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Abstract: OpenStreetMap (OSM) data are considered essential for land-use and land-cover (LULC)
mapping despite their lack of quality. Most relevant studies have employed an LULC reference dataset
for quality assessment, but such a reference dataset is not freely available for most countries and
regions. Thus, this study conducts an intrinsic quality assessment of the OSM-based LULC dataset
(i.e., without using a reference LULC dataset) by examining the patterns of both its completeness and
diversity. With China chosen as the study area, an OSM-based LULC dataset of the country was first
generated and validated by using various accuracy measures. Both its completeness and diversity
patterns were then mapped and analyzed in terms of each prefecture-level division of the country.
The results showed the following: (1) While the overall accuracy was as high as 82.2%, most complete
regions of China were not mapped well owing to a lack of diverse LULC classes. (2) In terms of
socioeconomic factors and the number of contributors, higher correlations were noted for diversity
patterns than completeness patterns; thus, the diversity pattern is a better reflection of socioeconomic
factors and the spatial patterns of contributors. (3) Both the completeness and the diversity patterns
can be combined to better understand an OSM-based LULC dataset. These results indicate that it is
useful to consider diversity as a supplement for intrinsically assessing the quality of an OSM-based
LULC dataset. This analytical method can also be applied to other countries and regions.

Keywords: OpenStreetMap; LULC mapping; data quality; intrinsic quality assessment; completeness;
diversity

1. Introduction

Land-use (LU) and land-cover (LC) maps represent spatial information on different classes of
natural and/or human-made geographical features on the Earth. These maps can be applied to natural
resource management [1,2], urban and transportation planning [3,4], and the monitoring and modeling
of urban sprawl [5–7]. Much focus has been placed on land-use and land-cover (LULC) mapping
using different data sources. For instance, remote sensing data have been widely used to produce
a global LC map [8,9] because the technology has benefits in terms of detecting physical objects
(e.g., roads, buildings, rivers, and lakes) on the surface of the Earth. However, the use of remote
sensing data has been criticized in the context of LU mapping because it is difficult to sense thematic
attributes (e.g., residential, commercial, or industrial) of an object using only these data [10]. Other data
sources, e.g., points of interest (POI) [11], street view images [12], and mobile phone data [13], have also
been used for LU mapping, but most of them are often available only for studying a certain area
of a city, rather than areas of a country or larger region. Another choice is geographic information
provided by volunteers, the so-called “volunteered geographic information” (VGI) [14]. As one of
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the most successful VGI projects, OpenStreetMap (OSM) has been used for LULC mapping [15–17].
OSM data are beneficial in this context because they are available for free, and provide global coverage
and almost real-time updates (e.g., OSM data can theoretically be updated on a minute-by-minute
basis). Nevertheless, many concerns have arisen regarding the quality of OSM datasets because
most are provided by volunteers from different countries and/or backgrounds, embodying different
ages, occupations, and incomes [18]. Therefore, much research has focused on assessing the quality
of OSM data in terms of not only the LULC feature [15,19,20], but also other geographical features,
e.g., roads [21–23] and buildings [24,25].

Most relevant studies have used an LULC reference dataset for quality assessment. For instance,
Arsanjani and Vaz [19] compared the OSM-based LU datasets of seven of Europe’s metropolises
with the corresponding LU reference datasets from the Global Monitoring for Environment and
Security Urban Atlas (GMESUA). They found that six out of the seven metropolises had approximately
above 75% agreement between each pair of OSM and LU reference datasets; but the completeness
(i.e., the coverage of an OSM dataset in a region) of the seven metropolises varied, from 42% for
Budapest to 100% for Bucharest. Estima and Painho [26] used OSM-POI data to generate an LULC
dataset of Portugal, the accuracy (i.e., the consistency between a pair of OSM and LULC reference
datasets) of which was 76.7%. The corresponding LULC reference dataset was obtained from the
Coordination of Information on the Environment (CORINE). Dorn et al. [27] assessed the quality of
OSM-based LULC data in southern Germany and found that the LULC class (i.e., forest) had both
a high accuracy (95.1%) and high completeness (97.6%), but another class (i.e., farmland) had a low
completeness value (45.9%). Viana et al. [20] used OSM historical data for multi-temporal LULC
mapping and compared the results with CORINE datasets. They also concluded that the accuracy
values were substantially high (ranging from 77.3% to 91.9%), although the completeness value was low.

