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Abstract: Clarifying the regional transmission mechanism of COVID-19 has practical significance for
effective protection. Taking 103 county-level regions of Hubei Province as an example, and taking the
fastest-spreading stage of COVID-19, which lasted from 29 January 2020, to 29 February 2020, as the
research period, we systematically analyzed the population migration, spatio-temporal variation
pattern of COVID-19, with emphasis on the spatio-temporal differences and scale effects of related
factors by using the daily sliding, time-ordered data analysis method, combined with extended
geographically weighted regression (GWR). The results state that: Population migration plays a
two-way role in COVID-19 variation. The emigrants’ and immigrants’ population of Wuhan city
accounted for 3.70% and 73.05% of the total migrants’ population respectively; the restriction measures
were not only effective in controlling the emigrants, but also effective in preventing immigrants.
COVID-19 has significant spatial autocorrelation, and spatio-temporal differentiation has an effect
on COVID-19. Different factors have different degrees of effect on COVID-19, and similar factors
show different scale effects. Generally, the pattern of spatial differentiation is a transitional pattern of
parallel bands from east to west, and also an epitaxial radiation pattern centered in the Wuhan 1 + 8
urban circle. This paper is helpful to understand the spatio-temporal evolution of COVID-19 in Hubei
Province, so as to provide a reference for similar epidemic prevention.
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1. Introduction

Viruses are potential threats to human survival. In December 2019, an atypical pneumonia named
COVID-19, attributed to a novel corona virus of zoonotic origin, broke out in Wuhan, China [1].
It has been spreading boundlessly all over the world at an uncontrollable fast pace which people
need to count the cases daily. Up until 24 July 2020, there have been 15,581,009 confirmed cases and
635,173 deaths in 216 countries [2]. The brutal epidemic has brought unprecedented pressure and
challenge to the medical protection system of all countries in the world, and has had a serious impact
on the current human business, economy, political relations and geospatial mobility. The effective
containment of the epidemic is a top priority for governments and people from all walks of life.
COVID-19 is neither the first nor last epidemic that we have been facing or are going to face. Therefore,
it is of great practical importance to review the spatio-temporal variation and transmission mechanism
of COVID-19 in the epicenter, Hubei Province, for the current and future epidemic prevention of
similar viruses, when China’s domestic epidemic prevention has achieved periodic victory.
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At the beginning of the COVID-19 outbreak, its rapid and large-scale spread in a short term
made the primary task of the epidemic prevention to get timely information about the origin of virus,
viral pathogenesis virus transmission, etc. [3]. A large number of scholars made timely insightful studies
to find the characteristics of the virus itself and isolated the COVID-19 strains successfully, which laid
a solid foundation for vaccine development. Since there is still much unknown knowledge about
COVID-19 [4], some scholars have used multiple diffusion models such as dynamic model of infectious
disease (SEIR), convLSTM to predict COVID-19 spread in advance [5–7], and some scholars have
evaluated migration-to-immigration to virus relations and the potential risks in a post-epidemic era [8],
in order to enhance the effectiveness of preventive measures. Scholars put much focus on the following
factors when they used traditional Pearson’s statistic analytical approach [9], or when they introduced
spatial auto-correlated spatial information models such as Moran’s I, LISA [10], or spatio-temporal
information models concerning panel date [11], in order to find the related dominant factors of COVID-19
transmission. These are pathological factors directly related to patients themselves (their ages, whether or
not they have other diseases, etc.) and factors associated with external environment (travel migration,
population density, region GDP, traffic network, temperature and humidity, etc.). Spatial analysis tools
and methods such as GIS and spatial statistics play an important role in the exploration process [12].
In view of the pathological characteristics of COVID-19, that it can be transmitted between people,
some scholars have carried out studies targeted at the influence mechanism of population migration
and transmission [13] and the effectiveness of government intervention measures [14,15], after the
conventional factor-selection process. This research focused on different levels from the whole world,
nations, provincial and municipal regions [16,17]. The county-level regions directed by the national
policy were at the forefront of the epidemic prevention, but there were few studies focused on this level.

The COVID-19 outbreak has no regional stability but regional concentration, as in Hubei Province,
with less than 2% of the territory, concentrated more than 80% of the patients [18]. Therefore, the epidemic
has its specificity both in scale and transmission mechanisms. One of the problems emerging in the current
studies on COVID-19 is that Hubei cases were often separated or excluded from the whole picture in
previous studies’ analyses [5] because COVID-19 brought about a significantly higher risk of illness in
Hubei Province than in the surrounding areas and there was significant difference between the severity of
cases in Hubei province and those of cases from other provinces in China and other parts of the world [19].
Our research focused on the county scale to clarify the epidemic’s variation pattern in spreading and its
spatial differentiation pattern. Therefore, it could provide a useful reference for effective protection when
facing COVID-19 and other future similar viruses.

2. Materials and Methods

2.1. Overview of the Study Area

Hubei Province, located in central China (108◦21′42′′–116◦07′50′′E, 29◦01′53′′–33◦6′47′′N),
has various and complex landform types and is surrounded by mountains in the east, west and north.
In the middle of Hubei Province is the Jianghan Plain, which is a land of plenty. Hubei Province has an
area of 185,900 square kilometers, accounting for 1.94% of the country’s territory and ranking as the
16th biggest province. The average annual temperature of Hubei Province is 15~18 ◦C. Its winter is
cold and summer is hot. In this place, summer and winter are long, while spring and autumn are short.
Rain and heat here come in the same season and its climate resources are rich and diverse. Though the
precipitation is abundant, with an annual precipitation of 1201 mm, the distribution of the precipitation
is not even at the levels of space and time. Hubei province is a transportation junction connecting east to
west and south to north. Wuhan, the provincial capital famous for its links to various places since ancient
times, is the center of the national high-speed railway network. Wuhan Tianhe International Airport
is an important inland airport in China. Hubei Province has 1062 km of the Yangtze River running
through it from west to east, passing Wuhan City. The airways, railways, highways and waterways
all have tridimensional interchanges with each other. By the end of 2018, the resident population of
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Hubei Province has been 59.17 million, of which 11.081 million were in Wuhan. Hubei Province had
a regional gross domestic product of 3936.655 billion yuan and a total of 987.1970 billion passengers
of all kinds of traffic. The number of health institutions, health industry employees and beds was
36,397,521.8 thousand and 393.5 thousand respectively, with the beds’ utilization rate of 92.65% [20].

