-Source Remote Sensing Data

The synergy of the multi-source remote sensing data process method includes two steps: (1) spectral
synergy based on statistical regression was done firstly in order to make the surface reflectance of
different sensors have a consistent spectral response; (2) image fusion of the MS bands and PAN band
was carried out next in order to improve the spatial resolution of each remote sensing data band.

3.2.1. Spectral Synergy Process

Different remote sensors may have spectral bands at similar wavelength positions (e.g., ASTER
Band 1/2/3, GF2 Band 2/3/4 and Sentinel-2 Band 3/4/8, BSW), and bands at different wavelength
positions (BDW) may exist (e.g., GF2 Band 1 and Sentinel-2 5/6/7/8a). Due to the diverse radiometric
resolution (e.g., the ASTER dataset is 8 bit while the GF2 dataset is 16 bit) and inevitable calculation
error during preprocessing, the surface reflectance of different types of sensor data may be inconsistent
in the spectral response.

The spectral synergy detailed in Figure 4 (taking ASTER and GF2 as an example) includes two
steps: (1) BSWs were firstly processed using statistical regression, through which four commonly used
regression models were built, including a linear model, a quadratic polynomial model, an exponential
model, and a logarithmic model. The determination coefficient (R2) was used to select the best
regression model. (2) BDWs were then adjusted by reusing the regression coefficient and equations of
BSWs. We calculated the correlation coefficient between each BDW and BSW, then chose the regression
coefficient and regression equations with the highest correlation to process the BDWs.

Figure 4. Flowchart of spectral synergy processes of ASTER and GF2.

Taking the spectral synergy process of ASTER and GF2 as an example, three pairs of BSWs can
be found (i.e., ASTER Band 1 to GF2 Band 2, ASTER Band 2 to GF2 Band 3 and ASTER Band 3 to



ISPRS Int. J. Geo-Inf. 2020, 9, 543 7 of 22

GF2 Band 4). Because only one BDW remained for GF2 (ASTER had more BDWs), the GF2 BSWs
were considered as independent variables during the regression, so that all ASTER bands would
remain unchanged during the spectral synergy process. The best regression models of BSWs were
determined as that with the highest R2 of the four models. Through calculations using the coefficient
and regression equations of each BSW, GF2 Band 2/3/4 were able to fit to the spectral response of the
ASTER Band 1/2/3. The remaining BDW of GF2 Band 1 was firstly calculated the correlation coefficient
with GF2 Band 2/3/4 to find the highest correlation, then the coefficient and regression equations of
BSW (i.e., Band 2/3/4) with the highest correlation was employed to process the BDW of GF2 Band 1.
The BSWs used in correlation calculating were those prior to the spectral synergy process (i.e., the
original GF2 Band 2/3/4), because the BSWs and the BDWs of GF2 were all regarded as independent
variables of the regression equation. Through the spectral synergy process, all of the spectral bands of
GF2 were fitted to the spectral response of the ASTER sensor.

3.2.2. Image Fusion and Synergistic Dataset Construction

Image fusion was employed in order to improve the spatial resolution of each spectral band from
different sensors. As mentioned before, CS and MRS are the most commonly used fusion methods
because they are fast and easy to implement. Both CS and MRS have their strengths and weaknesses.
CS methods may experience the problem of spectral distortions, while MRS may cause a higher spatial
distortion [22]. MRS methods need accurate co-registration between PAN and MS images [35], which
is a very challenging task [22] (more challenging when the spatial resolution ratio (SRR) is low as GF-2
PAN and ASTER SWIR MS), otherwise, they will experience serious spatial distortion. CS methods are
not sensitive to the co-registration accuracy and SRR [36], thus a suitable fusion method was chosen
among CS methods though they have weaknesses, as claimed by some researchers [37,38].

The Gram–Schmidt (GS) spectral sharpening method [39] was employed in this paper for the
following reasons:

(1) It outperforms most other CS pan-sharpening methods in both maximizing image sharpness and
minimizing color distortion [40]. It has the least spectral distortion among the current CS fusion
methods and is widely used in remote sensing geological community.

(2) As the studies of Farahbakhsh et al. [2], Yang et al. [24] and Pande et al. [41] showed, the GS
spectral sharpening method can still ensure the attainment of high quality results when using the
PAN and MS images of different sensors.

(3) As shown in the results of Ghimire et al.’s study, GS had the least impact on most vegetation
indices’ (VI) quality when SSR reduced, and on the whole, it showed better performance among
the fusion methods they used [27]. Since principle of mineral index is spectral band math similar
to VI, it can be inferred that the application of GS in this study could also have stable results.

Using the GS spectral sharpening method, 6 ASTER SWIR bands, 4 Sentinel-2 VNIR narrow bands
(Band 5/6/7/8A), and 4 GF2 MS bands were fused with the GF2 PAN image, which improved each
spectral band to a resolution of 1 m. Three sets of fused bands were obtained with different spectral
ranges and the same spatial resolution of 1 m. With a stacking process for every band, a synergistic
dataset was constructed.

3.3. Image Enhancement and the Intrusive Complex Mapping Method

3.3.1. Image Enhancement by BR, RBD, and False-Color

The band ratio (BR) [42] can enhance spectral contrast of specific absorption features, while
relative absorption-band depth (RBD) [43] is a useful three-point ratio for enhance the Al-OH and
Mg-OH absorption in SWIR [12]. Both BR and RBD were widely used for mapping lithology and
hydrothermal alteration [44–48]. In this study, the BR and RBD methods were both employed to
enhance the spectral characteristics of different stage intrusions and dikes caused by characteristic
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minerals such as sericite, biotite, and amphibole. Spectra of rock samples of different stage intrusions
were analyzed firstly to choose the diagnostic bands used by BR and RBD. Based on each difference
in spectral characteristics caused by different mineral contents and through BR and RBD, multiple
enhanced images were obtained. To produce enhanced images with maximum contrast in appearance
and better visual effects, the RGB false-color combination was used to combine the former BR and RBD
enhanced images, which produced a RGB colored image in order to separate Late Proterozoic and
Carboniferous intrusive masses by color tone.