However, an LULC reference dataset is not always freely available, especially for a study area
outside Europe. This means that for most parts of the world, we need to assess the quality of
an OSM-based LULC dataset without any reference dataset (called intrinsic quality assessment).
Several studies have been conducted on intrinsic quality assessment. For instance, See et al. [28] found
that the quality of data contributed by volunteers increased when they indicated higher confidence.
Comber et al. [29] used a number of control points to determine the accuracy of LC classes produced by
a number of volunteers. However, they paid more attention to accuracy than completeness. It is also
desirable to assess the completeness of an OSM dataset to determine whether free data are available.
Some studies have proposed the use of proxy indicators (e.g., OSM building density and OSM street
block density) to quantitatively estimate the completeness of an OSM dataset [24,30], but these studies
have focused on assessing road and building data rather than LULC data in OSM.

Theoretically, it is necessary to employ an LULC reference dataset while assessing only accuracy
and not completeness—the latter can be measured as the ratio of the covered areas of an OSM-based
LULC dataset to the total area of a region. However, due to the availability of LULC reference datasets,
most studies have assessed the quality of OSM-based LULC datasets in European cities, but few
have paid attention to areas outside Europe. Thus, it is useful to investigate whether the quality of
data (especially accuracy) of a different region is comparable to results reported for European study
areas. Moreover, few studies have carried out an intrinsic quality assessment of OSM-based LULC
datasets, which is especially desirable for a study area without any reference dataset. More importantly,
in addition to completeness, is there any other useful measure(s) for an intrinsic quality assessment?

Therefore, this study conducts an intrinsic quality assessment of the OSM-based LULC dataset.
The tenet of our approach is to understand both the completeness and diversity patterns of such
a dataset. More precisely, an OSM-based LULC dataset is first generated and validated, and both
its completeness and diversity patterns are mapped and analyzed. Diversity can be regarded as a
quantitative measure that reflects the number of LULC classes in a dataset. While diversity has been
widely applied to social science [31] and landscape analysis [32,33], to the best of our knowledge,
this measure has rarely been employed for assessing the quality of an OSM-based LULC dataset.
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The study makes two contributions:

(1) The intrinsic quality assessment of an OSM-based LULC dataset is carried out. By contrast,
most past studies have used an LULC reference dataset for quality assessment. Our analytical
method can be applied to other regions, especially those for which a free LULC reference dataset
is unavailable.

(2) Both the completeness and the diversity patterns of an entire country (China) were mapped and
analyzed, and the results indicate that the diversity measure may be used as a supplement for an
intrinsic quality assessment.

The remainder of this study is structured as follows: Section 2 introduces the study area and data.
Section 3 presents the methods used not only to generate the OSM-based LULC dataset, but also to
analyze its completeness and diversity patterns. Section 4 reports and analyzes the results, and Section 5
analyzes the combined patterns of completeness and diversity. Sections 6 and 7 contain a discussion
and the conclusions of this study, respectively.

2. Study Area and Data

2.1. Study Area

(Mainland) China was chosen as the study area for several reasons. First, an LULC reference
dataset for China, produced by either mapping agencies or commercial companies, was not available
for free. However, the OSM dataset may be used as an alternative. Second, most relevant studies have
focused on an analysis of OSM-based LULC datasets in Europe, and not in other regions of the world.
China is the third-largest country in the world in terms of the land area. It is thus useful to investigate
the regions of China that have been mapped/unmapped well, and whether the quality of OSM data
on China is comparable to that for Europe. Third, there are 363 prefecture-level divisions in China.
It might be useful to be able to analyze the completeness and diversity patterns of such a large number
of divisions, as well as the factors that may significantly influence such patterns.

2.2. Data

The most important data in our study were those from the OSM dataset on China. This dataset
was acquired for free from http://download.geofabrik.de/index.html in January 2019. The OSM
dataset had a number of features, including POIs, in terms of point features, and data on roads,
railways, and waterways, in terms of line features. The OSM dataset also covered the LULC, water,
and buildings, in terms of polygon features. Both line and polygon features were used to produce
an LULC dataset for all of China because such features can be characterized by either length or
area. Furthermore, each object in an OSM dataset normally has a tag (e.g., landuse = forest) to
describe its attribute, based on which (e.g., forest) we can classify each object into an LULC class.
In addition to the OSM dataset, the administrative division dataset (consisting of data on 363 divisions
in total) was acquired for free from the National Catalogue Service for Geographic Information
(http://www.webmap.cn/main.do?method=index). This dataset was used to divide the OSM dataset of
China into different sub-divisions.