The spatial composition of administrative districts in Hubei Province includes 12 municipalities
(Wuhan, Huangshi, Xiangfan, Jingzhou, Yichang, Shiyan, Xiaogan, Jingmen, Ezhou, Huanggang, Xianning
and Suizhou), 1 autonomous prefecture (Enshi Tujia and Miao Ethnic Minority Autonomous Prefecture), 1
forest area (Shennongjia forest area) and 3 administrative units which are under the jurisdiction of Province
(Xiantao, Qiangjiang, and Tianmen). In this paper, all 17 districts mentioned above are called city-level
regions. These city-level regions can be divided into more elaborate districts or counties, which would be
called county-level regions in the paper. The total number of these county-level regions is 103.

To more accurately understand the transmission mechanism of the COVID-19 and factors affecting
its transmission, we took 103 county-level regions as the objects of the study. Some areas were re-zoned
after examining the latest division of Hubei Province combined with the region in which the official
information was published (Figure 1).
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2.2. Data Sources

Provincial/prefecture-level/county-level geographic map data (2015) were obtained from the
national basic geographic databases (the scale is 1:1 million), which were provided by the National
Catalogue Service For Geographic Information (http://www.webmap.cn/). We made a few adjustments
to correspond with the spatial scope of the publicly reported COVID-19 confirmed cases, since some
administrative areas had been edited and updated according to the latest standard map (2020),
which was downloaded from the website of Department of Natural Resources of Hubei Province
(http://zrzyt.hubei.gov.cn/). All of the confirmed COVID-19 cases’ data were obtained from the latest
bulletin of the official website. Among these, the epidemic data of three municipalities directly under
the administration (Xiantao, Qiangjiang, and Tianmen) and one forest area (Shennongjia forest area)
were obtained from Health Commission of Hubei Province. The data of the 13 districts in Wuhan City

http://www.webmap.cn/
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in the early stage were calculated based on the total cases in Wuhan in the early stage in proportion
to a scale calculated by combining the partitioned statistical data in the later stage with the resident
population, since there was no official partitioned statistical data in the early stage from Wuhan
Municipal Health Commission. All the other county-level epidemic data were published on the official
website of each municipal government or the website of the affiliated health committees. They were well
organized according to the districts and counties, which were partitioned and administered by the cities.
The data of railways, expressways, main roads and ordinary roads, etc., were obtained from Baidu Map
(http://map.baidu.com/) and Amap (https://www.amap.com/), which were two public map service
platforms. The 30-m-resolution impervious surfaces data of urban and rural from satellite remote
sensing were downloaded from Finer Resolution Observation and Monitoring-Global Land Cover
(http://data.ess.tsinghua.edu.cn/). Baidu migration index data (1 January 2020, to 29 February 2020)
was obtained from Smarteye Map (https://qianxi.baidu.com/). The data of population, regional GDP
in the county-level (districts, counties) in Hubei Province were obtained from the “Hubei Statistical
Yearbook 2019 and 2018” and the Statistical Yearbook 2019 and 2018 of each prefecture-level city.

2.3. Research Methods

The general idea of the paper is shown in Figure 2. Firstly, the correlation between the migration
and COVID-19 is analyzed by calculating the migration index. Secondly, the spatial autocorrelation of
COVID-19 confirmed cases is explored by using time-serial data and Global Moran’s I. Finally, with the
GTWR and MGWR of extended GWR models, the spatio-temporal and scale differentiation of COVID-19
confirmed cases are analyzed. In the analytical process, sliding analysis was carried out day by day for
the time segments covering 32 days. Longer time segments were conducive to avoiding the occasional
fluctuation, and sliding day by day was conducive to finding the optimal results due to the uncertain
incubation period of COVID-19. The main methods are described below.
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2.3.1. Geographically and Temporally Weighted Regression Model (GTWR)

The spread of COVID-19 epidemic in Hubei Province was not only different on the geographical
level, but also different in time. Therefore, the rapid change in epidemic situation on a daily basis
made the time factors especially important in model analysis, although the geographically weighted
regression model (GWR) has the advantage that it extends the traditional regression analysis model
by introducing location parameter, so that spatial heterogeneity can be reflected in the COVID-19
analysis, making the analysis results more reasonable. The GTWR model takes both time and spatial
heterogeneity into account, and obtains the regression coefficients on each observation point by
calculating the space–time distance, making the model theoretically closer to the reality. The GTWR
model can be expressed as Formula (1) and the process of parameter-solving is in reference [21].

Yi = β0(µi, νi, ti) +
∑

k

βk(µi, νi, ti)Xik + εi (1)

http://map.baidu.com/
https://www.amap.com/
http://data.ess.tsinghua.edu.cn/
https://qianxi.baidu.com/
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In this formula, i represents the ith observation (1 ≤ i ≤ n, n is the number of observations);
k represents the kth independent variable, such as migration, GDP, population density, etc. (1 ≤ k ≤ m,
m is the number of independent variables); Xik is the value of the kth independent variable at the
ith observation point; εi represents the residual of the ith observation point; (µi,νi,ti) denotes the
coordinates of the point i in spatio-temporal coordinate system; β0(µi,νi,ti) represents the intercept
value, and βk(µi,νi,ti) is a set of values of parameters at points i, and it can change corresponding to
time and space, which provides a more precise expression of the local effects.

