
 International Journal of

Geo-Information

Article

Optimized Spatiotemporal Data Scheduling Based on
Maximum Flow for Multilevel Visualization Tasks

Qing Zhu 1, Meite Chen 1, Bin Feng 1,*, Yan Zhou 2, Maosu Li 1, Zhaowen Xu 1, Yulin Ding 1,
Mingwei Liu 1,3, Wei Wang 4 and Xiao Xie 5

1 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University,
Chengdu 611756, China; zhuq66@263.net (Q.Z.); swcmt@my.swjtu.edu.cn (M.C.);
limaosu_gis@my.swjtu.edu.cn (M.L.); zhaowenxu@my.swjtu.edu.cn (Z.X.); rainforests@126.com (Y.D.);
liumingwei@my.swjtu.edu.cn (M.L.)

2 School of Resources and Environment, University of Electronic Science and Technology of China,
Chengdu 611731, China; zhouyan_gis@uestc.edu.cn

3 Sichuan Smart Map Spatial Information Technology Co., Ltd., Chengdu 610036, China
4 State Key Laboratory of Rail Transit Engineering Informatization (FSDI), Xi’an 710043, China;

zdssww@fsdi.com.cn
5 Zhejiang Hi-Target Geo-Information Technology Instrument Co., Ltd., Huzhou 313299, China;

xiexiao@iae.ac.cn
* Correspondence: bk20090770@my.swjtu.edu.cn

Received: 30 July 2020; Accepted: 26 August 2020; Published: 28 August 2020
����������
�������

Abstract: Massive spatiotemporal data scheduling in a cloud environment play a significant role in
real-time visualization. Existing methods focus on preloading, prefetching, multithread processing and
multilevel cache collaboration, which waste hardware resources and cannot fully meet the different
scheduling requirements of diversified tasks. This paper proposes an optimized spatiotemporal data
scheduling method based on maximum flow for multilevel visualization tasks. First, the spatiotemporal
data scheduling framework is designed based on the analysis of three levels of visualization tasks.
Second, the maximum flow model is introduced to construct the spatiotemporal data scheduling
topological network, and the calculation algorithm of the maximum data flow is presented in
detail. Third, according to the change in the data access hotspot, the adaptive caching algorithm and
maximum flow model parameter switching strategy are devised to achieve task-driven spatiotemporal
data optimization scheduling. Compared with two typical methods of first come first serve (FCFS) and
priority scheduling algorithm (PSA) by simulating visualization tasks at three levels, the proposed
maximum flow scheduling (MFS) method has been proven to be more flexible and efficient in
adjusting each spatiotemporal data flow type as needed, and the method realizes spatiotemporal
data flow global optimization under limited hardware resources in the cloud environment.

Keywords: scheduling optimization; maximum flow; spatiotemporal data; multilevel visualization
tasks; cloud environment

1. Introduction

Real-time applications such as multilevel visualization tasks put forward extremely high
requirements for large-scale spatiotemporal data scheduling performance [1]. The efficiency of
real-time dynamic visualization of ubiquitous user multigranularity tasks in the cloud environment
depends on the quality of the scheduling algorithm. The scheduling of spatiotemporal data is a strategy
used to reasonably allocate physical resources according to the data requirements of multilevel
visualization tasks and to accelerate the transmission speed of data from the data source to a visual
rendering engine; it is a very complex process, from client-side visual rendering to client-side caching,
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then to server caching, and finally to querying of the server-side database [2,3]. Each segment has
different acceleration methods. In recent years, spatiotemporal data scheduling methods for efficient
visualization display and analysis have been widely studied in the field of geographic information
science (GIS), and a series of spatiotemporal data optimization scheduling methods have emerged,
such as simplified raw data processing [4,5], data preloading at the client side [6,7], multithread
scheduling at the server side [8,9], and a multilevel caching strategy [10,11]. Currently, with the gradual
deployment of GIS data centers to the cloud [12], how to meet different scheduling requirements of
multilevel visualization tasks and realize the global optimization of spatiotemporal data flow in the
cloud [13,14] have become the major issues that limit the efficiency of task-oriented 3D scene real-time
construction and interaction involved.

Optimized spatiotemporal data scheduling on the client side mainly adopts the strategy of
simplified raw data processing, viewpoint location-based dynamic loading and prefetching [15,16].
The existing mainstream data simplification algorithms transform data into levels of detail (LODs),
such as the five consecutive LODs defined by CityGML [4]. With the increase in LODs, the objects
become increasingly complex, which can express not only the simple, nontopological and nonsemantic
block model of large urban areas but also the multiscale fine model with the topology and semantics
of local areas [17]. Then, through the graphics rendering strategy of the client side, combined with
the user’s preferences, the distance from the viewpoint location, dynamic loading and the display of
different levels of spatiotemporal data, the fine-grained data can be loaded with high precision at the
nearest viewpoint, the reality of 3D scene visualization can be improved, the coarse-grained data can
be loaded with low precision at the farthest point, and the amount of data drawn at the client side
can be reduced [18,19]. The 3D Tiles OGC community standard currently has a strong impact and
is used in numerous applications [20]. For example, the 3D Tiles scheduling strategy in Cesium is
the typical client-side data scheduling algorithm, which can improve the rendering efficiency of the
client [21]. However, this method is usually designed for 3D models and 3D point clouds with poor
versatility and cannot be applied to the optimization scheduling of real-time access monitoring data of
the Internet of Things sensor network, human activity and vehicle movement tracking data and social
association data. [20,22]. At the same time, the client-side optimization scheduling method determines
only what data are requested from the server-side data source. Although it accelerates the processing
efficiency of the client side, it does not improve the data service throughput of the whole system.