3. Methods

The tenet of our approach is to understand both the completeness and the diversity patterns of
an OSM-based LULC dataset. The OSM-based LULC dataset on China was first generated and then
validated by calculating various accuracy measures. Moreover, this dataset was mapped and analyzed
in terms of both completeness and diversity measures.

http://download.geofabrik.de/index.html
http://www.webmap.cn/main.do?method=index
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3.1. Production and Validation of OSM-Based LULC Dataset

3.1.1. Production

Extensive efforts have been made to produce an OSM-based LULC dataset [15–17], most of which
feature three typical steps. First, convert line features into polygon features; second, classify OSM
objects into the corresponding reference classes according to their tags (e.g., landuse = forest); and third,
merge multiple OSM features (or layers) into a single layer. This study follows these three steps to
produce an OSM-based LULC dataset.

• Step 1: Convert line features into polygon features. According to Zhou et al. [17], it is feasible to
convert a line feature into a polygon feature through buffering, i.e., to create a buffer region around
the line feature, after which, the buffer region can be viewed as a polygon feature. The challenge
here is to determine appropriate buffer radii for different OSM types because OSM line objects
may be tagged with different attribute values (e.g., highways = primary, highways = secondary,
and highways = residential). Such an appropriate radius was determined by Zhou et al. [17]
through comparison with a corresponding reference LULC dataset (GMESUA). However, such a
reference dataset was not available for our study area, and thus different buffer radii (ranging from
4.5–10 m) for different OSM types were manually determined by referring to the Technical
Standard of Highway Engineering of China and the corresponding images on Google Earth
(Table 1). The buffer radius was generally positively correlated with the importance of an OSM
road type.

• Step 2: Classify OSM objects into corresponding reference classes. Owing to a lack of the
LULC reference product, we manually classified all OSM objects (according to their tags) into
12 LULC classes: Agriculture, orchard, forest, grass, commercial, industrial, residential, public
use, special use, transportation, water, and other lands (Table 2). All these LULC classes were
obtained from the first level of the National Land Use Classification Standards of China.

• Step 3: Merge multiple LULC classes (or layers) into a single layer. This is a necessary step
because some polygon objects in OSM may overlap but correspond to different LULC classes;
it may therefore be difficult to determine a unique LULC class for the same geographical region.
The solution is to make different (12) LULC classes overlap according to their average area,
from small to large [17]. To be specific, the feature or class with the smallest average area was
placed on the top and that with the largest average area was placed at the bottom. After this
process, all LULC classes (or layers) were further merged into a single layer.

Table 1. Buffer radii for typical OpenStreetMap (OSM) road types.

OSM Road Type Buffer Radius (m)

trunk 8

motorway 7.5

primary 10

secondary 7

tertiary 7

residential1 6

service 5

unclassified 4.5

“residential1” denotes a road type (i.e., highways = residential).
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Table 2. Correspondence between some typical OSM tags and land-use and land-cover (LULC)
reference classes.

No. Typical OSM Tags LULC Reference Classes

1 allotments; farm agriculture

2 orchard; vineyard orchard

3 forest; scrub forest

4 grass; meadow grass

5
ATM; bank; bar; cafe; cinema; commercial; computer
shop; fast food; furniture shop; giftshop; hostel; mall;

nightclub; restaurant; retail; supermarket; tower
commercial

6 industrial; quarry industrial

7 residential2 residential

8
artwork; college; hospital; library; museum; police;

post office; school; sports center; stadium; toilet;
university; zoo

public use

9 attraction; Christian; memorial; military; monument;
Muslim; prison; shelter special use

10 airport; bus station; parking; primary; rail; secondary;
tertiary; trunk; unclassified transportation

11 beach; dam; dock; reservoir; river; water; waterfall;
wetland water

12 cliff; heath others

“residential2” denotes a land-use type (i.e., landuse = residential).