3.3.2. Image Enhancement by BRM and PCA

In the complex area of the intrusive complex where the difference in mineral content is not obvious,
the enhancement performance of a specific mineral index is often not ideal, and the boundaries of
different intrusive masses are not effectively enhanced. By making use of the advantages of synergistic
images in terms of band richness, it may be possible to effectively enhance the spectral differences of
different intrusive masses in complex areas.

Askari et al. [49] put forward the idea of the band ratio matrix (Band Ratio Matrix, BRM) in a
study of lithologic unit mapping in sedimentary rocks, which can alleviate the problem of mineral
similarity in sedimentary rocks. In this paper, the ideas of the BRM and principal components analysis
(PCA) [50,51] methods were introduced to enhance the differences between late Proterozoic and
Carboniferous intrusive masses in the complex area. BRM is the matrix constructed by non-repetitive
Band Ratios (see Equation (1)).

BRM =



B1/B2 B1/B3
B2/B3

· · · · · ·

· · · · · ·

B1/Bn
B2/Bn

. . .
Bn− 2/Bn− 1

...
Bn− 2/Bn
Bn− 1/Bn


(1)

The synergistic image has n spectral bands so that the above matrices contain n× (n− 1)/2 band
ratios. Using PCA, intercorrelated variables can be reduced to a few uncorrelated variables called
principal components (see Equation (2)).

PCA(BRM) = PCA



br1

BR2

BR3
...

BRn×(n−1)/2


=



PC1

PC2

PC3
...

PCn×(n−1)/2


(2)

By testing the false-color combination of the first few principal components (PC) bands, the spectral
difference between the Late Proterozoic and Carboniferous intrusive masses might be enhanced.

4. Results

4.1. Synergy of ASTER, GF-2, and Sentinel-2 Bands

To process the spectral synergy of three sets of remote sensing data, one reference dataset must be
determined initially. All spectral bands of the reference dataset remain unchanged and the other two
sets would fit to the reference data. In this case, ASTER was the reference because it had more BDWs.
Moreover, the BDWs of ASTER were in the SWIR wavelength region, while the BSWs were in VNIR.
Thus, all bands of ASTER remained unchanged and the GF2 and Sentinel-2 bands were subjected to
the synergy process in order to fit ASTER.
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Figure 5 shows the regression process of the BSWs. GF2 Band 2/3/4 and Sentinel-2 3/4/8 were
fitted to ASTER Band 1/2/3. Table 2 shows the r2 of each model and the results show that the r2 value
of the quadratic polynomial model was the highest in all bands. By using the best fitting regression
function (i.e., quadratic polynomial), the reflectance of GF2 Band 2/3/4 and Sentinel-2 Band 3/4/8 was
consistent with that of ASTER Band 1/2/3.

Figure 5. Scatterplots and regression lines of bands at similar wavelength positions (BSWs).

Table 2. Regression results of ASTER, GF2, and Sentinel-2 similar wavelength setting bands.

Fitting Bands Linear Quadratic
Polynomial Logarithmic Exponential

G Band2—A Band1 0.820728 0.821575 0.812235 0.810457
G Band3—A Band2 0.801061 0.802802 0.795070 0.787344
G Band4—A Band3 0.799412 0.801144 0.793241 0.785993
S Band3—A Band1 0.763109 0.764744 0.764560 0.749160
S Band4—A Band2 0.750512 0.752388 0.752319 0.732972
S Band8—A Band3 0.711796 0.713203 0.713105 0.692518

Notes: G represents GF2, A represents ASTER, and S represents Sentinel-2.

The correlations between GF2 Band 1 and Band 2/3/4 (Table 3) and between Sentinel-2 Band
5/6/7/8A and Band 3/4/8 were calculated (Table 4). In the GF2 bands, Band 1 has the highest correlation
with Band 2, so coefficient and regression equations of Band 2 were used to process Band 1. On the
other hand, for Sentinel-2 bands, the coefficient and regression equations of Band 4 were used to
process band 5 and band 6, while the coefficient and regression equations of Band 8 were used to
process band 7 and band 8A. Each BDW of GF2 and Sentinel-2 was processed by using the regression
function of a BSW with the highest correlation.

Table 3. Correlation between GF2 band 1 and band 2/3/4.

Band2 Band3 Band4

Band1 0.993710 0.981188 0.971365



ISPRS Int. J. Geo-Inf. 2020, 9, 543 10 of 22

Table 4. Correlation between Sentinel-2 band 5/6/7/8A and band 3/4/8.

Band3 Band4 Band8

Band5 0.983793 0.987621 0.986688
Band6 0.983378 0.987674 0.987220
Band7 0.983346 0.987734 0.987899

Band8A 0.981903 0.986802 0.987719

The statistical results of the original bands and synergistic bands (i.e., GF2 and Sentinel-2 bands
after spectral synergy) are shown in Table 5. It can be seen that there were great differences in the
corresponding bands of the original ASTER, GF2, and Sentinel-2 data. For example, ASTER Band
1 had a mean of 3815.15 and a standard deviation of 577.35, while the means of GF2 Band 2 and
Sentinel-2 Band 3 were 1606.74 and 2198.14, respectively. There was a big statistical gap in the means
and standard deviations between these BSWs. After the spectral synergy process, the means of the
synergistic bands of GF2 Band 2 (i.e., 3814.64) and Sentinel-2 Band 3 (i.e., 3780.25) were obviously closer
to that of ASTER Band 1 (as well as the standard deviation). Through spectral synergy, the differences
in the surface reflectance response of spectral bands in different sensors was significantly reduced.

Table 5. Means and standard deviations of the original bands and synergistic bands.