Through an efficient caching mechanism, the delay of data query and network transmission caused
by high-concurrency tasks can be resolved [23]. The existing GIS system mainly adopts a multilevel
cache architecture, including a server-side memory cache, client-side file cache and client-side memory
cache [2]. The spatiotemporal data that may be accessed is temporarily stored in the cache space,
and then through the effective cooperation between the server and client, memory and disc storage,
the access pressure on the server database is reduced [24], and the delay problem of data arriving at the
visualization engine is avoided [9]. To improve the efficiency of data scheduling for high-concurrency
tasks, some cache replacement algorithms are used to replace the temporarily useless cache data to
improve the data hit rate. LRU (least recently used) and LFU (least frequently used) are two widely
used cache replacement algorithms, and they are also widely used in GIS [25,26]. The LRU algorithm
is sensitive to the change in access characteristics but does not consider the global characteristics of
data access, while the LFU algorithm is the opposite [27,28]. In addition, according to access similarity
of the spatial proximity data [29], different cache replacement algorithms are derived to optimize
the spatiotemporal data scheduling process, avoid frequent access to the server database, reduce the
amount of data transmitted by the network, and greatly improve the concurrent access ability and
scheduling ability of spatiotemporal data. However, the multilevel cache architecture is limited by the
size of the cache space and the cache hit rate; when the hit rate of the data cache is low, it still needs to
rely on the server-side data throughput to meet the client-side data scheduling requirements.

The server-side data scheduling performance in the cloud environment determines the service
capability of the whole spatiotemporal data system [30,31]. Spatiotemporal data are usually stored on



ISPRS Int. J. Geo-Inf. 2020, 9, 518 3 of 23

the database cluster or distributed file system in the cloud environment [32]. The existing methods
mainly create a thread and connection pool, based on multithread scheduling and the load balancing
strategy, to solve the high-concurrency data access on the server side [33]. This access and scheduling
strategy has no difference in data types, and the data replica configuration and storage resource
allocation in the cloud environment are fixed; thus, it cannot flexibly adapt to the dynamic changes in
visualization task requirements [34,35]. On the one hand, unreasonable data configuration methods
lead to an excessive data transmission time [36]; on the other hand, the data throughput of the cloud data
center is reduced [37]. In the cloud environment, the storage and network resources are fully utilized,
the server-side data resource configuration and scheduling method is optimized, the throughput
capacity of the cloud data service is expanded, and the supply ability of each spatiotemporal data type to
meet the task demands is guaranteed, which is very important for spatiotemporal data scheduling [38].
Container technology is a method to package an application so it can be run, with its dependencies,
isolated from other processes [39]. With the emergence of container and virtualization technology,
database containerization in the cloud environment enables the server to dynamically configure
the number of data replicas according to the data access requirements and control the allocation of
container hardware and software resources [40]. On this basis, a more precise data scheduling method
for multilevel visualization tasks can be formed to optimize the data service capability in the cloud
environment and maximize the utilization of software and hardware resources.

How to better understand the real-time and dynamic tasks and meet the service needs of users
is a challenge, and the quality of the scheduling algorithm plays a key role in it. Ramkumar and
Gunasekaran (2019) proposed a scheduling algorithm to collocate first come first server (FCFS)
of supremacy elements that improve the system performance and reduces time consumption [41].
However, in fact, multigranularity tasks come from different users and have different priorities.
The FCFS algorithm may cause that some urgent tasks are required to wait for a long time in the queue
and cannot work well under sudden urgent task requests. Another priority scheduling algorithm
(PSA) needs to mark the priority of tasks before scheduling. However, before the scheduling process,
the priority of the system calculation is fixed, which makes the system unable to deal with complex
situations [42]. Based on the PSA, in 2011, Lee, Ying and Wen proposed a new strategy that consists of
a dynamic priority scheduling algorithm (DPSA) and demonstrated that the DPSA has better efficiency
and is more feasible than PSA [43]. However, DPSA needs to recalculate and adjust the priority of each
task before each new scheduling. When facing large-scale and multigranularity tasks, fine-grained
regulation will increase the task queuing time, which often cannot meet the needs of a large number of
real-time dynamic tasks.

According to the above scheduling challenges, this paper proposes an optimized spatiotemporal
data scheduling method based on maximum flow that maps the multitype spatiotemporal data
scheduling process to the construction of the maximum flow model. The following contributions are
provided by this work:

• Defined a multilevel visualization task and its data preference and designed framework of
spatiotemporal data scheduling according to the structure of spatiotemporal data storage and
scheduling in a cloud environment.

• Mapping the network topology of data resource scheduling to the maximum flow model and
constructed a maximum flow scheduling model of spatiotemporal data can clearly quantify the
ability of multisource and multigranular spatiotemporal data services.

• Designed two task-driven dynamic adjustment methods of maximum flow model parameters:
cache node and storage node capacity allocation. This method can control the multitype
spatiotemporal data flow size while maintaining the optimization of global data flow, and flexibly
adapt to the needs of tasks under limited hardware resources in the cloud environment.

The rest of this paper is organized as follows: Section 2 presents the design of the spatiotemporal
data scheduling framework. Section 3 shows the construction of a spatiotemporal data scheduling
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model based on maximum flow. Section 4 describes the task-driven maximum flow adjustment
method for data flow optimization. A prototype system for spatiotemporal data scheduling and
a user-friendly web-based parameter adjustment interface are developed, and an experimental analysis
is implemented in Section 5. Finally, the conclusion and discussion are addressed in Section 6.

2. Spatiotemporal Data Scheduling Framework for Multilevel Visualization Tasks

The spatiotemporal data scheduling method for multilevel visualization tasks needs to consider
not only the characteristics of spatiotemporal data but also the different scheduling requirements
of multilevel visualization tasks in detail. To construct an efficient spatiotemporal data scheduling
mechanism that adapts to complex changes in 3D scene visualization tasks, Section 2.1 first analyses the
scheduling requirements of multilevel visualization tasks. Then, Section 2.2 designs a spatiotemporal
data scheduling framework for multilevel visualization tasks.

2.1. Multilevel Visualization Tasks and Data Preferences

Multimodal spatiotemporal data are driven by the requirements of multilevel visualization
tasks. The visualization of data and the construction of scenes have become important means to
display, recognize and control cyber-physical-social space. In the application of spatiotemporal data
visualization, large-scale diversified clients access the spatiotemporal data visualization service in real
time, and these clients have different levels of visualization tasks, resulting in different requirements for
spatiotemporal data content. According to the scale of data rendering, fineness of 3D scene construction
and application objectives, three kinds of visualization tasks corresponding to different scene content
and data scheduling preferences are summarized below [44–47].

Display visualization task: This task focuses on the adaptive representation of spatiotemporal
data in discrete–continuous, dynamic–static, realistic–abstract and fine–coarse scenes, as well as
collaborative visualization that is highly integrated with real scenes. For example, urban patterns
(terrain, buildings and roads) change dynamically with time, and although the scope of view and
elements can be predicted, the data volume is large, so the database query output is the main task.
Scheduling aims at efficient I/O and high-performance real-time scene rendering.