3.1.2. Validation

Accuracy measures how closely the OSM-based LULC dataset matches a corresponding LULC
reference product. This study employed a stratified sampling strategy. A number of sample points
were first randomly chosen for each LULC class and then positively correlated with the area percentage
of each class in the OSM dataset. The actual LULC class of each sample point was manually and
independently marked by two people by referring to Google Earth. When any point was marked
differently by two people, a third person joined in the analysis and a final decision was made by voting.
All sample points were used as reference for assessing the accuracy of the OSM-based LULC dataset.
Based on all points (3464 in total), several accuracy measures were calculated by comparing each pair of
LULC classes in the OSM-based dataset with those in the reference. Three common measures—overall
accuracy (OA), user accuracy (UA), and producer accuracy (PA)—were calculated:

OA =

∑n
i=1 Pi

N
(1)

UAi =

∑n
i=1 Pi

Pi(osm)
(2)

PAi =

∑n
i=1 Pi

Pi(re f )
(3)

where N denotes the number of points in total, n denotes the number of LULC classes (n = 12), Pi(osm)

and Pi(re f ) denote the number of points classified as belonging to LULC class-i in the OSM-based
dataset and in the reference, respectively, and Pi denotes the number of points classified as belonging
to LULC class-i in both datasets.
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3.2. Mapping and Analysis of Completeness and Diversity Patterns

3.2.1. Completeness and Diversity Measures

Completeness has been widely used for assessing the quality of OSM-based LULC
datasets [19,20,26,27]. Completeness is defined as the ratio of the area of land of a geographical
unit covered by OSM data to the total land area of the unit.

An LULC map/dataset may also be characterized by a number LULC classes (e.g., 12). Different
definitions of diversity have been offered [34], among which the Shannon diversity index or Shannon’s
entropy [35] is the mostly widely used in the literature. The Shannon diversity index can be used to
measure a variety of LULC classes in an area, and thus was employed in our study. That is,

S = −
∑n

i=1PilogPi (4)

where S denotes the Shannon diversity index of an OSM-based LULC dataset, Pi denotes the area
percentage of LULC class i in a geographical unit, and n denotes the number of LULC classes. In our
study, n = 12, and thus S could vary from zero (meaning only one LULC class) to 2.48 (meaning all
12 classes had the same percentage, i.e., 8.33%).

3.2.2. Mapping and Analysis

In contrast with accuracy, both completeness and diversity can be mapped without the need for
an LULC reference dataset. Our analytical method therefore calculated the completeness and diversity
values of each prefecture-level division and mapped them for the entire study area. With respect
to differences in LULC characteristics between built-up areas and non-built-up areas, there were a
relatively large number of artificial classes (e.g., commercial, industrial, and residential) in the built-up
areas and a relatively large number of natural classes (e.g., forest, grass, and water) in the non-built-up
areas. These two scenarios (I and II) were analyzed. For scenario I, both the completeness and the
diversity values were calculated for the entire prefecture-level division, and for scenario II, these values
were calculated only for the built-up areas of each prefecture-level division.

Furthermore, the completeness and diversity patterns of China were compared and analyzed
using two methods: Visual analysis and quantitative assessment.

• Both the completeness and the diversity patterns were visually analyzed. A number of questions
were considered. For instance, which areas had relatively high or low completeness and diversity
values? Was there any difference between the completeness and the diversity patterns, in terms of
scenarios I and II? was there any correlation between the completeness and the diversity patterns
of the same scenario?

• For quantitative assessment, a number of factors were employed to identify factors that could
have influenced the completeness and diversity patterns. Three socioeconomic factors [the size of
the built-up areas, their population, and gross domestic product (GDP)] were first considered.
The corresponding data in 2019 were acquired from the National Bureau of Statistics of China
(http://www.stats.gov.cn). These factors were chosen because studies have shown that the
completeness of OSM data tends to be high in municipalities with high population density [27].
Completeness has also been positively correlated with the GDP [25]. Thus, it is useful to investigate
whether these factors could still be positively correlated with the completeness and diversity
patterns of the OSM-based LULC dataset of China. Moreover, the number of contributors
(who had edited the OSM data) was calculated based on an analysis of OSM history data
(https://planet.openstreetmap.org/planet/full-history/, accessed in January 2019). This number
was calculated in terms of each prefecture-level division (for scenario I) and the built-up areas of
each prefecture-level division (for scenario II) to determine whether the number of contributors
had a positive correlation with the completeness and/or diversity patterns.