In the GTWR local regression, the calculations of the adjacent points around the observation
points depend on the spatial distance and temporal distance. Comprehensive results are obtained
by adding operation. To balance the different effects of the methods used to measure the spatial and
temporal distance in their respective metric systems, we gave out the spatial distance coefficient and
the temporal distance coefficient (Formula (2)), respectively. After the appropriate distance coefficient
was given, the proximity degree could be measured.

dST = λdS + µdT (2)

In Formula (2), dST represents the spatial and temporal distance; dS and λ represent the spatial
distance and coefficient, respectively; dT and µ represent the temporal distance and coefficient,
respectively. If dT is smaller than dS, then it indicates that dST will be dominated by dS; if dT is bigger
than dS, then it indicates that dST will be dominated by dT. In order to simplify the model, we defined
k = µ/λ and λ = 1 in the actual operations. µ was optimized using cross-validation in terms of R2 or
AIC [21].

2.3.2. Multi-Scale Geographically Weighted Regression (MGWR)

Tobler’s first law of geography lays a theoretical foundation for spatial autocorrelation analysis.
The spatial range is a typical scale representation for GIS analysis [22]. In GWR, the heterogeneity
of all spatial relationships at the same scale is captured by spatial bandwidth, but limiting the same
spatial scale for all spatial processes may deviate the estimation results. For example, the temperature
may vary little spatially, while the distances between the main roads depend on regional road density,
which have obvious differences. MGWR, taking the different spatial scales that may exist between
different independent variables into consideration, could allow conditional relationships between
independent variables and dependent variables to change on different spatial scales [23] and different
independent variables have expressions of different bandwidths in regression results. The following is
the MGWR model [24].

yi =
m∑

j=0

βbwj(µi, νi)xi j + εi (3)

In Formula (3), i represents the ith observation (1 ≤ i ≤ n, n is the number of observations);
j represents the jth independent variable, such as migration, GDP, population density, etc.; m is the
number of independent variables; xij is the value of the jth independent variable at the ith observation
point; εi represents the residual of the ith observation point; (µi,νi) denotes the coordinates of the point
i in space; bwj in βbwj indicates the bandwidth used for calibration of the jth conditional relationship;
βbwj(µi,νi) is a set of values of parameters at points i. The process of parameter solving is in [24].

The bandwidth of the Extended GWR determines the rate at which regression weights attenuate
in a given point’s ((u, v, t)/(u, v)) surrounding. The optimal bandwidth is determined by the AICc
method [21]. The spatial kernel type is set to be adaptive.

2.3.3. Panel Data Sliding Regression

As our knowledge of COVID-19 is not complete, the result would be deviated from if we only
use data from specific regions or at specific moments. However, panel data can provide individuals’
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information about the dynamic behavior of individuals. Using cross-section and time, these two
dimensions significantly increase the sample size, which can significantly improve the accuracy of
the estimated results. According to the previous research, population migration is an important
factor affecting the COVID-19 epidemic situation. Therefore, in this research, we collected data on
the daily migration of population (the proportion of each city ‘s immigrants every day and the scale
index of each city’s daily migration) in 17 city-level regions of Hubei province from 1 January 2020,
to 29 February 2020. Considering the custom near the Spring Festival in domestic (that most migrations
were for spending the Spring Festival in their hometowns) and the availability of the counties’ immigrant
data, we proportioned the cities’ daily immigrant data onto 103 research districts based on every
counties’ household registration population. In order to examine Wuhan emigrants’ effect on other
districts, we sorted the migration data into two sections; one is on immigrants from Wuhan (Formula (4))
and the other is on immigrants from other regions (Formula (5)).

ywh
it = ρitCwh

t (4)

yothers
it =

16∑
k=1

ρitCkt (5)

In these formulas, ywh
it represents the immigratory index from Wuhan, while yothers

it represents the
immigratory index from other regions; i represents the ith county-level area (1 ≤ i ≤ 103); t represents
the day from 1 January 2020 to 29 February 2020; ρit represents the immigrants’ percentage of the time
t in area; Cwh

t represents the emigrant scale from Wuhan in t time; Ckt represents the emigrant scale
from the kth area of the remaining 16 prefecture-level cities; the scale of emigrants among different
prefectural cities in the same day is comparable.

According to the relatively complete official data on COVID-19 since 29 January 2020, the spread
trend of the COVID-19 epidemic in Hubei Province in February 2020 was the most obvious.
Until 29 February 2020, 85 of 103 county-level cities (82.52%) in the province already had zero newly
confirmed cases. In order not to introduce more deviations into the later analyses, we only collected
confirmed cases in the county-level from 29 January 2020 to 29 February 2020 in this paper.