Analytical visualization task: This task highlights the hidden features and correlation information
in the spatiotemporal data obtained by complex computational analysis. Typical applications include
dynamic visualization of real-time calculations, near real-time simulation results, and integration
visualization of symbolization and real scenes. This task is mainly based on data analysis and
simulation calculations and needs the cooperation of scheduling methods to speed up the efficiency of
the analysis process and the dynamic generation of results.

Exploratory visualization task: Through the exploratory adjustment operations of focusing,
deformation and highlighting of specific objects in the augmented reality scene, the organic coupling
of the data, the human brain, machine intelligence and application scenes is realized to support the
visualization of deep association analysis such as hypothesis verification, knowledge induction and
reasoning. For example, the multicomputer and multiuser collaborative interaction in a complex
environment is mainly based on the fact interaction, focusing on the interactive analysis chain and
the real-time visualization, while integrating the real-time dynamic analysis results and interactive
content. Therefore, higher requirements are put forward for the scheduling of spatiotemporal data.

2.2. Spatiotemporal Data Scheduling Framework

As shown in Figure 1, the spatiotemporal data scheduling framework consists of three parts:
cloud server, multilevel visualization tasks and diversified applications.
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In Figure 1, three kinds of real-time visualization applications are listed: Scene walkthrough,
Simulation analysis and Interaction management. The data requirements and application objectives of
diversified visualization applications eventually form a large number of visualization tasks, which are
divided into three categories according to the connotation of tasks, as described in the previous
Section 2.1. Different levels of visualization tasks have different requirements for spatiotemporal data
scheduling. Thus, the spatiotemporal data scheduling service in the cloud is required to dynamically
meet the data access of diversified applications.

In Figure 1, the cloud server stores, caches, schedules and distributes the multisource
and multigranularity raw data to the target visualization tasks, providing flexible and scalable
spatiotemporal data services for diversified applications. After the raw data enter the cloud storage
system, the data are deployed to different database servers through virtualization container and cluster
technology. Then, according to the data access characteristics, the cache server switches the appropriate
cache algorithm to cache the hotspot data and improve the efficiency of data services to share the
backend database access pressure. When the system is running, through the allocation of storage
resources and bandwidth resources of each database container type and the switching of the cache
strategy, the dynamic allocation of spatiotemporal data flow is realized, multitype spatiotemporal
data scheduling under multilevel visualization tasks is optimized, and the fine access requirements of
multilevel visualization tasks are met.

3. Spatiotemporal Data Scheduling Model Based on Maximum Flow

This section describes the concept and structure of the proposed maximum flow scheduling (MFS)
model for spatiotemporal data. Section 3.1 introduces the construction of the MFS model. Section 3.2
presents the initialization configuration of the node and edge capacity of the MFS model. Finally,
a calculation method for the MFS model is introduced in Section 3.3.

3.1. Construction of Maximum Flow Model for Spatiotemporal Data Scheduling

The maximum flow model is a complex directed connected graph, which can be expressed as
G = (V, E) with node set V and edge set E. V =

{
vi
∣∣∣i ∈ Z+

}
is a collection of all nodes in the graph

and E =
{(

vi, v j
)∣∣∣∣i ∈ Z+, j ∈ Z+, i , j

}
is a collection of all edges in the graph. In Figure 2, v1 is the flow

starting node of model G, also known as source node S, and v4 is the flow convergence node of model
G, also known as sink node T. Each edge has two parameters, ci j and fi j, where ci j is the maximum
flow that the edge can carry, also called the capacity, fi j is the actual transmission flow, and fi j ≤ ci j.
Every node except S and T in model G obeys the principle of conservation of input and output flow,
which can be expressed as f+(vi) = f−(vi) ( f+ is the input flow into node vi, f− is the output flow
from vi). A feasible flow f . in model G represents the amount of flow passing from node S to node T.
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The maximum amount of feasible flows fmax is called the maximum flow. The spatiotemporal data
transmission network topology (in Figure 1) can be mapped to the maximum flow model, in which
the server or cache server is mapped to model node V, which has two attributes: data type and data
volume. The network connection is mapped to model edge E, which has bandwidth-limited attributes
for each type of data.
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Figure 2. Definition of maximum flow model.

The core concept of the maximum flow model is flow conservation, but a data copy can continuously
provide data services. Therefore, this paper obtains an abstract transformation of the server-side
spatiotemporal data scheduling framework (shown in Figure 1) and adds the corresponding auxiliary
nodes for the MFS model (Figure 3). Through this transformation, the flow conservation of each
spatiotemporal data scheduling step is realized, which conforms to the maximum flow model, and the
service capacity of each spatiotemporal data set can be calculated. The nodes from left to right are
source node S, data nodes D, storage nodes d, cache/transit data R, maximum data flow node MD
and sink node T in Figure 3. The source node S in the model represents the spatiotemporal data
source, and the sink node T represents the multilevel visualization task. To map the multitype data
scheduling topology directly to the maximum flow model, some auxiliary data nodes D and maximum
data flow nodes MD are added. Among them, D =

{
Dk

∣∣∣k = 1, 2, 3, . . . q
}

represents the resource set of
each spatiotemporal data type. MD =

{
MDk

∣∣∣k = 1, 2, 3, . . . , q
}

represents the maximum flow of each
spatiotemporal data type Dk, also known as the maximum data service capability that the system can
provide to the visualization tasks, which is obtained by solving the MFS model.
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Moreover, storage nodes d =
{
dkn

∣∣∣k = 1, 2, 3, . . . q, n = 1, 2, 3 . . . , p
}
, where k represents the type

of data and n represents the number of replicas, are containerized databases that are allocated disc
space to store spatiotemporal data of different types, granularities, and volumes in the virtual machine
server VM. Cache nodes.