http://www.stats.gov.cn
https://planet.openstreetmap.org/planet/full-history/


ISPRS Int. J. Geo-Inf. 2020, 9, 531 7 of 18

4. Results and Analysis

4.1. Production and Validation of the OSM-Based LULC Dataset

The OSM-based LULC map of China is shown in Figure 1. First, most regions were either not
covered by the OSM data or had not been mapped by the OSM volunteers (marked as “no data”).
Thus, the dataset was far from complete. Second, both the LULC classes, forest (dark green) and water
(light blue), were easy to observe because they occupied large areas compared with the other classes
(e.g., residential in Figure 1b). Third, the OSM data were distributed unevenly across the country,
e.g., there were relatively more data for the east, center, and northeast of China—regions that were
mostly mapped with forests (Figure 1c).ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 7 of 18 
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Figure 1. OSM-based LULC map of China.

The confusion matrix and relevant accuracies of the OSM-based LULC dataset are listed in Table 3.
Substantial overall accuracy (i.e., OA = 82.2%) was achieved. Moreover, eight out of the 12 LULC
classes were close to or higher than 70% in terms of both the UA and the PA; two of them (forest and
water) were close to or higher than 90%. These results verify the effectiveness of the produced LULC
dataset of China. Furthermore, the accuracy values were verified as comparable to those reported in
European study areas [19].
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Table 3. Confusion matrix and relevant accuracies of the OSM-based LULC dataset for China.

Agricultural Orchard Forest Grass Commercial Industrial Residential Public Use Special Use Transportation Water Others PA (%)

Agricultural 260 6 32 8 4 3 6 0 4 3 8 14 74.7

Orchard 1 81 1 0 1 0 1 0 1 0 0 5 89.0

Forest 8 1 921 5 4 5 4 12 58 0 5 10 89.2

Grass 4 0 17 57 3 0 1 2 1 0 2 3 63.3

Commercial 0 0 0 6 112 1 2 5 0 4 0 0 86.2

Industrial 5 2 4 1 2 166 11 1 0 0 0 2 85.6

Residential 5 2 4 7 6 1 275 3 1 14 2 1 85.7

Public Use 0 3 6 36 6 3 19 138 2 13 7 2 58.7

Special Use 0 1 0 4 1 0 1 0 86 0 0 0 92.5

Transportation 10 1 8 30 2 7 8 0 3 325 2 1 81.9

Water 2 1 3 4 0 0 1 6 1 0 364 3 94.5

Others 5 2 11 5 6 14 5 3 23 1 10 62 42.2

UA (%) 86.7 81.0 91.5 35.0 76.2 83.0 82.3 81.2 47.8 90.3 91.0 60.2 OA (%) = 82.2
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4.2. Mapping and Analysis of Completeness and Diversity Patterns

The completeness values varied drastically with respect to the prefecture-level division (Figure 2a,c),
i.e., from 0.4% to 97.9% for scenario I, and from 1.7% to 89.4% for scenario II. This illustrates a
heterogeneous distribution of the OSM data for China. In scenario I, most of the prefecture-level
divisions with high completeness values (e.g., values ranging from 50% to 97.9%) were located in
the east, center, and northeast of China because a large area of these regions is occupied by forests
(Figure 3a). However, the completeness pattern of scenario II showed a different distribution. Most
divisions with high completeness values were located in the northwest, southwest, and northeast
of China because there were more residential lands than forests in the built-up areas (Figure 3b).
Moreover, most built-up areas with high completeness values had been mapped by (OSM) volunteers
as a few large polygons, and tagged as belonging to the residential class. Inside these built-up areas
were a few other LULC classes (e.g., commercial, industrial, and public use). As an example, Figure 1b
shows the built-up areas of Nanning (a capital city in Southern China), mostly covered with a single
residential land. This indicates that these built-up areas were not mapped well despite their relatively
high completeness values.
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Figure 3. The area percentages of the 12 LULC classes of different prefecture-level divisions. For each
LULC class (x-axis), each node denotes the area percentage (y-axis) of the class in a prefecture-level
division. (a) scenario I and (b) scenario II.