The uncertainty of COVID-19′s incubation period made it difficult to accurately figure out the
relationship between immigration data and confirmed cases. For example, the early-stage studies
showed that the mean incubation period was 5.2 days (95% confidence interval [CI], 4.1 to 7.7.0) [25].
Tanu Singhal calculated the incubation period ranges from 2 to 14 d [26]. Patients who seem normal
in the 14-day medical or isolated observation period and patients in the periods from pathogeny to
diagnosis can all be potential source of infection. The uncertainty of COVID-19′s incubation period
made it difficult to accurately figure out the corresponding relationship between the initial time of the
immigration data and confirmed cases in the panel regression. In our analyses, we slid from day to
day on the data of the immigrant factor to search for the optimal results. The sliding analyses’ method
is in Formulas (6)–(8).

yi = f (xwh
it , xother

it , xpop, xGDP, xdis, xden, ximp) (6)

xwh
it = (xwh

it1 , xwh
it2 , . . . , xwh

it32) (7)

xother
it = (xother

it1 , xother
it2 , . . . , xother

it32 ) (8)

In these formulas, yi is a vector consisting of yi1, yi2, . . . , yi32 (shape is 1 × 32); xwh
it and xother

it refer
to the population migration vector from Wuhan and other regions, respectively, to the ith research area
from day t. Since the incubation period of COVID-19 could not be precisely anticipated, the t value
starts from 1 January 2020, and will then move on to every single day after that. Every time, population
migration data for 32 consecutive days were taken for analysis. After 23 January 2020, due to the
government’s strong travel intervention policy, the possibility of transmission caused by population
migration was reduced sharply. In order not to let the data after the blocking of population migration
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have a too-large proportion in a single 32-day sequence analysis, the maximum value of the t was
29 January 2020. f was the statistical analysis method used in our study. Typical methods are GTWR
and MGWR, which can be seen in references [9,10,27]. xpop, xGDP, xden were the resident population of
each county-level units in 2018, GDP in the year 2018 and the population density of the area, respectively.

To explore the relationship between the change in human settlement environment and COVID-19,
we introduced the impervious area variables ximp in various regions from 1978 to 2017 [28]. Levels of
roads are the direct embodiment of traffic convenience; the completion of road infrastructure is directly
related to the efficiency of population migration, and the carrying capacity of roads of different levels is
not the same in population migration. In our study, the distances from each county-level district’s central
point to railways, highways, main roads, secondary roads, other roads and subways were calculated,
respectively. Since the subways are only in Wuhan City, we used their real distances in Wuhan City,
while defined its value in other districts as 26,594 m, which is the same as the nearest district (Xiaogan).
This means that subways have the same effect on the other districts. Entropy weight method was used
to calculate the weights of all kinds of distance (Table 1), and then the sum of distances’ weights of all
regions (xdis) was obtained as the final influence of the distances.

Table 1. The weights of different roads.

Road Type Railway Expressway Main Road Secondary Road Other Road Subway

Weight 0.24 0.20 0.16 0.19 0.19 0.02

2.4. The Evolution of Population Migration between Prefecture-Level Cities

The reality that COVID-19 is infectious between people reveals that population migration is a
non-negligible factor in the prevention and control of the epidemic’s spread [29,30]. We collected the
immigrant population data between pairs of cities among the 17 prefecture-level cities of Hubei Province
from 1 January to 29 February 2020. We drew circle maps using Circos to express the trend of migration,
because it was not obvious after the restriction on travel was implemented. The timespan of the research
was from 1 January 2020 to 31 January 2020 [31] (Figure 3).

On the right side of the Figure 3, the source of population migration is shown. We judged that
the total amount of emigrants in each of the 17 cities in Hubei Province during 31 days in January was
relatively balanced, while the destinations of the population have a significant trend of concentration.
According to Table 2, the average population of the other 16 cities moving into Wuhan City is 73.05%
when excluding the mutual migration within Wuhan City (Xiaogan has the maximum of 92.20%,
while Shennongjia has the minimum of 43.64%). According to the migration destinations on the left
side of Figure 3, Wuhan is very prominent in 17 prefectural-level cities. A total of 71.59% of the total
migration population of Hubei Province in January 2020 moved to Wuhan, while the population of
Wuhan City moving into other regions of the province only accounts for 3.70%. Wuhan is the economic
and political center of Hubei Province. Its radiation effect on the surrounding areas is partly realized by
the mobile workers whose families and companies are in Wuhan, while they are always or temporarily
on business in other regions of the province. The beginning of the COVID-19 outbreak was coincidently
close to the Spring Festival. This is the largest traditional festival in China, so many workers outside
show an obvious trend of going back to their hometowns. The population’s trend of moving into Wuhan,
mentioned above, exactly indicates this.
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was relatively balanced, while the destinations of the population have a significant trend of 
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Figure 3. Inter-population migration from 1 January 2020 to 31 January 2020. Note: (1) The capital
letters and non-capital letters in the outer circles represent the cities people move out of and move into.
(2) All scale labels represent the number of migrations in the corresponding area. (Multiply everything
by 0.1 except the percentage and the innermost circle scale). (3) The scatter points are distributed at
different levels; the line chart and the histogram show the sub-level composition of the migration
information of each region. (4) The strips with different color and widths in the center of the circle
diagram visually show the migration direction and quantity from move-out areas (Note those with
capital letters in the outer circles, such as: EZ) to move-in areas (Note those with non-capital letters in
the outer circles, such as: ez.).

The migration data mainly decrease as the distance become longer. Wuhan is the migration center in
the east of the province. Xiaogan, Ezhou, Xianning, Huanggang and Xiantao rank as the first five sources of
the immigrants of Wuhan. The number of immigrants from Enshi is the lowest, only 21.93% of the amount
of Xiaogan, which ranks the first. As for the emigrants of Wuhan, they mostly moved into Huanggang,
Xiaogan, Jingzou, Xianning and Xiangyang, which rank as the first five destinations. The number of
people moving into Huanggang is 6.19 times those into Xiangyang. In the western part of the province,
migration circles which appear among cities near each other center on Shennongjia, Qianjiang, Enshi and
Yichang. For example, the number of people moving from Shennongjia to Yichang and Xiangyang is,
respectively, 13.27 and 4.32 times higher than that from Wuhan. The trend of immigration is the same
as the urbanization degree of the regions, so emigrants to Shennongjia from each city account for the
smallest population.
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Table 2. The migration index matrix for January 2020 in Hubei province.