Original Bands A Band1 A Band2 A Band3 G Band1 G Band2 G Band3 G Band4

Mean 3815.15 3914.88 4298.12 1497.50 1606.74 1819.46 1845.82
Stddev 577.35 607.61 619.10 283.97 336.01 400.47 403.77

Original Bands S Band3 S Band4 S Band8 S Band5 S Band6 S Band7 S Band8A

Mean 2198.14 2470.62 2625.94 2555.55 2524.84 2544.16 2510.44
Stddev 221.70 264.81 287.11 273.25 272.62 274.00 269.96

Synergistic Bands G Band1 G Band2 G Band3 G Band4

Mean 3633.57 3814.64 3912.78 4295.49
Stddev 484.32 563.50 582.29 593.17

Synergistic Bands S Band3 S Band4 S Band8 S Band5 S Band6 S Band7 S Band8A

Mean 3780.25 3877.06 4257.97 4057.14 3992.17 4088.60 4016.88
Stddev 530.70 560.35 575.47 557.79 562.91 567.42 565.80

Notes: G represents GF2, A represents ASTER, and S represents Sentinel-2.

After spectral synergy, four GF2 bands, four Sentinel-2 VNIR narrow bands (Band 5/6/7/8A), and
six ASTER SWIR bands were fused to GF2 Pan using the GS spectral sharpening method. Through a
stacking processing method, the synergistic image datasets of ASTER, GF-2, and Sentinel-2, which
have 14 spectral bands and a spatial resolution of 1 m, were obtained. The spectral band information
of the synergistic image dataset is shown in Table 6.

Table 6. Synergistic image datasets of ASTER, GF-2 and Sentinel-2.

Spectral
Bands

Source
Image

Source
Band Wavelength Spectral

Bands
Source
Image

Source
Band Wavelength

Band 1 GF-2 Band1 450–520 Band 8 Sentinel-2 Band8a 855–875
Band 2 GF-2 Band2 520–590 Band 9 ASTER Band4 1600–1700
Band 3 GF-2 Band3 630–690 Band 10 ASTER Band5 2145–2185
Band 4 Sentinel-2 Band5 698–713 Band 11 ASTER Band6 2185–2225
Band 5 Sentinel-2 Band6 733–748 Band 12 ASTER Band7 2235–2285
Band 6 Sentinel-2 Band7 765–785 Band 13 ASTER Band8 2295–2365
Band 7 GF-2 Band4 770–790 Band 14 ASTER Band9 2360–2430

4.2. Band Ratio, Relative Absorption-Band Depth, and False-Color Enhancement Results

The spectra of the rock samples were measured by an Analytica Spectra Devices (ASD) Fieldspec
3 portable spectrometer in a laboratory setting. Samples’ spectral curves were analyzed to find the
different feature of the two stages of intrusion, as well as dikes, which could be helpful to the image
enhancement. The SWIR Spectrum (Figure 6a) of Carboniferous intrusive rocks showed an obvious
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absorption feature at 2200 nm caused by sericite, which is absent in Late Proterozoic intrusions.
This feature was enhanced by the RBD of (Band 10+Band 12)/Band 11. The spectrum of Late Proterozoic
intrusive rocks (Figure 6a) showed double absorption at 2300–2400 nm, which was caused by biotite or
hornblende minerals. This feature was enhanced by the BR of Band 14/Band 13.

Figure 6. Laboratory Spectra of the Late Proterozoic, Carboniferous intrusive rock samples, and dikes
in the short-wave infrared (SWIR) (a) and visible/near infrared (VNIR) (b) wavelength regions.

In addition, the spectrum of Carboniferous intrusive rocks was found to rise obviously in the
500–700 nm region. The slope of the curve was larger in this wavelength region (represented by a red
line) and there was a weak reflection peak near 750n m (Figure 6b). Similar characteristics appeared in
intermediate-acid dike samples. In contrast, the spectrum of Late Proterozoic intrusive rock samples
did not rise obviously in this wavelength region. This feature was enhanced by the BR of Band 3/Band 2.

Figure 7 shows the enhancement results of BR and RBD. In the (Band 10+Band 12)/Band 11
RBD-enhanced grey-scale image (Figure 7a), Carboniferous intrusions of the west part of the intrusive
complex were found to express brighter characteristics because of the low pixel values of Band 11
and the reflection shoulders of Band 10 and Band 12, which could be clearly separated from Late
Proterozoic intrusions. Moreover, a big difference in pixel values between the two stage intrusions in
Band 14/Band 13 BR-enhanced images was clearly observed in the west part (Figure 7b). In the Band
3/Band 2 BR-enhanced result (Figure 7c), two stage intrusions were distinguished as dark gray and
bright gray. It is worth noting that dikes were enhanced excellently in the Band 3/Band 2 results with
an obviously bright tone.

Figure 8 shows the comparison of (Band 10+Band 12)/Band 11, Band 14/Band 13 and the geological
map, as well as field validation. It can be found that the enhanced two-stage intrusions are basically
consistent with the geological map. The enhanced boundary in the results is also consistent with the
boundary of the two-stage intrusions in the field investigation. Moreover, due to the relatively higher
spatial resolution, mapping on a smaller scale than the geological map (1:50,000) could be done using
the enhancement results in this study.
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Figure 7. Enhancement Results of (Band 10+Band 12)/Band 11 relative absorption band depth (RBD)
(a), Band 14/Band 13 band ratio (BR) (b), and Band 3/Band 2 BR (c).

Figure 8. Geological map (a), enhancement results of (Band 10+Band 12)/Band 11 RBD (b), Band 14/Band
13 BR (c), and field validation photos (d).

It can be seen in Figure 9 that the enhanced dikes in the BR Band 3/Band 2 were different in
direction from that in the geological map. Due to the larger scale of the geological map, there might be
some deviation in the detailed position of the geological body in the map. The field validation showed
that the dike was NNE in the north and NNW in the south, which proved that the enhanced dikes
in the BR were closer to the field conditions. Thus, the results could also help to map the dikes on a
smaller scale than that of the geological map.
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Figure 9. Geological map (a), enhancement results of Band 3/Band 2 BR (b) and field validation
photos (c,d).

