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Abstract: Wildfires burn tens of thousands of hectares of forest, chaparral and grassland in
Mediterranean countries every year, giving rise to landscape, ecologic, economic, and public safety
concerns. On the Greek island of Chios and in many other Mediterranean landscapes, areas affected
by fire are difficult to access and control due to rugged terrain, requiring wildfire preparedness and
response plans that support fire fighting. This study utilized open source data and a weighted linear
combination to extract factors that determine wildfire risk. Landsat satellite imagery and publicly
available geospatial data were used to create a Geographic Information System and a multi-criteria
analysis to develop a methodology for spatially modeling fire risk on Chios, a Greek island with
frequent fire occurrence. This study focused on the static, structural component of the risk assessment
to produce a spatial distribution of fire risk as a thematic map. Fire weather conditions were accounted
for using Fuel Moisture Content, which reflected dryness of dead fuels and water deficit of live
biomass. To assess the results, historic fire data representing actual occurrence of fire incidents were
compared with probable fire locations predicted by our GIS model. It was found that there was
a good agreement between the ground reference data and the results of the created fire risk model.
The findings will help fire authorities identify areas of high risk for wildfire and plan the allocation of
resources accordingly. This is because the outputs of the designed fire risk model are not complex or
challenging to use in Chios, Greece and other landscapes.

Keywords: fire risk; forest management; GIS; geospatial data; remote sensing; multiple-criteria
decision analysis

1. Introduction

Forests, shrublands and other wildlands serve paramount ecological and environmental functions
and play a vital role in human welfare [1]. It is widely recognized that they can regulate rainfall,
moderate temperature, reduce soil erosion, and cycle atmospheric carbon [2–4]. They also provide
a great variety of outdoor recreation opportunities and connect people with nature in a diversity of
settings and activities.

Wildfires have a significant impact on the physical and biological environment; they affect
land use and land cover, ecosystems, biodiversity, and climate change. As such, they influence the
socio-economic system of the areas where they occur. The Mediterranean region is a prime example
of an extensive area where human-induced fires prevail and naturally-occurring fires are infrequent.
Natural causes represent from 1–5% of all ignitions, depending on the country, probably due to the
absence of climatic phenomena such as dry lightning storms [5]. Recent studies in the USA have also
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shown that human activities have created a spatial and seasonal “fire niche”, accounting for 84% of all
wildfires and 44% of the total area burned [6]. Human-induced fires are attributed to land conversion,
timber harvesting, slash-and-burn agriculture, conflicts over property ownership and land use rights,
negligence, and arson [7].

Mediterranean-type ecosystems are among the most diverse areas in the world due to the range
of climate conditions that provide a wide variety of habitats for various species. At the same time,
the Mediterranean climate is characterized by prolonged hot and dry summers that favor fire ignition.
Consequently, native vegetation (mostly pine trees and spiny evergreen shrubs) has adapted to periodic
wildfires [8]. However, this fire adaptation in the Mediterranean basin specifically has not been the
main driving factor for speciation [9]. The average annual number of wildfires in undeveloped areas
throughout the Mediterranean basin has increased significantly in the past 50 years. Other studies
have shown that in Spain, Portugal, Italy, and Greece, the average total burnt area has quadrupled
from the 60′s until the present [10]. Moreover, the projection of the yearly average burnt area in the
Mediterranean region is predicted to increase by approximately 150–220% by 2090 relative to 2000 [11].

Some Mediterranean areas are experiencing prolonged drought periods with high temperatures
and strong local winds that affect the frequency and the intensity of their fires. The Mediterranean type
of vegetation itself has chemical, physical and physiological properties that increase its flammability
with age [12]. A large part of the Mediterranean basin is a semi-natural landscape that has a long
history of human impacts on forests and shrublands, and most of the fire outbreaks have been a result
of human activities [13].