R = {RM|M = 1, 2, 3, . . . , m} are containerized in memory databases that can share the access
pressure of the server-side database. Assume that under ideal conditions, all data requests miss in the
cache, and the cache node is regarded as a transit node. The transit node also follows the rules for flow
conservation and completely transfers data flow sent from the server to the MD node. The maximum
flow of Dk is recorded as Z1(MDk). If there is a request hit in the cache, the data flow directly from
the cache node to the MD node. If all requests hit in the cache, the maximum flow of Dk is recorded
as Z2(MDk), and the MFS model in this case is as shown in Figure 4. However, in a practical state,
the range of the maximum flow of Dk must satisfy Z(MDk) ∈ (Z1(MDk), Z2(MDk)); thus, Z1(MDk) is
called the lower limit, and Z2(MDk) is called the upper limit.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 7 of 24 

 

Moreover, storage nodes d = {𝑑𝑘𝑛|𝑘 = 1,2,3, … 𝑞, 𝑛 = 1,2,3… , 𝑝}, where k represents the type of 

data and n represents the number of replicas, are containerized databases that are allocated disc space 

to store spatiotemporal data of different types, granularities, and volumes in the virtual machine 

server VM. Cache nodes 

R = {𝑅𝑀|𝑀 = 1,2,3, … ,𝑚}  are containerized in memory databases that can share the access 

pressure of the server-side database. Assume that under ideal conditions, all data requests miss in 

the cache, and the cache node is regarded as a transit node. The transit node also follows the rules for 

flow conservation and completely transfers data flow sent from the server to the MD node. The 

maximum flow of 𝐷𝑘 is recorded as 𝑍1(𝑀𝐷𝑘). If there is a request hit in the cache, the data flow 

directly from the cache node to the MD node. If all requests hit in the cache, the maximum flow of 

𝐷𝑘 is recorded as 𝑍2(𝑀𝐷𝑘), and the MFS model in this case is as shown in Figure 4. However, in a 

practical state, the range of the maximum flow of 𝐷𝑘 must satisfy 𝑍(𝑀𝐷𝑘) ∈ (𝑍1(𝑀𝐷𝑘), 𝑍2(𝑀𝐷𝑘)); 

thus, 𝑍1(𝑀𝐷𝑘) is called the lower limit, and 𝑍2(𝑀𝐷𝑘) is called the upper limit. 

 

Figure 4. Maximum flow scheduling model with all requests hit. 

3.2. Initialization Configuration of Node and Edge Capacity 

Virtualization container technology is highly portable, lightweight, and more secure, which can 

improve the fault tolerance of data storage and result in high availability. Therefore, this paper uses 

virtualization container technology to deploy database clusters in different servers. Unbalanced data 

placement in a server leads to an excessive data transmission time and reduces the data throughput 

of the cloud data service. Therefore, this paper adopts a multireplica strategy to deploy multiple 

replicas of the same data on different servers. In addition, we need to consider the dependency 

between the data. For example, if both data 𝐷𝑘  and 𝐷𝑘+𝑖  need to be scheduled in the scene 

construction phase, they can be considered highly dependent and not suitable for placement in the 

same server; otherwise, they will cause server resource competition. 

Two types of nodes in the model enable the storage of spatiotemporal data: storage node d and 

cache node R. Among them, the initialization configuration of d determines how many replicas and 

in which server to place the data 𝐷𝑘. The initialization configuration of  R selects the initial cache 

replacement algorithm to store hotspot data. Generally, the initialization configurations of both d 

and R rely on expert experience. In Figures 3 and 4, the capacity and flow of the edge in the MFS 

model of each data type are expressed as 𝑓𝑖𝑗(𝑓𝑖𝑗1, … , 𝑓𝑖𝑗𝑘 , … , 𝑓𝑖𝑗𝑞) 𝑐𝑖𝑗(𝑐𝑖𝑗1, … , 𝑐𝑖𝑗𝑘 , … , 𝑐𝑖𝑗𝑞)⁄ , 

where  𝑓𝑖𝑗  is the total data flow of the edge and 𝑓𝑖𝑗𝑘 is the flow of each 𝐷𝑘, 𝑓𝑖𝑗 = ∑ 𝑓𝑖𝑗𝑘
𝑞
𝑘=1 . 𝑐𝑖𝑗  is the 

Figure 4. Maximum flow scheduling model with all requests hit.

3.2. Initialization Configuration of Node and Edge Capacity

Virtualization container technology is highly portable, lightweight, and more secure, which can
improve the fault tolerance of data storage and result in high availability. Therefore, this paper uses
virtualization container technology to deploy database clusters in different servers. Unbalanced data
placement in a server leads to an excessive data transmission time and reduces the data throughput of
the cloud data service. Therefore, this paper adopts a multireplica strategy to deploy multiple replicas
of the same data on different servers. In addition, we need to consider the dependency between the
data. For example, if both data Dk and Dk+i need to be scheduled in the scene construction phase,
they can be considered highly dependent and not suitable for placement in the same server; otherwise,
they will cause server resource competition.

Two types of nodes in the model enable the storage of spatiotemporal data: storage node d and
cache node R. Among them, the initialization configuration of d determines how many replicas
and in which server to place the data Dk. The initialization configuration of R selects the initial
cache replacement algorithm to store hotspot data. Generally, the initialization configurations of
both d and R rely on expert experience. In Figures 3 and 4, the capacity and flow of the edge in the
MFS model of each data type are expressed as fi j

(
fi j1, . . . , fi jk, . . . , fi jq

)
/ci j

(
ci j1, . . . , ci jk, . . . , ci jq

)
, where

fi j is the total data flow of the edge and fi jk is the flow of each Dk, fi j =
∑q

k=1 fi jk. ci j is the total
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transmission capacity of the edge, and ci jk is the transmission capacity of each Dk, ci j =
∑q

k=1 ci jk.
The initialization configuration of the edge capacity is described in detail below:

The edge(Dk, VM) in Figure 3 is the connection between the auxiliary data nodes and the storage
node, and the edge (Dk, RM) in Figure 4 is the connection between the auxiliary data nodes and
the cache node. ci j of edge(Dk, VM) and edge (Dk, RM) is defined as the amount of data actually
deployed on the server VM and cache server R, respectively, and ci jk is the amount of each type of data
actually deployed.