The diversity patterns (Figure 2b,d) were different from the completeness patterns (Figure 2a,c).
Most highly diverse divisions had relatively low completeness values—these divisions were located on
the east coast of China (especially for scenario II), but their completeness values were low (marked in
blue in Figure 2c). The difference between the completeness and diversity patterns is indicated in
Figure 3. If the area percentage of a certain LULC class (e.g., forest or residential) was particularly high,
the area percentages of the other LULC classes were low, and so were the diversity values of all classes.

Table 4 lists the correlations among multiple factors (size of built-up area, population, GDP,
and number of contributors) and the four patterns in Figure 2. The correlations between each of the
three socioeconomic factors and number of contributors are also listed.

Significant correlations were observed between the completeness patterns and most factors
(Table 4). Positive correlations were noted between Completeness-I, and BUA, GDP, and NC-I,
and negative correlations were noted between Completeness-II, and BUA, POP, and NC-II. These
results appear not to be fully consistent with those of past studies [25,27], which have reported the
completeness of OSM data as being positively correlated with socioeconomic factors because there are
more OSM contributors and associated mapping activities in dense populations and/or developed
regions. The inconsistent results (for scenario II only) probably arose for two reasons: On the one
hand, the sizes of the built-up areas in the west of China were relatively small (Figure 4a), and such
areas might have been easily mapped by the volunteers. On the other hand, most built-up areas with
high completeness values were mapped only with a few residential lands with few other LULC classes
(e.g., Figure 1b). This was probably because the west of China has a relatively low population
(Figure 4b), and thus few contributors (Figure 4d,e).
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Table 4. Correlations between multiple factors and different patterns.

Pattern
Size of

Built-Up Areas
(BUA)

Population
(POP)

Gross
Domestic
Product
(GDP)

Number of
Contributors,

Scenario I
(NC-I)

Number of
Contributors,

Scenario II
(NC-II)

Completeness-I
(completeness;

scenario I)
0.115 * −0.006 0.157 ** 0.116 * /

Diversity-I
(diversity;
scenario I)

0.285 ** 0.282 ** 0.248 ** 0.249 ** /

Completeness-II
(completeness;

scenario II)
−0.262 ** −0.245 ** −0.029 / −0.113 *

Diversity-II
(diversity;
scenario II)

0.367 ** 0.375 ** 0.412 ** / 0.429 **

Number of
contributors,

scenario I
0.681 ** 0.659 ** 0.855 ** 1.000 ** 1.000 **

Number of
contributors,
scenario II

0.722 ** 0.645 ** 0.799 ** 1.000 ** 1.000 **

** p-value < 0.01; * p-value < 0.05. “/” denotes “not applicable”.

Significant positive correlations were obtained between each of the diversity patterns (Diversity-I
and Diversity-II) and all factors listed in Table 4. Moreover, their correlation coefficients were higher
than those for the completeness patterns (Completeness-I and Completeness-II). This is because most
highly diverse prefecture-level divisions of China were located in regions with a relatively high
population (Figure 4b and GDP Figure 4c). More importantly, studies have report that socioeconomic
factors are positively correlated with both the number of contributors and the density of their mapping
data [18,36]. In this study, a moderate or high correlation was also found between each socioeconomic
factor and the number of contributors. Therefore, diversity appeared to be better than completeness in
reflecting the spatial pattern of contributors and their mapping activities. Furthermore, the correlation
coefficients were higher for Diversity-II, probably because there were more contributors in built-up
areas than in non-built-up areas.
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5. Combined Completeness and Diversity Patterns

While opposite trends were also observed (Figure 2), the correlations between completeness and
diversity patterns were not very high, i.e., the correlation coefficients were −0.441 and −0.330 for
scenarios I and II, respectively. It is therefore helpful to combine the completeness and the diversity
patterns. The combined pattern has been plotted by referring to Zhang et al. [23]: The data distribution
of each measure was checked, and if the data did not follow a normal distribution, they were subjected
to a log-transformation. Subsequently, all the prefecture-level divisions of China were divided into
four different groups:



ISPRS Int. J. Geo-Inf. 2020, 9, 531 13 of 18

• Group I (High completeness and high diversity): The completeness was higher than a certain
threshold (Ac), as was the diversity (Ad).

• Group II (High completeness and low diversity): The completeness was higher than Ac, but the
diversity was lower than Ad.