In
Out WH HS SY YC XY EZ JM XG JZ HG XN SZ ES XT QJ TM SN Sum

WH / 97 30 67 104 93 52 529 239 644 133 38 41 32 9 19 0 2127
HS 2489 / 5 12 18 313 6 35 31 552 101 4 5 3 1 2 0 3577
SY 1642 14 / 33 518 4 21 40 51 40 9 15 8 3 2 3 1 2404
YC 1690 15 17 / 113 6 82 61 525 55 12 6 215 7 5 8 1 2818
XY 1874 14 159 74 / 6 69 60 69 41 11 57 10 3 2 4 0 2453
EZ 4391 709 4 10 15 / 6 40 31 401 36 4 4 3 1 2 0 5657
JM 2423 12 18 135 182 6 / 139 349 45 13 18 22 11 22 86 0 3481
XG 5056 15 11 27 48 9 35 / 56 101 19 53 6 21 2 25 0 5484
JZ 2088 10 8 179 31 5 59 61 / 34 28 4 20 35 32 9 0 2603

HG 3418 112 7 15 16 40 6 59 35 / 16 4 5 2 1 1 0 3737
XN 3461 98 6 17 19 17 8 56 102 71 / 4 6 6 1 3 0 3875
SZ 2843 13 25 23 266 8 31 372 51 52 13 / 6 3 1 4 0 3711
ES 1108 12 7 207 23 5 17 23 110 31 10 2 / 5 3 3 0 1566
XT 3144 11 8 35 25 5 25 260 431 42 18 4 13 / 49 106 0 4176
QJ 2080 10 10 50 24 4 115 97 933 44 11 4 14 120 / 49 0 3565
TM 1980 8 10 36 31 4 195 261 146 31 10 5 10 102 21 / 0 2850
SN 1513 8 194 889 449 3 34 50 110 10 6 7 179 6 5 4 / 3467
sum 41,200 1158 519 1809 1882 528 761 2143 3269 2194 446 229 564 362 157 328 2 57,551

1 WH for Wuhan, HS for Huangshi, SY for Shiyan, YC for Yichang, XY for Xiangyang, EZ for Ezhou, JM for Jingmen,
XG for Xiaogan, JZ for Jingzhou, HG for Xianning, XN for Xianning, SZ for Suizhou, ES for Enshi, XT for Xiantao,
QJ for Qianjiang, TM for Tianmen, and SN for Shennongjia.

2.5. Time-Serial Spatial Autocorrelation of COVID-19

Since the early 1800s, scholars had identified a distance decay effect [32]. There is spatial interaction
between the geographic data of one place and its adjacent location in the evolution of the COVID-19
spread. Moran’s I is often used to quantitatively describe the spatial autocorrelation of COVID-19 [33].
Using Global Moran’s I to analyze the COVID-19 confirmed cases of 103 research areas from 1 January 2020
to 29 February 2020, it can reveal the overall distribution of its spatial autocorrelation, which is helpful in
quantitatively judging whether COVID-19 agglomeration occurs in space (Figure 4).ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 10 of 18 
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Figure 4 demonstrates that COVID-19 confirmed cases in the counties in Hubei Province have
significant spatial autocorrelation from 1 January 2020 to 29 February 2020, which is basically consistent
with some research results in reference [8]. The correlation degree tends to be stable after rapid growth
in the early stage, which can generally be divided into four stages. The first is the decline phase
(29 January 2020 to 31 January 2020) when Hubei Province implemented the severest population
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isolation policy and restriction on travel because of the rapid spread of the epidemic [1]. This led to
the effective control of the fast-spread trend of the epidemic in the early stage. The second stage is
the rapid growth period (1 February 2020 to 11 February 2020). In this stage, the incubation period of
the virus-carrying population gradually ended and the disease gradually emerged after the policy
of isolation and restriction. In the meantime, the new fast-detection technology, such as isothermal
amplification kit, enhanced the detection ability per unit time. Therefore, a variety of factors resulted in a
concentrated outbreak of the COVID-19 confirmed cases and the global spatial autocorrelation increased
significantly. The third period is the smooth transition period (12 February 2020 to 23 February 2020).
In this period, all the medical and public health teams and medical supplies from other provinces
gathered to help out in every districts of Hubei Province. New hospitals for infectious diseases and
mobile compartment hospitals were put into use. Isolation measures in the level of communities were
strengthened [34]. All these factors contributed to the effective containment of the rapid growth trend
of the COVID-19 epidemic. The cumulative number of cases in each county changed slightly, so the
time-series spatial autocorrelation curve tends to be steady (the fluctuation on 12 February 2020 and
23 February 2020 are caused by the change in statistical caliber). The fourth period (24 February 2020
to 29 February 2020). In this stage, the comprehensive effect of various epidemic prevention measures
had gradually emerged. The confirmed cases in other counties except Wuhan were dominated by
stopping the increase. With the continuous increase in cured cases, the COVID-19 confirmed cases will
be fewer and fewer, and the time-series spatial autocorrelation curve at the end of this stage showed a
downward trend.

2.6. The Results of Extended GWR Sequential Sliding Regression

Spatio-temporal correlation and spatio-temporal heterogeneity are two significant features of
spatio-temporal data [35]. Not only will the heterogeneity of spatial effect affect the spread of COVID-19,
but the complex temporal effect will lead to the non-stationarity of COVID-19 confirmed cases’ evolution.
Figure 5 shows the results of sequential sliding regression under different spatiotemporal patterns.
The summaries of the OLS, GTWR and MGWR models are shown in Table 3.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 11 of 18 
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Table 3. Summaries of OLS, GTWR and MGWR models.