The data transmission capacity of edge (VM, RM) in Figure 3 between the storage node and the
cache node is obviously affected by the bandwidth and the amount of data stored. In Equation (1),
b(VM, RM) is the network bandwidth between the two nodes VM and RM, dataSize(dkn) represents the
data amount of storage node dkn, α is a constant calculated from the bandwidth and the amount of
data, and t is the transfer time. Under the same network bandwidth, the larger amount of data stored
in server VM, the longer time taken to complete all data transmission. Therefore, this paper defines
ci j of edge(VM, RM) in this way, which is inversely proportional to the amount of data stored by the
server VM, and ci jk of edge(VM, RM) is calculated by allocating the maximum transmission capacity
ci j according to the ratio of Dk to the total data amount, as shown in Equation (2).

ci j = b(VM, RM)/
q∑

k=1

p∑
n=1

dataSize(dkn) ∝ α×
1
t

(1)

ci jk =

p∑
n=1

dataSize(dkn)/
q∑

k=1

p∑
n=1

dataSize(dkn) ∗ ci j (2)

The data transmission capacity of edge(RM, MDk) is also affected by the bandwidth and the
amount of data stored. Setting the bandwidth between the nodes RM and MDk as b(RM, MDk)

, the cache
blocks r =

{
rkl

∣∣∣k = 1, 2, 3 . . . , q, l = 1, 2, 3, . . . , y
}

of multitype spatiotemporal data are stored in the
cache node R, where rkl is the l-th cache block of Dk. Similar to the definition of ci jk of edge(VM, RM),
ci jk of edge(RM, MDk) is defined as shown in Equation (3).

ci jk =

y∑
l=1

dataSize(rkl)/
q∑

k=1

y∑
l=1

dataSize(rkl) ∗ ci j (3)

The connection between the auxiliary maximum data flow node and sink node is recorded as
edge(MDk, T), which is the supply path of each type of data flow to the client side in the scheduling
service. The ci jk of edge(MDk, T) is the maximum flow of Dk, calculated by the MFS model.

Furthermore, edge
(
vi, v j

)
is necessary to comply with two constraints in the MFS model.

Capacity limit: necessary to meet the total flow limit of all types of data; the capacity limit of each
type of data Dk, 0 ≤

∑q
k=1 fi jk ≤ ci j and fi jk ≤ ci jk, k = 1,2,3, . . . , q;

Flow conservation: all nodes must follow the flow conservation rules, including both the total
data flow to be conserved and each type of data flow to be conserved,

∑q
k=1 f+(vi) =

∑q
k=1 f−(vi) and

f+(vi) = f−(vi), k = 1,2,3, . . . , q;
Based on the above analyses, the objective function and constraints of the MFS model for

spatiotemporal data are shown in Equations (4) and (5), where
∑q

k fi jk is the maximum amount of
feasible flows of all data in the MFS model.

q∑
k=1

Z(MDk) =

q∑
k=1

fi jk, k = 1, 2, 3 . . . q (Objective function) (4)
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s.t.



Z1(MDk) < Z(MDk) < Z2(MDk) (range of the maximum flow)

0 ≤
q∑

k=1
fi jk ≤ ci j (total capacity limit)

fi jk ≤ ci jk (each type of data flow capacity limit)
q∑

k=1
f+(vi) =

q∑
k=1

f−(vi) (total flow conservation)

f+(vi) = f−(vi) (each type of data flow conservation)

(5)

3.3. Maximum Flow Algorithm

The goal of spatiotemporal data flow global optimization is to maximize the feasible flow of all
data in the model. After initializing the flow model, the lower and upper limits of maximum data
flow Z1(MDk), Z2(MDk) are solved according to the improved maximum flow algorithm Dinic [48],
which can efficiently solve the maximum flow value of multitype data. The core idea of the algorithm is
to use the BFS (breadth-first-search) strategy to layer and traverse the nodes of the remaining network
G f k of model G, thus obtaining the layered residual network G′f k, and to use DFS (depth-first-search)
to find the augmenting path and value of G′f k [49]. Augmenting path is a path from node s to node T in
the model G = (V, E), along which more flow can be transmitted [50]. The detailed steps of the Dinic
algorithm are as follows, and the algorithm flow chart is shown in Figure 5.
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1. Inputting the data flow of Dk from 0 in the model G = (V, E);
2. Construct the remaining network G f k of the model G = (V, E) and use the BFS strategy to find

the layered residual network G′f k of the scheduling model; if the sink node is not in G′f k, go to (6);

3. Use the DFS strategy to find the augmenting path. If G′f k has an augmenting path from source
node S to sink node T, go to (4); if not, go to (5);

4. According to the found augmenting path and the augmenting value, augment and modify the
directed edge attribute of the layered residual network G′f k, then go to (3);

5. G′f k has no augmenting path available; go to (2);

6. The resulting feasible flow is the maximum flow Z(MDk) of Dk;
7. To start increasing the flow of Dk+1, repeat steps (2) through (6) until k = q.

Finally, the lower and upper limits of the maximum data flow are obtained according to Equation (6).

Z1(MDk) =
{
Z1(MD1), Z1(MD2), . . . , Z1(MDk), . . .

∣∣∣k = 1, 2, 3, . . . , q
}

Z2(MDk) =
{
Z2(MD1), Z2(MD2), . . . , Z2(MDk), . . .

∣∣∣k = 1, 2, 3, . . . , q
}

(6)

Z(MDk) ∈ (Z1(MDk), Z2(MDk))

4. Task-Driven Maximum Flow Allocation Method for Spatiotemporal Data

In the cloud service, by adjusting the parameters of the maximum flow model to change the lower
Z1(MDk) and upper Z2(MDk) limit of a certain spatiotemporal data, the overall maximum flow of all
data service can be maintained to dynamically meet the different access requirements of multilevel
visualization tasks. Section 4.1 introduces the flow adjustment method based on the cache node,
and Section 4.2 introduces the flow adjustment method based on the storage node.

4.1. Capacity Allocation of Cache Node

The cache achieves fast data reading and high performance compared with the external database
container, which is used to improve the data access ability of the system. The transmission capacity
allocation of the cache node can be changed by selecting a specific cache algorithm and policy. Over time,
more data types are added to the cache node; if the cache node is full, the adaptive replacement
algorithm is used to eliminate the cold data and prepare storage space for new data. Since different
levels of visualization tasks have an obvious preference for spatiotemporal data, if the current cache
node cannot meet the burst data request in the running state, the cache node algorithm can be
temporarily switched to change the content of the data stored in the cache node to adapt to the needs
of dynamic changes. Therefore, a task-driven hybrid cache algorithm is designed to improve the data
flow based on the cache size, hit rate, and access frequency. For example, if the client task has no
obvious data preference, the LRU or LFU replacement algorithm considering the LOD can be used.
On the basis of LRU or LFU, high-LOD objects can be eliminated first, which can not only minimize
the amount of cached data but also ensure that as many objects are retained in the cache as possible,
significantly improving the hit rate of the client memory cache. If the client task has an obvious data
preference, the active preloading strategy, instead of on-demand loading, can be adopted, in which
the target data are first cached in the memory and then the data service ability is improved. At the
same time, due to the spatial proximity of spatial object access, the objects in close spatial proximity
have similar access frequencies; hence, the cache replacement algorithm based on spatial proximity
can be added.