All fire-prone countries have some form of fire risk assessment and oftentimes more than one
(various indices). Studies have shown that vegetation and topography have been widely recognized
as the dominant controls on fire severity in many types of forest and shrubland ecosystems [14–18].
Fire ‘risk’ is a term used for the probability that a fire might start in a certain area, affected by the nature
and incidence of causative agents [19,20]. Due to the complex nature of forest and shrubland, maps
showing fire risk and fire danger can be particularly challenging to produce [11]. In Mediterranean
ecosystems specifically, difficulties in measurement and quantification of important factors related to
fire risk and danger often lead to either a descriptive approach to the problem or a total exclusion from
forest management planning [19].

Several approaches have been suggested for modeling potential fire occurrence, such as linear
regression and logistic regression analysis [21], algorithms based on normalized brightness and wetness
indices (FIRA), artificial neural networks [22,23], and statistical approaches [24]. Numerous research
projects have developed wildfire risk models for specific regions based on physiographic and
environmental factors that influence wildfire [7,25,26]. Fire risk assessment usually takes different
forms depending on the objectives for which the assessments are made. In Europe, the European
Commission Services deals with a multitude of forest fire risk and danger approaches in the various
member states. Consequently, the Joint Research Centre (JRC) of the European Commission created the
European Forest Fire Information System (EFFIS) that provides reliable and up-to-date information on
forest fires in Europe. The dynamic aspect of this model is defined primarily by weather; for example,
drought is an important factor that often creates favorable conditions for the ignition and propagation
of fire. Conversely, increased rainfall and humidity reduces the probability of ignition.

In-Situ meteorological data are usually collected at a low spatial resolution, which is inconsistent
with the fine scale at which site-level fire severity is assessed and predicted. Spatially interpolated data
from weather stations can partially mitigate this issue, but in regions where weather stations are sparse,
this technique is inadequate. The lack of credible and timely weather data limits the understanding of
spatial controls on fire-specific events.

Several methods using fire weather conditions have been proposed for fire risk applications.
The most common are field measurements [27], the use of calibrated sticks and the computation of
meteorological indices [28]. Fire weather conditions are often characterized using the metric of Fuel
Moisture Content (FMC), which reflects dryness of dead fuels and water deficit of live biomass [29].



ISPRS Int. J. Geo-Inf. 2020, 9, 516 3 of 19

Air temperature influences the temperature of the fuel and therefore the quantity of heat energy
required to raise it to its ignition point. Relative humidity is highly correlated with fuel moisture
and therefore plays an important role in controlling fuel flammability, particularly of fine fuels [30].
However, none of the methods using FMC are completely satisfactory [31].

Remotely sensed data allows the acquisition of information of the factors that determine fire
risk, such as topography, vegetation, weather, and other parameters at considerably finer temporal
and spatial resolutions. This alleviates the need for costly and intensive fieldwork and interpolation
methods that link the data directly to vegetation dynamic processes [32]. Advances in remote sensing
allow examination of fine-scale fire weather effects on fire severity. For example, an approach for the
remote sensing of FMC has been to estimate the change in canopy water content over time, using
a liquid-water spectral index, such as the Normalized Difference Infrared Index (NDII). NDII is
based on the ratio of the near-infrared and short-wave infrared reflectance bands (1.65 µm). It is
a robust indicator of water availability in the soil for use by vegetation [33]. This index is based on
reflectance measurements sensitive to changes in water content of plant canopies. The NDII uses
a normalized difference formulation instead of a simple ratio, and its value increases with increasing
water content [34].

In Greece, the Forestry Service has been using three classes for the static component of the risk
assessment, based primarily on local fire history (number of fires and area burned) over a 30 year
period. The General Secretariat of Civil protection provides a daily fire danger prediction map for
the entire country. The map is produced by a team of forest fire experts and meteorologists and is
published once a day around 13:00pm and is valid for the next day. An example of this map is shown
in Figure 1. As can been seen, the spatial resolution of the product is coarse, providing a fire danger
prediction class at the provincial level. For example, Chios, the study area examined here, is assigned
a single class for the entire island.
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Figure 1. Daily fire prediction map at national scale for the day 28 August 2015. A class for fire danger
prediction is assigned for each province of the country.