The false-color enhancement assessment was carried out using the above three enhanced images
(i.e., R: (Band 10+Band 12)/Band 11, G: Band 3/Band 2 and B: Band 14/Band 13). Figure 10 shows
the result of false-color enhancement. Two stage intrusions were clearly distinguished in most of
the intrusive complex by color tone (Illustrated by the purple polygon in Figure 10). Carboniferous
intrusions expressed a yellow or orange pattern, while Late Proterozoic intrusions expressed a blue
pattern. The position of two stages intrusions were nearly the same as geological map in the region
illustrated by the purple polygon in Figure 10.

Figure 10. R: RBD (Band 10+Band 12)/Band 11, G: Band ratio Band 3/Band 2 and B: Band ratio Band
14/Band 13 false-color image.

Unfortunately, the performance in the northeast part of the intrusive complex in this enhancement
assessment was not satisfactory (green polygon region in Figure 10). The two stage intrusions could
not be distinguished in false-color image in this region. Neither the BR nor the RBD performed well
(Figure 11); therefore, when combining the BR and RBD, the false-color image could not support the
intrusive complex mapping in the northeast.
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Figure 11. (Band 10+Band 12)/Band 11 RBD (a), Band 14/Band 13 BR (b) and Band 3/Band 2 BR
(c) enhancement results in the northeast part of study area.

4.3. BRM and PCA Enhancement Results

Because BR, RBD and the false-color method were unsatisfactory in the northeast part of the
intrusive complex, the BRM-PCA method was employed. The synergistic dataset of GF2, Sentinel-2, and
ASTER had 14 spectral bands, so the BRM of these data had 91 band ratios. Using PC transformation,
91 PC bands were obtained, in which the first 10 bands already contained 99% of the data information.

Figure 12a shows the false-color combination of PC1, PC2, and PC5 of BRM. This RGB colored
image was able to enhance the spectral differences in Carboniferous and Late Proterozoic intrusions.
The Late Proterozoic intrusions had blue–purple cold tones, while the Carboniferous intrusions
had yellow or green–yellow tones. The two stage intrusions could be clearly distinguished, and
their boundaries were obvious. Compared with the results of the former false-color of BR and RBD
(Figure 12b), BRM-PCA enhancement performed much better in this area.

Figure 12. Enhancement Result in the Northeast Region of the Intrusive Complex by the Band Ratio
Matrix (BRM)-Principal Component Analysis (PCA) Method (a) and the Former False-Color Method (b).

Figure 13 shows that the boundaries of the enhanced intrusions were closer to the field validation
results. However, there was a difference between the BRM-PCA enhancement result and the geological
map in the center of the northeast part of the study area. The geological map presented in Figure 13a
shows that there was a large area in the center exposed a Carboniferous intrusion, but the BRM-PCA
enhancement result shows that the Late Proterozoic was the main intrusion exposed (Figure 13b).
The field investigation showed that the BRM-PCA result was closer to the field conditions (Figure 13c,d).
Rock samples of exposed intrusion of this region were more intermediate and had no obvious sericite
minerals (Figure 13e), which were more like the Late Proterozoic intrusion. In the south part of this
region showed in Figure 14, there was also a difference between the BRM-PCA result and the geological
map. The field investigation showed that the Carboniferous intrusion dominated the southern edge of
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the complex of this region, while the Late Proterozoic intrusion exposed to the north of Carboniferous
intrusion, which corresponds to the BRM-PCA result.

Figure 13. Geological map (a), enhancement result of BRM-PCA (b) and field validation photos (c–e).

Figure 14. Enhancement result of BRM-PCA (b), geological map (a) and field validation photos (c).

4.4. Intrusion Complex Mapping Result

The false-color of the BR and RBD enhancement result was proved its performance in the west and
center parts of the intrusive complex. Thus, in these regions, intrusion complex mapping was carried
out based on the false-color result. The BR of Band 3/Band 2 showed excellent performance with
regard to enhancing the dikes; therefore, Band 3/Band 2 were used to map the dikes. In the northeast
part, mapping was carried out by using the better enhancement result of BRM-PCA. The results of
all of the enhancement methods were proved by geological map and field validation. The boundary
of the two-stage intrusions as well as that of dikes was determined. The mapping result is shown in
Figure 15.
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Figure 15. Mountain Sanfeng Intrusive Complex Mapping Result.

When comparing the mapping results and the geological map, it can be found that they are highly
consistent on the whole, especially in the west and center parts of the complex. At the same time,
the results of the complex areas in the northeast are significantly improved compared to those of the
existing geological map, thereby providing support for small-scale regional geological surveys and
mineralization research in this region.

5. Discussion

5.1. Comparsion between Fused Bands and Original Bands in SWIR When Using the BR and RBD

Based on the same wavelength region bands and image enhancement methods of BR and RBD, we
compared the enhancement performance of the original ASTER SWIR bands and GS-fused SWIR bands.

The synergistic dataset bands (Figure 16b,d) and original ASTER SWIR bands (Figure 16c,e) both
enhanced the spectral differences between the two stages of intrusion, showing a stronger contrast
than that of the true-color image (Figure 16a). However, the enhancement result of the original ASTER
SWIR bands had a serious mixed pixel phenomenon due to the limitation of spatial resolution, making
the identification of the boundary between the two stage intrusions more difficult and less accurate in
small-scale. In contrast, the GS fused band enhancement results had obvious advantages in terms of
spatial resolution. The phenomenon of mixed pixels at the boundary was significantly avoided in the
enhancement result of synergistic dataset bands, and the texture details greatly helped to identify the
boundaries. Therefore, GS fusion is necessary in the process of synergistic image construction to help
the intrusion mapping in small-scale.

5.2. Comparsion of Datasets with and without Spectral Synergy When Using BRM-PCA

To prove the necessity of spectral synergy when taking using spectral bands from multi-source
remote sensing data, we compared the performance of BRM-PCA method using two datasets.
One dataset was created through the process of spectral synergy and then underwent GS fusion (i.e.,
the whole synergy process proposed in this paper), while the other dataset was created via the GS
fusion directly and without undergoing the spectral synergy process. The only difference between the
two datasets was the spectral synergy process. The two datasets were enhanced by the same method
of BRM-PCA, and the results are shown in Figure 17.
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Figure 16. True-color Image (a); GS-fused Synergistic Image RBD of (Band 10+Band 12)/Band 11 (b) and
BR of Band 14/Band 13 (d); ASTER RBD of (Band 5+Band 7)/Band 6 (c) and BR of Band 9/Band 8 (e).