As shown in Figure 6, the cache algorithm adjusts the state of the data configuration in the cache
node, and the change in the amount of data causes the transmission capacity of the edge to change.
As described in Section 3.2, when the proportion of hotspot data blocks increases in the cache node,
its maximum transmission capacity ci jk also increases proportionally. In summary, the task-driven
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hybrid caching algorithm plays an important role in increasing the hotspot data flow transmission
capacity in the scheduling service.
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Figure 6. Changing the cache algorithm to adjust the transmission capacity of the edge. States 1 and
2 are two cached storage states, rkm above R is the data block to be cached, rkm below R is the data
block to be cached out, and the dotted line represents that the new data block entering R will change
the internal cache block configuration state. On the edge, there is total transmission capacity ci j and
maximum transmission capacity ci jk of each Dk in this state. In the examples, 1f and 2f represent the
allocated data flow for each type of data Dk on the edge (RM, MDk).

4.2. Capacity Allocation of Storage Node

When the data access preferences change with high-concurrency tasks, by changing the hybrid
caching algorithm, the flow of the preference data can be improved, but the adjustment of the hybrid
cache algorithm achieves only the purpose of increasing the preference data upper limit of the maximum
flow Z2(MDk); the lower limit of the flow is still not changed. The practical data flow can still be near
the lower limit. Therefore, another way to comprehensively increase the preference data maximum
flow is by adjusting the edge capacity allocation of the underlying server where the storage node
is located.

According to the data access preferences of visualization tasks, these two kinds of adjustment
strategies can change the flow size of each type of spatiotemporal data to meet the task requirements.
Among them, the hybrid cache node algorithm adjustment method makes changes faster and is
more flexible, while the server connection edge capacity allocation method can accurately allocate the
maximum flow of the spatiotemporal data and improves the flow bandwidth of spatiotemporal data
from the bottom, which is more effective. In an actual project, the spatiotemporal data flow adjustment
strategy can be selected according to the task changes to meet the data flow requirements of multilevel
visualization tasks at the lowest cost.

5. Experimental Analysis

To verify the effectiveness of the proposed MFS method in task-driven spatiotemporal data
visualization, we designed spatiotemporal data scheduling experiments corresponding to three
visualization task levels, with six types of typical spatiotemporal data, including DEM, Building model,
DSM, Trajectory, Relation and Pipeline data, which are described in detail in Table 1. Compared the
MFS method with the two most important strategies, namely, first come first serve (FCFS) [41] and
the priority scheduling algorithm (PSA) [51], by simulating and analyzing the actual data throughput
changes, and verified the feasibility of the MFS method.
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Table 1. Description of experimental datasets.

Visualization Task Dk Data Type Data Size (GB) Number of Containers

Display
D1 DEM 5.0 3

D2
Building

model 4.3 3

Analytical

D3 DSM 3.0 2

D4 Trajectory 3.1 2

D5 Relation 1.6 1

Exploratory D6 Pipeline 1.3 1

5.1. Experimental Environment and Data

The spatiotemporal data scheduling experiment is implemented with Java v. 1.8, and a web-based
interface for parameter configuration and data flow monitoring is developed. The storage nodes are
implemented by the container-based MongoDB v. 4.0.12, and the cache nodes are implemented by the
container-based Redis v. 5.0.5. The whole experimental system is deployed on seven virtual machines,
each of which is installed with the CentOS 7 operating system and has a dual-core processor, 4 GB of
RAM and a 50 GB hard disk size. Four of the VMs are used as storage nodes, two as cache nodes and
one as a data scheduling service.

Six kinds of typical spatiotemporal data are prepared in the experiment, as shown in Table 1,
in which display scene visualization tasks are based on the DEM and building model, analytical scene
visualization tasks are based on the DSM and trajectory and relation data [52,53], and exploratory
scene visualization tasks use pipeline data. To evaluate the accuracy of our proposed MFS method,
we used open datasets (Building model datasets) for NYC (http://maps.nyc.gov/download/3dmodel/
DA_WISE_GML.zip). Typical application scenes of three types of visualization tasks are shown in
Figure 7. Figure 7a describes the city model, which belongs to the display visualization task; Figure 7b
obtains the best path of earthquake escape through simulation analysis, and Figure 7c presents the
knowledge representation of social relationships in the campus, which both belong to the analytical
visualization task. Figure 7d describes the precise troubleshooting of the pipeline fault in the interactive
augmented reality environment, which belongs to the exploratory visualization task.

http://maps.nyc.gov/download/3dmodel/DA_WISE_GML.zip
http://maps.nyc.gov/download/3dmodel/DA_WISE_GML.zip
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5.2. Experimental Results and Analysis

5.2.1. Data Maximum Flow Calculation of the Initial State

According to the requirements of multilevel visualization tasks, the spatiotemporal data storage
service is built, and the scheduling parameters are configured. The MFS model of the experimental
spatiotemporal data is constructed in Figure 8. The node configuration status and data transmission
capacity of each edge are shown in Table 2, which are calculated by Equations (1)–(3), where
b(VM,RM) = b(RM, MDk)

= b. The lower and upper limits of each type of spatiotemporal data Z1(MDk)

and Z2(MDk) under the initial state can be obtained by the Dinic algorithm, as shown in Table 3.
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Table 2. Node configuration and data transmission capacity.