Name
R2 Adjusted R2 AICc

Max Min Median Mean Max Min Median Mean Max Min Median Mean

OLS 0.596 0.588 0.592 0.592 0.595 0.587 0.591 0.592 6448.611 6387.235 6417.994 6413.252
GTWR 0.966 0.954 0.963 0.962 0.966 0.954 0.963 0.962 45,206.100 44,229.000 44,487.700 44,603.466
MGWR 0.920 0.681 0.793 0.804 0.916 0.671 0.781 0.795 5788.579 1384.443 4536.313 3986.196
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From Figure 5, we can see that OLS had the best regression result from 14 January 2020 to
17 January 2020. This implies that when it comes to COVID-19 confirmed cases in the 103 county-level
regions in Hubei Province on the whole (1 January 2020 to 29 February 2020), the regression obtained
the optimal results after 12–15 days of population migration when considering the influencing factors of
population migration. The maximum of the adjusted R2 is 0.596. In GTWR regression, after considering
the spatial and temporal heterogeneity, the adjusted R2 after the sequence regression from 1 January 2020
to 8 January 2020 decreased steadily in general. From 8 January 2020 to 11 January 2020, the adjusted
R2 increased fast and the peak value appearing at the last day was 0.963. From 11 January 2020 to
24 January 2020, it decreased slightly and then increased slowly, and reached the overall maximum
value of 0.966 at 24 January 2020. After that, due to the all-district severe restriction on travelling
from 23 January 2020 and other factors, the adjusted R2 had an overall slow decline from 0.966 to
0.965 from 24 January 2020 to 31 January 2020. The Spatio-Temporal Distance Ratio increased from
0.269 to 0.373 (5 January 2020 to 8 January 2020) and then dropped back to 0.269. This demonstrates
that spatial heterogeneity is dominant in spatiotemporal heterogeneity, and temporal heterogeneity
fluctuates. MGWR regression, on the basis of spatial heterogeneity, takes spatial scale differences of
different variables into consideration. In MGWR sequential sliding results, the adjusted R2 shows a fast
climbing trend from 1 January 2020 to 11 January 2020, indicating that the effect of variable scale effect
on regression results is enhanced. For example, the spatial scale of Intercept, xWH, xOther, xpop, xGDP,
xdis, xden and ximp on 5 January 2020 is 68, 3270, 394, 431, 3270, 137, 68 and 1034, respectively, which is
different from GWR, in which all the variables have the same spatial scale. MGWR have optimal
regression results on 11 January 2020, at which point the adjusted R2 is 0.916. After that, the downward
trend of the adjusted R2 of MGWR regression curve is obvious. Although it fluctuates slightly after
23 January 2020 when the restriction was implemented, the overall trend is still downward.

3. Discussion

3.1. Bidirectional Population Migration

For specific areas, population migration can be divided into two types: emigration and immigration.
Assuming that transmission between humans is one of the main transmission routes of COVID-19, its
influence pattern is bidirectional. Firstly, the corona virus carriers have a positive effect on the patient
population of their destination. Some scholars’ studies on confirmed cases in destinations of Wuhan
migration population showed that there is a significant positive correlation between them [36], and the
destinations were mainly outside the epicenter, Hubei province (the amount of confirmed cases in and
outside the province have a significant difference). Secondly, the migration of the healthy population
has a dilution effect on the patient density of the destinations. Wuhan is a city with a population of
tens of millions. Before the lockdown of the city, COVID-19 confirmed cases accounted for a very
low population, so the density was also low [37] (on 23 January 2020, it was officially announced
that 549 people were cumulative infections [1]). In addition, it was near the Spring Festival, so the
population migration in the province mainly returned to Wuhan. Therefore, the prediction of the spread
of COVID-19 confirmed cases based on large-scale population migration statistics such as mobile
phone signaling has limited precision. However, the strict supervision of COVID-19 confirmed patients’
migration trajectory is more efficient and accurate. In the later stage, the reports on immigration at
home and abroad were all concentrated on whether specific cases had a Wuhan travel history and
there were few predictive reports based directly on migration data.

The period between 1 January 2020 and 29 February 2020 was the most typical stage of the COVID-19
concentrated outbreak in Hubei Province. The number of cases had rapid growth at the beginning
of the month, while there were no new cases in most areas by the end of the month. The uncertainty
of COVID-19′s incubation period made it difficult to accurately figure out the relationship between
migration and COVID-19 confirmed cases. We take COVID-19 confirmed cases as the variable being
explained and take the other 16 regions’ immigrant index as the variable used to explain from the
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mentioned 32-day cycle and eliminate the influence of mutation value as far as possible. We calculated
the correlation (double tail) between paired cities from the 17 prefecture-level cities in Hubei Province
day by day since 1 January 2020. Figure 6 is the correlation result and the corresponding significance.
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Figure 6. Time-serial correlation between immigration and COVID-19 confirmed cases: (a) the correlation
result; (b) the corresponding significance. Notes: D2 refers to the second day of January, 2020 and the labels
can be explained similarly; Z1-Z17 refer to the 17 prefecture-level cities in Table 2; The different colors in
Figure 6a, b reveal the degree of correlation at different spatio-temporal points and the significance of each
corresponding point.

From Figure 6a,b, we can see that the correlation of all regions shows a trend suggesting that
there is positive/negative correlation from the beginning of the month, to the significant negative in
middle of the month and the insignificant positive and negative correlation in the end of the month.
The maximum correlation value of each district concentrated in the period from 14 January 2020 to
18 January 2020 and the correlation significance concentrated in the period from 8 January 2020 to
22 January 2020. The negative correlation of the main part shows that the migration population of
17 city-level scales was mainly healthy. During this period, the migration mode is mainly that people
immigrate into Wuhan, which increases the risk of individual infection in the later stage and the
cardinal number of the overall patient. Therefore, the restriction implemented on 23 January 2020 is an
effective control measure, not only to prevent the emigrants of Wuhan being the sources of infection
but also to prevent the high risk of immigrants of Wuhan getting the disease.