Figure 17. BRM-PCA enhancement results using dataset with spectral synergy ((a), RGB: PC1, PC2,
PC5) and using dataset without spectral synergy ((b), RGB: PC1, PC2, PC3; (c), RGB: PC1, PC2, PC5;
(d), RGB: PC1, PC3, PC5).

Figure 17 shows the BRM-PCA enhancement results when a synergistic image that had gone
through the spectral synergy process was used, while Figure 17b–d shows three false-color combinations
of the BRM-PCA bands of a dataset that had not undergone the process of spectral synergy. These had
the same spectral band settings and a spatial resolution of 1 m after GS fusion. It was found that
without spectral synergy, the BRM-PCA method is not effective for enhancing the difference between
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the two stage intrusions in complex areas. The synergistic image performed much better, proving the
necessity of spectral synergy when using bands from different data sources.

Table 7 shows a comparison of the mean values of the first 13 band ratios in the BRM between
the synergistic dataset and the dataset without spectral synergy, i.e., the means of the band ratio of
Band 1 and the other 13 bands. It can be found that in the dataset without spectral synergy, when the
data source of the spectral bands changes, the mean difference of the band ratio result becomes larger.
For example, B1/B2/B3/B7 are from the GF2 sensor, so the means of the B1/B2, B1/B3, and B1/B7 ratios
are similar. However, B4/B5/B6 are from Sentinel-2, so there is a significant difference between B1/B4
and the band ratio mentioned above. It is worth noting that there is a greater difference between the
band ratios of GF2 and ASTER bands and the abovementioned band ratios. This is obviously due to
the inconsistency of spectral responses in bands from different sensors. After spectral synergy, the
numerical difference significantly reduces due to the reduction of the difference in spectral response of
difference sensors.

Table 7. Means of the first 13 band ratios of the BRM of datasets with the spectral synergy process and
without the spectral synergy process.

Band Ratio Spectral
Synergy

Without
Spectral Synergy Band Ratio Spectral

Synergy
Without

Spectral Synergy

B1/B2 0.953589 0.934671 B1/B9 0.656837 0.263652
B1/B3 0.929816 0.830386 B1/B10 0.639677 0.257225
B1/B4 0.885573 0.557248 B1/B11 0.65567 0.263654
B1/B5 0.90007 0.563648 B1/B12 0.65616 0.263572
B1/B6 0.876937 0.558797 B1/B13 0.744578 0.298691
B1/B7 0.841202 0.815966 B1/B14 0.621478 0.249575
B1/B8 0.89301 0.566098

It is well-known that the band ratio enhances the compositions of different minerals through the
difference in spectral reflectance in specific spectral bands. If the dataset does not go through spectral
synergy, the results of the band ratio will vary greatly as a whole when the data-source of the spectral
bands changes, which may mask the less obvious spectral difference caused by the mineral content.
Therefore, when ratios are calculated using bands from different data sources, the resulting ratios of
the image obviously cannot reflect differences in the spectral reflectance of ground objects in specific
bands without spectral synergy. BRM is based on the band ratio and is used to calculate all of the
non-repetitive ratios of the spectral bands, so that the dataset without spectral synergy cannot achieve
satisfactory enhancement results when BRM-PCA is used.

6. Conclusions

In this paper, we proposed a multi-source remote sensing data application method for intrusive
complex mapping which includes spectral synergy based on statistical regression and spatial resolution
improvement based on the GS spectral sharpening method. This method was applied to the mapping
of the Mountain Senfeng intrusive complex in Xinjiang, China using GF2, Sentinal-2, and ASTER
data. The results show that (1) through a combination use of GF2, Sentinel-2, and ASTER, the spectral
difference of the corresponding wavelength positions in both the VNIR and SWIR of the two stages of
intrusion as well as dikes in most regions can be effectively enhanced by the BR and RBD methods, and
excellent enhancement results can be obtained by using BRM-PCA and all 14 bands of the synergistic
image in the northeast complex region; (2) the GS fusion process gives multi-source data the same
spatial resolution and solves the problem of insufficient spatial resolution of ASTER and Sentinel-2
bands in small scale study of intrusive complex mapping; (3) the spectral synergy process is necessary
when using multi-source bands such as the BRM-PCA method; otherwise, satisfactory enhancement
results cannot be obtained. The Mountain Sanfeng intrusive complex was successfully mapped in this
paper, and this process could be used for small-scale regional geological surveys. This method may
support small-scale remote sensing geological research.
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Certainly, some aspects of the method proposed in this paper can be improved. Firstly, the spatial
resolution of the data used in this paper varies greatly and PAN scale was used directly in this
study; however, finding the optimal fusion scale may be helpful for improving the enhancement
and mapping results. The way in which to evaluate multi-scale fusion results in light of the goals
of geological research needs to be further studied, since the quantitative evaluation methods do not
always perform well when the situation changes [52]. Secondly, a more accurate algorithm could be
employed in the spectral synergy process. This paper employed the regression in the spectral synergy
process, which is a method that may reduce the accuracy when there are many extreme pixel values
(e.g., rocks with extremely high or very low reflectivity). This method will also cause a larger error
when processing BDWs that have extremely low correlations with all BSWs. A Convolutional Neural
Network (CNN) [53] may be a potential method to improve the accuracy of the spectral synergy
process; although it has been frequently used in remote sensing, it needs further research in terms of
multi-source bands fitting.