Node Number Node Data Size (GB)
(D1, D2, D3, D4, D5, D6)

Capacity
(cij1,cij2,cij3,cij4,cij5,cij6)b

VM1 (0, 4.3, 3.0, 0, 0, 1.3) (0, 0.058, 0.041, 0, 0, 0.017)b
VM2 (5.0, 0, 0, 3.1, 1.6, 0) (0.053, 0, 0, 0.034, 0.017, 0)b
VM3 (10.0, 0, 3.0, 0, 0, 0) (0.059, 0, 0.018, 0, 0, 0)b
VM4 (0, 8.6, 0, 3.1, 0, 0) (0, 0.062, 0, 0.023, 0, 0)b

R1 (0.6, 0.5, 0.25, 0.4, 0.15, 0.1) (0.143, 0.129, 0.057, 0.094, 0.036, 0.026)b
R2 (0.5, 0.5, 0.3, 0.45, 0.125, 0.125) (0.119, 0.118, 0.073, 0.106, 0.029, 0.039)b

Table 3. Maximum data flow values under the initial state.

Dk Z1(MDk) Z2(MDk)

D1 0.225b 0.262b
D2 0.240b 0.247b
D3 0.118b 0.130b
D4 0.112b 0.199b
D5 0.033b 0.065b
D6 0.034b 0.064b

5.2.2. MFS Model Adjustment

The web-based spatiotemporal data maximum flow management interface is shown in Figure 9,
and the chart elements are implemented with Echarts [54]. The management interface can be used
to adjust capacity parameters to meet the different requirements of different levels of visualization
tasks for spatiotemporal data. By dragging the server and cache slider, the capacity parameters of
the edge are changed, resulting in a change in the service ability of each spatiotemporal data type in
the cloud environment. By simulating the requests for three types of visualization tasks as described
in Figure 7: Display visualization task: City model; Analytical visualization task: Escape route of
earthquake disaster and Students’ social relations on the campus; Exploratory visualization task:
Pipeline troubleshooting. The actual throughput of each data type can be monitored in real time,
as shown in the lower-left chart. In addition, under the current parameter configurations, the upper-
and lower-limit values of each type of spatiotemporal data calculated according to the method in this
paper are shown in the lower right chart.
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The test method used in the data scheduling experiment requests and schedules all spatiotemporal
data through sequential traversal. In addition, the beginning part of each type of spatiotemporal data
sequence is cached in the cache node. Therefore, during the experiment, the requests will be hit in
memory and then will be processed through the backend server. Through this special test method,
we can test the actual system data throughput when the MFS model is in the upper- and lower-limit
states. Next, we verify the effectiveness of this method through two specific multilevel visualization
task cases.

Case A: When a large number of display tasks are connected to the scheduling system, data access
prefers D1 and D2, and the data service resource with a low access rate can be allocated to the data
service with an intensive access rate to improve the system response speed and resource utilization.
Therefore, the slider on the maximum flow management interface is dragged, the capacity parameters
are adjusted and the service ability of D1 and D2 is improved. The upper limits Z2(MDk) and the
lower limits Z1(MDk) of each type of spatiotemporal data under Case A can be obtained by the Dinic
algorithm, as shown in Table 4. In contrast to Table 3, both the lower limits and upper limits of D1 and
D2 are increased after adjustment. At the same time, the maximum flow value of D3–D6 is reduced.

Table 4. Maximum data flow values under Case A (b(VM , RM) = b(RM, MDk) = b).

Dk Z1(MDk) Z2(MDk)

D1 0.255b 0.328b
D2 0.280b 0.303b
D3 0.086b 0.100b
D4 0.071b 0.143b
D5 0.033b 0.067b
D6 0.034b 0.040b

With the change in model parameters, the actual data throughputs of D1 and D2 are also changed.
The real-time throughput monitoring curves of D1 and D2 are shown in Figure 10. The former part of
the throughput curves of D1 and D2 are higher because the data required by the task is hit in the cache
node. At this time, the actual monitored throughput values correspond to the upper limit of the MFS
model. While the latter part of the throughput values is reduced because the data required by the task
are not hit, at this time, the actual monitored throughput values correspond to the lower limit of the
MFS model. The data scheduling of D1 is completed before that of D2; thus, the subsequent actual
monitored throughput of D1 is reduced to 0.
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In Figure 10a, the throughput of D1 is initially maintained at 61.48 MB/s and then reduced to
51.96 MB/s, and the throughput of D2 is initially maintained at 91.80 MB/s and then reduced to
46.95 MB/s under the initial state. After adjusting the model, the actual throughput values of D1 and
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D2 in Case A are as shown in Figure 10b. The throughput of D1 is initially maintained at 74.61 MB/s
and then reduced to 70.55 MB/s, and the throughput of D2 is initially maintained at 109.8 MB/s and
then reduced to 53.34 MB/s. By comparing Figure 10a,b, we find that the actual throughput of D1

in the former part is increased by 21.36% and that the latter part is increased by 35.78%; the actual
throughput of D2 in the former part is increased by 19.61%, and the latter part is increased by 13.61%.
In conclusion, by adjusting the parameters of the MFS model, the actual throughput of the display
task preference data is improved, and the service ability of spatiotemporal data under the condition of
an intensive display task is improved.

Case b: When a large number of analytical tasks are connected to the scheduling system, data
access prefers D3, D4 and D5. Similar to Case A, to improve the service ability of the system, more
resources need to be allocated to D3, D4 and D5. The upper limits and the lower limits of each type
of spatiotemporal data under Case B can be obtained by the Dinic algorithm, as shown in Table 5.
In contrast to Table 3, the lower limits and upper limits of D3, D4 and D5 are increased after adjusting;
at the same time, the maximum flow values of D1 and D2 are reduced because fewer resources are
allocated to them.

Table 5. Maximum data flow values under Case B (b(VM , RM) = b(RM, MDk) = b).