• Group III (Low completeness and high diversity): The completeness was lower than Ac, but the
diversity was higher than Ad;

• Group IV (Low completeness and low diversity): The completeness was lower than Ac, and the
diversity was lower than Ad .

The thresholds Ac and Ad denote the average completeness and the average diversity of all
prefecture-level divisions, respectively.

In our study, only the completeness values were transformed with a log-transformation because
they did not follow a normal distribution. We plotted the combined patterns for different scenarios
(Figure 5), where the thresholds Ac and Ad were 5.09% and 1.16% for scenario I, and 18.84% and 1.10%
for scenario II, respectively. The thresholds when using the average (completeness and diversity)
were similar to those when using the median, and thus only the averages were used in the analysis.
Moreover, the completeness values were low for most prefecture-level divisions of China.
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The four groups for each scenario are shown in Figure 5:

• Group I: For both scenarios I and II, most prefecture-level divisions were municipalities,
e.g., Beijing (Figure 6a), Shanghai, and Tianjin, capital cities, e.g., Guangzhou, Nanjing, Chengdu,
and Changsha, and the relatively developed cities (Shenzhen, Qingdao and Xiamen), and regions
on the east coast. These divisions probably received more attention from the volunteers, and thus
both their completeness and diversity values were relatively high.

• Group II: The prefecture-level divisions of this group varied across scenario. In scenario I,
most divisions were located in the east, center, and northeast of China owing to a large area
percentage of forest. In scenario II, they were located in the southwest, northwest, and northeast
of China owing to a large area percentage of residential land. This was nearly consistent with
what is shown in Figure 2a,c.

• Groups III and IV: The prefecture-level divisions of these groups had low completeness values
for several reasons: Some divisions (e.g., Haixi and Naqu) were characterized by a large land
area, and thus the volunteers would have needed more time and effort to map these divisions
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well. In addition, some divisions (e.g., Leshan (Figure 6b) and Songyuan (Figure 6c)) were less
well known, especially compared with those in Group I, and thus would probably have received
less attention by volunteers. Furthermore, most divisions showed a relatively high diversity
value, which indicates that in most cases was no dominant LULC class. However, some divisions
(e.g., Figure 6c) featured a relatively large area percentage of water (79.3% for the left graph in
Figure 6c) or residential lands (85.6% for the right graph in Figure 6c), which resulted in a low
diversity value.
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6. Discussion

6.1. Quality Measures

This study used three measures (accuracy, completeness, and diversity) for an intrinsic quality
assessment of the OSM-based LULC dataset for China. By contrast, most past studies [19,20,27] not only
employed an LULC reference dataset for comparison with an OSM-based dataset, but also considered
two (accuracy and completeness) of these measures only. We think that there are several advantages of
considering the diversity for an intrinsic quality assessment of an OSM-based LULC dataset.

First, the diversity patterns of OSM are significantly different from its completeness patterns
(Figure 2). For instance, a highly complete prefecture-level division must not be high in terms of
diversity because the diversity of LULC classes may vary across regions. As an example, the diversity
value was commonly higher in built-up areas than in non-built-up areas. More importantly, the diversity
of an OSM-based LULC dataset is also related to the contributors’ mapping activities. For instance,
we found that some built-up areas had been edited as a few large polygons and tagged with the
OSM type “residential” (Figure 6c), but others had been edited with more details (e.g., as a greater
number of small polygons) and tagged with different OSM types (residential, industrial, and public use,
Figure 6a,b). Thus, it is useful to detect the diversity of OSM types by employing the diversity measure.

Second, the diversity patterns showed significantly positive correlations with all socioeconomic
factors (size of built-up areas, population, and GDP in Table 4). By contrast, the completeness pattern
(scenario II) showed a significantly negative correlation with both the size of the built-up areas and
the population. Moreover, socioeconomic factors were positively correlated with the number of
contributors (Table 4) and, probably, the density of their mapping data [18,36]. Some built-up areas
with high completeness values for China were mapped with relatively large residential lands, but with
few details from other classes, probably because such built-up areas had received less attention
from contributors. However, most highly complete and highly diverse prefecture-level divisions of
China probably received more attention from contributors. Thus, it is useful to consider diversity for
understanding the spatial pattern of the contributors and their mapping activities.