Author Contributions: Conceptualization, Yuzhou Zhang and Dengrong Zhang; methodology, Yuzhou Zhang and
Tangao Hu; validation, Yuzhou Zhang and Dengrong Zhang; result analysis, Yuzhou Zhang; investigation, Yuzhou
Zhang and Jinwei Duan; writing—original draft preparation, Yuzhou Zhang and Tangao Hu; writing—review
and editing, Dengrong Zhang; visualization, Jinwei Duan; supervision, Dengrong Zhang and Tangao Hu; funding
acquisition, Dengrong Zhang. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Program of Research and Application of High-Resolution Remote
Sensing Geology and Mineral Resources Survey Technology in Key Metallogenic Belts in Western China (Grant
No. 12120113100200).

Acknowledgments: The GF2 datasets were provided by the Natural Resources Aerial Geophysical Exploration
and Remote Sensing Center of China Geological Survey.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References

1. Soloviev, S.G. Geology, mineralization, and fluid inclusion characteristics of the Kumbel oxidized W-Cu-Mo
skarn and Au-W stockwork deposit in Kyrgyzstan, Tien Shan. Miner. Depos. 2015, 50, 187–220. [CrossRef]

2. Farahbakhsh, E.; Shirmard, H.; Bahroudi, A.; Eslamkish, T. Fusing ASTER and QuickBird-2 Satellite Data for
Detailed Investigation of Porphyry Copper Deposits Using PCA; Case Study of Naysian Deposit. Iran. J.
Indian Soc. Remote Sens. 2016, 44, 525–537. [CrossRef]

3. Hunt, G.R. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 1977, 42,
501–513. [CrossRef]

4. Cloutis, E.A.; Gaffey, M.J.; Jackowski, T.L.; Reed, K.L. Calibrations of phase abundance, composition, and
particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra. J. Geophys. Res. Solid
Earth 1986, 91, 11641–11653. [CrossRef]

5. Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High spectral resolution reflectance spectroscopy
of minerals. J. Geophys. Res. Solid Earth 1990, 95, 12653–12680. [CrossRef]

6. Salisbury, J.W.; Walter, L.S. Thermal infrared (2.5–13.5µm) spectroscopic remote sensing of igneous rock
types on particulate planetary surfaces. J. Geophys. Res. Solid Earth 1989, 94, 9192–9202. [CrossRef]

7. Abrams, M.; Abbott, E.; Kahle, A. Combined use of visible, reflected infrared, and thermal infrared images
for mapping Hawaiian lava flows. J. Geophys. Res. Solid Earth 1991, 96, 475–484. [CrossRef]

8. Guha, A.; Chakraborty, D.; Ekka, A.B.; Pramanik, K.; Kumar, K.V.; Chatterjee, S.; Subramanium, S.; Rao, D.A.
Spectroscopic study of rocks of Hutti-Maski schist belt, Karnataka. J. Geol. Soc. India 2012, 79, 335–344.
[CrossRef]

9. Massironi, M.; Bertoldi, L.; Calafa, P.; Visona, D.; Bistacchi, A.; Giardino, C.; Schiavo, A. Interpretation
and processing of ASTER data for geological mapping and granitoids detection in the Saghro massif
(eastern Anti-Atlas, Morocco). Geosphere 2008, 4, 736–759. [CrossRef]

10. Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T. Overview of Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [CrossRef]

http://dx.doi.org/10.1007/s00126-014-0531-6
http://dx.doi.org/10.1007/s12524-015-0516-7
http://dx.doi.org/10.1190/1.1440721
http://dx.doi.org/10.1029/JB091iB11p11641
http://dx.doi.org/10.1029/JB095iB08p12653
http://dx.doi.org/10.1029/JB094iB07p09192
http://dx.doi.org/10.1029/90JB01392
http://dx.doi.org/10.1007/s12594-012-0054-7
http://dx.doi.org/10.1130/GES00161.1
http://dx.doi.org/10.1109/36.700991


ISPRS Int. J. Geo-Inf. 2020, 9, 543 20 of 22

11. Abrams, M. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products
for the high spatial resolution imager on NASA’s Terra platform. Int. J. Remote Sens. 2000, 21, 847–859.
[CrossRef]

12. Rowan, L.C.; Mars, J.C. Lithologic mapping in the Mountain Pass, California area using Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens. Environ. 2003, 84,
350–366. [CrossRef]

13. Mars, J.C.; Rowan, L.C. Spectral assessment of new ASTER SWIR surface reflectance data products for
spectroscopic mapping of rocks and minerals. Remote Sens. Environ. 2010, 114, 2011–2025. [CrossRef]

14. Pour, A.B.; Hashim, M.; Hong, J.K.; Park, Y. Lithological and alteration mineral mapping in poorly exposed
lithologies using Landsat-8 and ASTER satellite data: North-eastern Graham Land, Antarctic Peninsula.
Ore Geol. Rev. 2019, 108, 112–133. [CrossRef]

15. Van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A. Potential of ESA’s Sentinel-2 for geological
applications. Remote Sens. Environ. 2014, 148, 124–133. [CrossRef]

16. Sousa, F.J.; Sousa, D.J. Spatial Patterns of Chemical Weathering at the Basal Tertiary Nonconformity in
California from Multispectral and Hyperspectral Optical Remote Sensing. Remote Sens. 2019, 11, 2528.
[CrossRef]

17. Liu, L.; Zhou, J.; Jiang, D.; Zhuang, D.F.; Mansaray, L.R.; Zhang, B. Targeting Mineral Resources with Remote
Sensing and Field Data in the Xiemisitai Area, West Junggar, Xinjiang, China. Remote Sens. 2013, 5, 3156–3171.
[CrossRef]

18. Abd-El Monsef, H.; Khalifa, I.H.; Faisal, M. Mapping of hydrothermal alteration zones associated with
potential sulfide mineralization using the spectral linear unmixing technique and WorldView II images at
Wadi Rofaiyed, South Sinai, Egypt. Arab. J. Geosci. 2015, 8, 9285–9300. [CrossRef]

19. Robson, A.; Rahman, M.M.; Muir, J. Using World View Satellite Imagery to Map Yield in Avocado
(Persea americana): A Case Study in Bundaberg, Australia. Remote Sens. 2017, 9, 1223. [CrossRef]