Dk Z1(MDk) Z2(MDk)

D1 0.185b 0.209b
D2 0.193b 0.211b
D3 0.159b 0.194b
D4 0.148b 0.213b
D5 0.042b 0.091b
D6 0.035b 0.067b

With the change in model parameters, the actual data throughputs of D3, D4 and D5 are also
changed. The real-time throughput monitoring curves of D3, D4 and D5 are shown in Figure 11.
The former part of the throughput curves is higher because the data required by the task are hit in the
cache node. At this time, the actual monitored throughput values correspond to the upper limit of the
MFS model. While the latter part of the throughput values is reduced because the data required by the
task are not hit, at this time, the actual monitored throughput values correspond to the lower limit of
the MFS model.
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In Figure 11a, the throughput of D3 is initially maintained at 47.38 MB/s and then reduced to
22.65 MB/s, the throughput of D4 is initially maintained at 58.79 MB/s and then reduced to 17.79 MB/s,
and the throughput of D5 is initially maintained at 14.75 MB/s and then reduced to 10.28 MB/s under
the initial state. After adjusting the model, the throughput of D3 is initially maintained at 66.41 MB/s
and then reduced to 30.01 MB/s, the throughput of D4 is initially maintained at 70.30 MB/s and then
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reduced to 27.46 MB/s, and the throughput of D5 is initially maintained at 17.44 MB/s and then reduced
to 13.00 MB/s in Figure 11b. By comparing Figure 11a,b, the actual throughput of D3 in the former part
is increased by 40.16%, and that in the latter part is increased by 32.49%; the actual throughput of D4 in
the former part is increased by 19.58%, and that in the latter part is increased by 54.36%; and the actual
throughput of D5 in the former part is increased by 18.24%, while that in the latter part is increased
by 26.46%. In conclusion, by adjusting the parameters of the MFS model, the actual throughput of
analytical task preference data are improved, and the service ability of spatiotemporal data under the
condition of an intensive analytical task is improved.

The adjustment of the parameters of each spatiotemporal data in the MFS model results in changes
in the relevant data throughput. The relationship between them is shown in Figure 12a,b. In Figure 12a
DkU is upper limit Z2(MDk) and DkL is upper lower limit Z1(MDk). In Figure 12b DkL and DkU is
the former part and latter part the actual throughput. It reveals that when the hotspot data of the
task preference are switched, the monitoring data throughput changes with the corresponding model
parameters, and the increase and decrease directions of the two are the same. Therefore, the MFS
method can flexibly adjust each type of spatiotemporal data flow as needed and realize the global
optimization of spatiotemporal data flow under limited hardware resources in the cloud environment.
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5.2.3. Mean Throughput Analysis

A task-oriented spatiotemporal data scheduling algorithm in a cloud environment should not
only efficiently use network bandwidth resources but also adapt to data access preferences regarding
multilevel visualization tasks. By taking the mean throughput as the index for evaluating the
performance of the scheduling algorithm, comparative experiments with the FCFS, PSA and the MFS
method are performed in this paper. The two algorithms are universal and have distinct characteristics.
FCFS involves ordered task access, which has the advantage of fairness and disadvantage of not
considering the satisfaction of scheduling. The PSA executes tasks with high priority first, thus having
the advantage of considering the urgency of a task and the disadvantage of increasing the computing
cost. The comparison of MFS with FCFS and PSA proves that MFS can adapt to the data access
preference of multilevel visualization tasks from the two aspects of undifferentiated scheduling and
priority scheduling. To ensure the reliability of the experimental results, each algorithm was assigned
the same task category in the same set of scheduling tests, and the amount of data accessed by tasks
was equal. Figure 13 shows the mean throughput of six types of spatiotemporal data using FCFS, PSA
and the MFS method proposed in this paper; and mean throughput in Cases A and B is equivalent to
the total amount of returned data divided by the task execution time.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 20 of 24 
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In Figure 13a, when the demand for spatiotemporal data D1 and D2 requested by display tasks
increases, the mean throughput of the D1 and D2 data using the MFS method is better than that of
the FCFS and PSA methods, and the experimental results of FCFS and PSA are similar. In Figure 13b,
the mean throughput of D3, D4 and D5 with the maximum flow scheduling method is better than
that of the FCFS and PSA methods, and the experimental results of FCFS and PSA are similar.
The characteristics of the scheduling method were analyzed to determine the reasons for obtaining
the experimental results. Notably, the MFS method is task-driven; when the data characteristics of
a large number of task requests change, the limited-bandwidth resources can be reallocated, and more
bandwidth is given to the task preference data, while other data are allocated fewer bandwidth
resources at this time. Such as the mean throughput of D3, D4 and D6 data using the MFS method is
smaller than that of FCFS and PSA in Case A, and mean throughput of D6 data using MFS method is
smaller than that of FCFS and PSA in Case B. The FCFS and PSA methods do not have this adjustment
mechanism, so there is a scramble for bandwidth resources in the data scheduling process.

In summary, the MFS method proposed in this paper can adapt to the data access preferences of
multilevel visualization tasks and improve the throughput of target data. Although PSA considers the
priority of tasks in scheduling, its role in improving the scheduling efficiency of target data is not as
good as that of the MFS method. In addition, due to the fairness principle of FCFS for all tasks, it is
unsuitable for data scheduling involving multilevel visualization tasks.

6. Conclusions

A flexible and efficient data scheduling method is the key to realizing the real-time construction
and interaction of a 3D scene visualization. In this paper, the spatiotemporal data scheduling framework
for multilevel visualization tasks is given. Then, the spatiotemporal data scheduling model based on
the maximum flow is introduced in detail. On this basis, the task-driven maximum flow allocation
method for spatiotemporal data is introduced. A virtualization container-based prototype system
for data scheduling and a user-friendly web-based parameter adjustment interface are developed.
The experimental results show that the MFS method addressed in this paper can support the flexible
and optimized adjustment of multiple spatiotemporal data flows required by visualization tasks.
The main contributions of this paper are summarized below.

First, the definitions of a multilevel visualization task and its data preference are given.
Then, according to the structure of spatiotemporal data storage and scheduling in a cloud environment,
the framework of spatiotemporal data scheduling is designed, which improves the theoretical basis for
the optimized data scheduling.

Second, the topological network structure of spatiotemporal data scheduling is mapped to the
maximum flow model, and the node and edge parameter configuration method and the detailed
calculation method of multitype spatiotemporal data maximum flow are introduced. Then, two
task-driven adjustment methods for the maximum flow model parameters, which improve the
technical support for fine-grained spatiotemporal data optimal scheduling, are given.

Third, a prototype system based on virtualization container technology, which provides
a user-friendly interface for parameter adjustment and model calculation and supports the real-time
monitoring and display of multitype spatiotemporal data flow, is developed. Our system supports
efficient and flexible multitype spatiotemporal data flow optimization control, providing a good
paradigm for subsequent spatiotemporal data scheduling in the cloud environment.

Future research will focus on spatiotemporal data scheduling methods under multirepetition
and miscellaneous architectures, such as cloud environments, edge computing and diversified clients.
Meanwhile, we will further improve the adaptive adjustment ability of the spatiotemporal data
scheduling service according to the diverse client task requirements.
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