Despite the above advantages, we suggest using the diversity measure as a supplement, rather than
a way to simply conclude that diversity is positively correlated with the quality of a dataset. This is
because the actual diversity value might have varied across regions. Moreover, an accuracy assessment
may not be necessary because past studies have verified that the accuracy of OSM data is relatively
high [19,26,27], which was also the case for our study area.

6.2. Applications

The proposed method offers potential for use in the service of understanding both the completeness
and the diversity patterns of regions. For instance, an OSM user may not only use highly complete
prefecture-level divisions to produce an OSM-based LULC map, but also highly diverse divisions
(even if some of them are incomplete). This is because a diversity of LULC classes may be used as
training and/or validation samples [37], which in turn can also be used for generating an LULC map,
probably with another data source, e.g., remote sensing data [16,38], POIs [39], and/or street views [40].
An OSM contributor may not only use divisions that have low completeness values, but also those
with low diversity values (even if some of them have relatively high completeness values). This is
because highly complete regions might also not have been mapped well. Therefore, OSM users and
contributors can use combined patterns to better understand OSM-based LULC datasets.

6.3. Limitations

This study is limited by a lack of available reference datasets, which applies to most countries
and regions of the world. As a result, it was difficult to calculate both the accuracy and the actual
diversity values for each prefecture-level division. While global LC products (e.g., GlobalLandcover30
and Climate Change Initiative Land Cover) are becoming increasingly available, they provide only
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LC and not LU data; thus, various LU classes, such as commercial, industrial, public use, residential,
and transportation, are not obtainable. The LULC maps and datasets provided by both mapping
agencies and commercial companies are not available for free for China. Nevertheless, both the
completeness and the diversity patterns of an OSM-based LULC dataset can be calculated without
using any reference. Therefore, our analytical method for understanding spatial patterns can still be
applied to other countries and regions, especially for those without LULC reference datasets available
for free.

7. Conclusions

This study carried out an intrinsic quality assessment of OSM-based LULC datasets by
understanding both the completeness and the diversity patterns of such datasets. An OSM-based
LULC dataset was first generated and validated with various accuracy measures, and was then mapped
and analyzed in terms of both completeness and diversity. China, which has rarely been studied before,
and is characterized by a lack of a freely available LULC reference dataset, was chosen as the study
area. Both the completeness and the diversity patterns of the generated dataset were analyzed for two
scenarios. In scenario I, the entire land area of each prefecture-level division was analyzed; in scenario
II, only the built-up areas of each prefecture-level division were analyzed. Moreover, the correlations
between both patterns (completeness and diversity) and the three socioeconomic factors (built-up area
size, population, and GDP), and the number of contributors were investigated. The results showed
the following:

(1) The OA of the OSM-based LULC dataset of China was as high as 82.2%, which illustrates that the
generated LULC dataset for the country was effective, and is comparable to those for European
study areas in past work.

(2) Both the completeness and the diversity patterns varied with prefecture-level division. Moreover,
the completeness patterns were significantly different from the corresponding diversity patterns.
In particular at the scale of built-up areas, divisions with high completeness values might not
have been mapped well owing to a low diversity value.

(3) The correlations between diversity patterns and each of the three socioeconomic factors, and the
number of contributors were not only higher than those considering for completeness patterns,
but also significantly positive. Thus, the diversity pattern is a better reflection of socioeconomic
factors and the spatial pattern of contributors.

(4) Both the completeness and the diversity patterns can be combined into different groups
(high completeness and high diversity, high completeness and low diversity, low completeness
and high diversity, and low completeness and low diversity). The combined patterns benefit
both OSM users and volunteers in that they provide a better understanding of OSM-based
LULC datasets.

The above results indicate that it is useful to consider diversity as a supplement for the intrinsic
quality assessment of an OSM-based LULC dataset. While only China was investigated here,
the analytical method proposed in this study can be used for understanding the spatial patterns of an
OSM-based LULC dataset in other countries and regions.

In future work, first, it is useful to employ an LULC reference dataset to further assess the quality
of the OSM-based LULC dataset for China. Second, the Shannon diversity index alone was employed
in our study, but some other diversity indices [34] can be considered. It should be informative to use
the analytical method proposed here to intrinsically assess the quality of an OSM-based LULC dataset
for other countries and regions.
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