20. Han, L.; Zhao, B.; Wu, J.; Zhang, S.; Pilz, J.; Yang, F. An integrated approach for extraction of lithology
information using the SPOT 6 imagery in a heavily Quaternary-Covered region North Baoji District of China.
Geol. J. 2018, 53, 352–363. [CrossRef]

21. Yang, M.; Kang, L.; Chen, H.; Zhou, M.; Zhang, J. Lithological mapping of East Tianshan area using integrated
data fused by Chinese GF-1 PAN and ASTER multi-spectral data. Open Geosci. 2018, 10, 532–543. [CrossRef]

22. Ghassemian, H. A review of remote sensing image fusion methods. Inf. Fusion 2016, 32, 75–89. [CrossRef]
23. Chatterjee, R.S.; Prabakaran, B.; Jha, V.K. Fusion of surface relief data with high spectral and spatial resolution

satellite remote sensor data for deciphering geological information in a mature topographic terrain. Int. J.
Remote Sens. 2003, 24, 4761–4775. [CrossRef]

24. Hadigheh, S.M.H.; Ranjbar, H. Lithological Mapping in the Eastern Part of the Central Iranian Volcanic Belt
Using Combined ASTER and IRS data. J. Indian Soc. Remote Sens. 2013, 41, 921–931. [CrossRef]

25. Zhang, D.D.; Zhang, L.; Xie, F. Preprocessing and fusion analysis of GF-2 satellite Remote-sensed spatial data.
In Proceedings of the International Conference on Information Systems and Computer Aided Education
(ICISCAE), Changchun, China, 6–8 July 2018.

26. Ren, K.; Sun, W.W.; Meng, X.C.; Yang, G.; Du, Q. Fusing China GF-5 Hyperspectral Data with GF-1, GF-2
and Sentinel-2A Multispectral Data: Which Methods Should Be Used? Remote Sens. 2020, 12, 882. [CrossRef]

27. Ghimire, P.; Lei, D.; Juan, N. Effect of Image Fusion on Vegetation Index Quality-A Comparative Study from
Gaofen-1, Gaofen-2, Gaofen-4, Landsat-8 OLI and MODIS Imagery. Remote Sens. 2020, 12, 1550. [CrossRef]

28. Sun, Y.Q.; Tian, S.F.; Di, B.G. Extracting mineral alteration information using WorldView-3 data. Geosci. Front.
2016, 8, 1051–1062. [CrossRef]

29. Ye, B.; Tian, S.F.; Ge, J.; Sun, Y.Q. Assessment of WorldView-3 Data for Lithological Mapping. Remote Sens.
2017, 9, 1132. [CrossRef]

30. Zheng, Y.F.; Xiao, W.J.; Zhao, G.C. Introduction to tectonics of China. Gondwana Res. 2013, 23, 1189–1206.
[CrossRef]

31. Xinjiang Bureau of Geological and Mineral Development. Report of Regional Geological Survey of P. R.
China, K46E022007 & K46E0020008, Scale 1:50,000; China Geological Survey Special Publication: Xingjiang,
China, 1996.

32. Lobo, F.D.; Souza, P.W.M.; Novo, E.M.L.D.; Carlos, F.M.; Barbosa, C.C.F. Mapping Mining Areas in the
Brazilian Amazon Using MSI/Sentinel-2 Imagery (2017). Remote Sens. 2018, 10, 1178. [CrossRef]

http://dx.doi.org/10.1080/014311600210326
http://dx.doi.org/10.1016/S0034-4257(02)00127-X
http://dx.doi.org/10.1016/j.rse.2010.04.008
http://dx.doi.org/10.1016/j.oregeorev.2017.07.018
http://dx.doi.org/10.1016/j.rse.2014.03.022
http://dx.doi.org/10.3390/rs11212528
http://dx.doi.org/10.3390/rs5073156
http://dx.doi.org/10.1007/s12517-015-1909-1
http://dx.doi.org/10.3390/rs9121223
http://dx.doi.org/10.1002/gj.3061
http://dx.doi.org/10.1515/geo-2018-0042
http://dx.doi.org/10.1016/j.inffus.2016.03.003
http://dx.doi.org/10.1080/0143116031000070472
http://dx.doi.org/10.1007/s12524-013-0284-1
http://dx.doi.org/10.3390/rs12050882
http://dx.doi.org/10.3390/rs12101550
http://dx.doi.org/10.1016/j.gsf.2016.10.008
http://dx.doi.org/10.3390/rs9111132
http://dx.doi.org/10.1016/j.gr.2012.10.001
http://dx.doi.org/10.3390/rs10081178


ISPRS Int. J. Geo-Inf. 2020, 9, 543 21 of 22

33. Hu, B.; Xu, Y.Y.; Wan, B.; Wu, X.C.; Yi, G.H. Hydrothermally altered mineral mapping using synthetic
application of Sentinel-2A MSI, ASTER and Hyperion data in the Duolong area, Tibetan Plateau, China.
Ore Geol. Rev. 2018, 101, 384–397. [CrossRef]

34. Iwasaki, A.; Tonooka, H. Validation of a crosstalk correction algorithm for ASTER/SWIR. IEEE Trans. Geosci.
Remote Sens. 2005, 43, 2747–2751. [CrossRef]

35. Yuan, Q.Q.; Wei, Y.C.; Meng, X.C.; Shen, H.F.; Zhang, L.P. A Multiscale and Multidepth Convolutional Neural
Network for Remote Sensing Imagery Pan-Sharpening. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
2018, 11, 978–989. [CrossRef]

36. Liu, J.G. Smoothing Filter-based Intensity Modulation: A spectral preserve image fusion technique for
improving spatial details. Int. J. Remote Sens. 2000, 21, 3461–3472. [CrossRef]

37. Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A.; Nencini, F. A New Method for MS plus Pan Image Fusion
Assessment without Reference. In Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), Denver, CO, USA, 31 July—4 August 2006.