3.2. Co-Effects of Spatial Heterogeneity and Temporal Heterogeneity on COVID-19

COVID-19′s evolution is closely related to environmental factors, mainly reflected in the two
dimensions, which are space and time, respectively, based on the prior knowledge that anything
has spatial correlation no matter whether it is strong or weak [38]. Differences in nature, humanities,
etc., in different regions potentially affect COVID-19 development [9,39]. Referring to the spatial
distance measurement method, the heterogeneity of the time dimension is reflected in the scale
of the time-weighted element between observations i and j in the spatio-temporal weight matrix.
Using 11 January 2020, when the adjusted R2 is optimal in the GWR time sequence sliding result,
we divided the time range of 32 days into four stages and compared their spatio-temporal heterogeneities’
influence. It turned out that all the influencing factors were relatively clear in the first stage (11 January 2020
to 18 January 2020) and the second stage (19 January 2020 to 26 January 2020), while the third stage
(27 January 2020 to 3 February 2020) and the fourth stage (4 February 2020 to 11 February 2020) were,
relatively, a continuation of the second stage. Taking the resident population factor, which had a
relatively big influence, as an example, the fourth stage changes are shown in Figure 7.
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In Figure 7, we could see that the effect of resident population on COVID-19 has significant
spatial-temporal differentiation. Taking Wuhan 1 + 8 city circle as the center, the influence degree
gradually concentrates and shrinks from outside to inside. The Figure 7a shows that in the first stage
when people could migrate freely, the impact of resident population on Xiangyang, Huanggang, Ezhou,
Huangshi is the most significant. However, the overall impact is relatively extensive; its influence is
obvious on cities near and far from Wuhan, such as Lichuan in western Hubei, Huangmei in eastern
Hubei and Jingmen. Figure 7b shows that, with the implementation of the restriction on travel in
Wuhan on 23 January 2020 and other areas of Hubei later, the center of the spatio-temporal influence of
the resident population in the second stage gradually shrinks to the area centered on Wuhan. After the
full implementation of the travel restriction, the spatial and temporal heterogeneity of the resident
population no longer has great changes. Figure 7c,d presents that, in the third and fourth stages,
the spatial and temporal differentiation is basically a continuation of the former stage. Wuhan 1 + 8 city
circle concentrated about 52.83% of the province’s population and 60.35% of the GDP [40], and the
trend of the spatial and temporal heterogeneity of the resident population centered in this circle became
increasingly obvious.

3.3. The Spatial Scale Effects of Different Factors Vary

Resolution and extent are two typical scale representations in geographical analysis. Here, the scale
means to extend. Ideally, models of physical process would be defined and tested on scale-free
data [22], but classical GWR models give different factors the same spatial scale while considering
spatial heterogeneity, which means that in COVID-19 evolution analysis, factors such as population
density and distances to roads have the same spatial effective scope. However, it is obvious that the
same road passing through areas with high-density population or areas with low-density population
makes a difference on the spread of COVID-19. Figure 8 provides the scale difference of the other six
factors on COVID-19 besides the population density factor which has been mentioned before.



ISPRS Int. J. Geo-Inf. 2020, 9, 536 14 of 17

From Figure 8, it could be seen that different factors have different degrees of influence on
COVID-19, and factors of the same class show different scale effects. Figure 8a shows that immigrants
from Wuhan had a more sensitive influence on the northeast of the province than on the southwest.
The transition of the influence range is generally in the pattern of parallel band, and the gradation
is very clear. The negative nature of the whole region indicates that within 32 consecutive days
since 11 January 2020, the influence of immigrants from Wuhan had decreased due to the migration
restriction on the 13th day in the period, and the decrease was more significant in the northeast. It is
apparent from Figure 8b that the population migration of other regions has the most significant effect
on Wuhan and the scale effect is the most obvious. The negative nature of the number indicates that
under the condition that all the other factors were equal, the influence immigrants from other regions
had on Wuhan COVID-19 situation was below the regional mean, while their influence on other
regions like Enshi, Shennongjia, which are in the western Hubei Province and are far from Wuhan City,
was above the regional mean. Figure 8c,e has a similar pattern of scale differentiation. The main part
shows a level-by-level transition trend from big to small, from west to east. The ecological environment
of the western part of the province is better than that of Wuhan and the eastern part, but the GDP and
population density of the western part are far lower than that of the eastern part, so it is more sensitive
to the change in GDP and population density. Figure 8d provides that the influence of traffic factors on
Enshi, Yichang and other regions is relatively obvious. The geographical environment in this area is
complex and diverse, so the traffic is less developed than that around Wuhan. Thus, the heterogeneity
of all kinds of traffic is only apparent on a larger scale. Figure 8f implies that there is a negative
relationship between the impervious surface and COVID-19. That means the larger the impervious area
is, the better the habitat environment is, and the lower the number confirmed cases is. The impervious
surface has a smaller impact on Wuhan, Ezhou and their surrounding areas, while it has a relatively
big impact on regions like Enshi, Shennongjia and Shiyan. It is probably because impermeable surface
construction in Wuhan and its surrounding reached a very high degree compared with the western
area. Therefore, relatively speaking, the impact of the change in impermeable surface is less obvious
than that in the west.
ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 15 of 18 

 

   

(a) (b) (c) 

   
(d) (e) (f) 

Figure 8. The scale difference of different factors: (a) Migration form Wuhan; (b) Migration from other 
area; (c) GDP; (d) Integrated distance; (e) Population density; (f) Impervious areas. 