38. Ehlers, M. Multi-image Fusion in Remote Sensing: Spatial Enhancement vs. Spectral Characteristics
Preservation. In Proceedings of the 4th International Symposium on Visual Computing, Las Vegas, NV, USA,
1–3 December 2008.

39. Laben, C.A.; Brower, B.V. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using
Pan-Sharpening. U.S. Patent US6011875, 4 January 2000.

40. Maurer, T. How to Pan-shrpin Images Using the Gram-Schmidt Pan-sharpen Method—A Recipe.
In Proceedings of the International-Society-for-Photogrammetry-and-Remote-Sensing Hannover Workshop,
Hannover, Germany, 21–24 May 2013.

41. Pande, H.; Tiwari, P.S.; Dobhal, S. Analyzing Hyper-Spectral and Multi-Spectral Data Fusion in Spectral
Domain. J. Indian Soc. Remote Sens. 2009, 37, 395–408. [CrossRef]

42. Rowan, L.C.; Goetz, A.F.H.; Ashley, R.P. Discrimination of hydrothermaly altered rocks and unaltered rocks
in visible and near infrared multispectral images. Geophysics 1977, 42, 522–535. [CrossRef]

43. Crowley, J.K.; Brickey, D.W.; Rowan, L.C. Airborne imaging spectrometer data of the Ruby Mountains,
Montana: Mineral discrimination using relative absorption band-depth images. Remote Sens. Environ. 1989,
29, 121–134. [CrossRef]

44. Ge, W.Y.; Cheng, Q.M.; Jing, L.H.; Armenakis, C.; Ding, H.F. Lithological discrimination using ASTER and
Sentinel-2A in the Shibanjing ophiolite complex of Beishan orogenic in Inner Mongolia, China. Adv. Space Res.
2018, 62, 1702–1716. [CrossRef]

45. Hassan, S.M.; El Kazzaz, Y.A.; Taha, M.M.N.; Mohammad, A.T. Late Neoproterozoic basement rocks of
Meatiq area, Central Eastern Desert, Egypt: Petrography and remote sensing characterizations. J. Afr.
Earth Sci. 2017, 131, 14–31. [CrossRef]

46. Rajendran, S.; Nasir, S. Hydrothermal altered serpentinized zone and a study of Ni-magnesioferrite-
magnetite-awaruite occurrences in Wadi Hibi, Northern Oman Mountain: Discrimination through ASTER
mapping. Ore Geol. Rev. 2014, 62, 211–226. [CrossRef]

47. Bolouki, S.M.; Ramazi, H.R.; Maghsoudi, A.; Pour, A.B.; Sohrabi, G. A Remote Sensing-Based Application of
Bayesian Networks for Epithermal Gold Potential Mapping in Ahar-Arasbaran Area, NW Iran. Remote Sens.
2020, 12, 105. [CrossRef]

48. Zoheir, B.; Emam, A.; Abdel-Wahed, M.; Soliman, N. Multispectral and Radar Data for the Setting of Gold
Mineralization in the South Eastern Desert, Egypt. Remote Sens. 2019, 11, 1450. [CrossRef]

49. Askari, G.; Pour, A.B.; Pradhan, B.; Sarfi, M.; Nazemnejad, F. Band Ratios Matrix Transformation (BRMT):
A Sedimentary Lithology Mapping Approach Using ASTER Satellite Sensor. Sensors 2018, 18, 3213. [CrossRef]
[PubMed]

50. Chavez, P.S.; Kwarteng, A.Y. Extracting Spectral Contrast in Landsat Thematic Mapper Image Data Using
Selective Principal Component Analysis. Photogramm. Eng. Remote Sens. 1989, 55, 339–348.

51. Crosta, A.P.; Moore, J.M. Enhancement of Landsat Thematic Mapper Imagery for Residual Soil Mapping in
SW Minas Gerais State, Brazil: A Prospecting Case History in Greenstone Belt Terrain. In Proceedings of the
9th Thematic Conference on Remote Sensing for Exploration Geology, Calgary, AB, Canada, 2–6 October
1989; pp. 1173–1187.

http://dx.doi.org/10.1016/j.oregeorev.2018.07.017
http://dx.doi.org/10.1109/TGRS.2005.855066
http://dx.doi.org/10.1109/JSTARS.2018.2794888
http://dx.doi.org/10.1080/014311600750037499
http://dx.doi.org/10.1007/s12524-009-0038-2
http://dx.doi.org/10.1190/1.1440723
http://dx.doi.org/10.1016/0034-4257(89)90021-7
http://dx.doi.org/10.1016/j.asr.2018.06.036
http://dx.doi.org/10.1016/j.jafrearsci.2017.04.001
http://dx.doi.org/10.1016/j.oregeorev.2014.03.016
http://dx.doi.org/10.3390/rs12010105
http://dx.doi.org/10.3390/rs11121450
http://dx.doi.org/10.3390/s18103213
http://www.ncbi.nlm.nih.gov/pubmed/30249050


ISPRS Int. J. Geo-Inf. 2020, 9, 543 22 of 22

52. Klonus, S.; Ehlers, M. Performance of evaluation methods in image fusion. In Proceedings of the 12th
International Conference on Information Fusion, Seattle, WA, USA, 6–9 July 2009.

53. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area and Geological Setting 
	Materials and Method 
	Data 
	Synergy of Multi-Source Remote Sensing Data 
	Spectral Synergy Process 
	Image Fusion and Synergistic Dataset Construction 

	Image Enhancement and the Intrusive Complex Mapping Method 
	Image Enhancement by BR, RBD, and False-Color 
	Image Enhancement by BRM and PCA 


	Results 
	Synergy of ASTER, GF-2, and Sentinel-2 Bands 
	Band Ratio, Relative Absorption-Band Depth, and False-Color Enhancement Results 
	BRM and PCA Enhancement Results 
	Intrusion Complex Mapping Result 

	Discussion 
	Comparsion between Fused Bands and Original Bands in SWIR When Using the BR and RBD 
	Comparsion of Datasets with and without Spectral Synergy When Using BRM-PCA 

	Conclusions 
	References