4. Conclusions 

Migration has a bidirectional influence on the spread of COVID-19. The population from other 
regions in Hubei Province to Wuhan were mainly returning home to spend the Spring Festival before 
23 January 2020, when the restrictions were implemented in Wuhan. The impact of the nearby 
migration in the western part of the province was obvious from 29 January 2020 to 29 February 2020 
(slide day by day since 1 January 2020, and 32 days are a single period), the correlation between the 
accumulated COVID-19 confirmed cases of 103 county-level units in the whole province and the 
immigrant population showed an inverted U pattern, with a negative correlation in the early stage, 
and transitioned to a positive/negative correlation in the later stage. There was high significance from 
8 January 2020 to 22 January 2020. The correlation maximum of each district appeared in a different 
time, with 16 January 2020 as the center, and concentrated in the period from 14 January 2020 to 18 
January 2020. Potentially, it could be judged that the COVID-19 epidemic outbreak in February had 
the biggest relation with the population migration 11–15 days ahead of it. The negative correlation of 
each district’s correlation maximum shows that the effect of population immigration on destinations 
apart from Wuhan is still obvious, and effective epidemic prevention should not only focus on 
restricting the migration of the COVID-19 confirmed cases, but also take restriction measures to 
actively prevent cross-infection of healthy people who move into high-risk areas. As COVID-19 
confirmed cases integrated in a dense flow of healthy people, it is an efficient protective way to isolate 
and restrict travel specifically in order to block the spread based on population migration. Similar 
population migration measures could be used for the prevention of other viruses or the same virus 
in other regions. 

COVID-19 is significantly spatially auto-correlated. Its evolution in Hubei Province was both 
influenced by temporal differentiation and spatial differentiation, with the latter one as the main 
effect. The temporal differentiation is closely related with the population migration. Its influence has 
obvious stages. Before the travel restriction, the temporal differentiations of immigrant population 
vary obviously, while after the restriction, the spatio-temporal differences become steady. At each 
moment of the sliding regression, the adjusted R2 of GTWR is bigger than that of MGWR. The 
combined effect of spatial differentiation and temporal differentiation is more obvious than the 
variable scale effect. The evolution of COVID-19 has spatial concentration and temporal continuity, 
and timely prevention measures are of great significance to combat the further spread of the 
epidemic. 

(3) Different factors affect COVID-19 to different extent and factors of the same class show 
different variable scale effects. From the spatial aspect, the variable scale effect of COVID-19 

Figure 8. The scale difference of different factors: (a) Migration form Wuhan; (b) Migration from other
area; (c) GDP; (d) Integrated distance; (e) Population density; (f) Impervious areas.

4. Conclusions

Migration has a bidirectional influence on the spread of COVID-19. The population from other
regions in Hubei Province to Wuhan were mainly returning home to spend the Spring Festival
before 23 January 2020, when the restrictions were implemented in Wuhan. The impact of the nearby
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migration in the western part of the province was obvious from 29 January 2020 to 29 February 2020
(slide day by day since 1 January 2020, and 32 days are a single period), the correlation between
the accumulated COVID-19 confirmed cases of 103 county-level units in the whole province and the
immigrant population showed an inverted U pattern, with a negative correlation in the early stage,
and transitioned to a positive/negative correlation in the later stage. There was high significance
from 8 January 2020 to 22 January 2020. The correlation maximum of each district appeared in a
different time, with 16 January 2020 as the center, and concentrated in the period from 14 January 2020
to 18 January 2020. Potentially, it could be judged that the COVID-19 epidemic outbreak in February
had the biggest relation with the population migration 11–15 days ahead of it. The negative correlation
of each district’s correlation maximum shows that the effect of population immigration on destinations
apart from Wuhan is still obvious, and effective epidemic prevention should not only focus on restricting
the migration of the COVID-19 confirmed cases, but also take restriction measures to actively prevent
cross-infection of healthy people who move into high-risk areas. As COVID-19 confirmed cases
integrated in a dense flow of healthy people, it is an efficient protective way to isolate and restrict travel
specifically in order to block the spread based on population migration. Similar population migration
measures could be used for the prevention of other viruses or the same virus in other regions.

COVID-19 is significantly spatially auto-correlated. Its evolution in Hubei Province was both
influenced by temporal differentiation and spatial differentiation, with the latter one as the main
effect. The temporal differentiation is closely related with the population migration. Its influence has
obvious stages. Before the travel restriction, the temporal differentiations of immigrant population vary
obviously, while after the restriction, the spatio-temporal differences become steady. At each moment
of the sliding regression, the adjusted R2 of GTWR is bigger than that of MGWR. The combined effect
of spatial differentiation and temporal differentiation is more obvious than the variable scale effect.
The evolution of COVID-19 has spatial concentration and temporal continuity, and timely prevention
measures are of great significance to combat the further spread of the epidemic.

Different factors affect COVID-19 to different extent and factors of the same class show different
variable scale effects. From the spatial aspect, the variable scale effect of COVID-19 confirmed cases in
Hubei Province show a transition pattern of parallel bands from east to west and an epitaxial radiation
pattern centered on the Wuhan 1 + 8 city circle. In the 32-day timespan, the resident population and
population density have a great influence on the COVID-19 confirmed cases in the whole region,
followed by factors including Wuhan’s immigration, regional GDPs and the impermeable surface.
The traffic conditions have relatively little influence on the COVID-19 confirmed cases. As the Spring
Festival approached, the immigration from other regions of Hubei Province had a relatively large
influence on Wuhan and other regional economic centers. Therefore, we could conclude that the
balanced development of the regions is beneficial to the reasonable migration of the population,
thus alleviating the concentrated outbreaks of viruses.
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