Several studies have attempted to create a multi-criteria evaluation based on remote sensing data
and GIS techniques [7,26,35–42]. However, there is a need to establish the basic factors that affect the
wildfire spread in our study area Chios such as fuel, fire behavior and human intervention (fire-fighting
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effectiveness) [43,44]. It is also important to examine how environmental parameters (vegetation
cover (V), slope (S), aspect (A), elevation (E), illumination (I)) drive fire propagation. This will help
understand how the most important environmental parameters, such as vegetation cover/fuel type and
FMC, drive fire propagation in Chios. Natural ignitions in Chios are extremely rare because of the lack
of dry lightning or other natural ignition source. However there is need to understand how fire ignition
correlates with human factors (be it negligence or arson), including access to roads and proximity to
human settlements. These are important factors in wildfire management in Chios because they indicate
human access and activity that can lead to ignition [45,46]. Settlements in Chios simply represent
human presence, while roads provide relatively easy access to undeveloped forest and shrubland.

The goal of this work was to design and create a decision support system to assist fire prevention
and management on the island of Chios. The current study aimed to produce an easy-to-use tool for
the estimation of fire risk using free data and open source software. It showcases the usability of public
domain geospatial data for information extraction with a methodology that can be transferable to other
landscapes and a final product that can be made available freely to the public.

2. Materials and Methods

2.1. Study Area

The study area is the island of Chios (Figure 2), that is located in the Northeastern Aegean Sea in
Greece. Chios is the fifth largest island in the Aegean, covering a total area of 902 km2 and a coastline
of 213 km. The total population is 54,000 inhabitants from which approximately half are residing in
the capital Chora. Chios is an island of significant ecological importance; it became internationally
known during the 13th century due to the production of the Chios mastic, the resin of the mastic tree
(Pistacia lentiscus L. var. chia (Desf. ex Poiret) DC.) in 21 villages. Many beneficial properties and
uses have been attributed to the Chios mastic since antiquity [47]. Mastic trees grow, among other
sclerophyllous species consisting the main vegetation type in Aegean islands [48], in the south part of
the island, an area which has been affected dramatically by recent severe fire events.
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Moreover, the island has five areas that are part of the NATURA 2000 Networking Program,
an initiative which ensures the long-term survival of Europe’s most valuable and threatened species
and habitats [49]. Two of these areas are ‘Sites of Community Importance’ (SCI) according to the
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Directive 92/43/EEC (habitats) and three are ‘Special Protection Areas (SPA) according to the Directive
2009/147/EU (birds).

The island’s climate is warm and moderate (Temperate, Mediterranean (Csa)) with modest
variation due to the stabilizing effect of the surrounding sea. The island normally experiences steady
breezes (average 10.8–18 km/h) throughout the year, with a dominant northerly or southwesterly wind.
Mediterranean-type climate regions are dominated by evergreen sclerophyllous-leaved shrublands,
semi-deciduous scrub, and woodlands, all of which are prone to widespread crown fires [50]. A warmer
and drier climate can affect wildfire activity by leading to more favorable conditions for burning
and also by modifying the structure of the fuel available to be burned [51]. The typical pattern
is a relatively wet and cool season in winter that spurs plant growth, followed by a dry and hot
summer season (Figure 3) in which the new vegetation withers and becomes flammable tinder. There is
a negative correlation between temperature and precipitation, which means that warmer than normal
temperatures usually result in drier than normal conditions and colder periods are likely to be wetter.
As it can be seen in Figure 3, based on 30-year data available for the island, the temperatures are the
highest for the period between July and August while the precipitation is the lowest, resulting in
an ideal scenario for wildfire. This agrees with the existing records of fires on the island that have
occurred in that 30-year time period.
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Figure 3. Annual fluctuation of temperature and rainfall in the island of Chios. The solid red line shows
the maximum temperature for an average day for every month on Chios; the solid blue line shows the
average minimum temperature; the dashed red and blue lines show the average of the hottest day and
coldest night of each month for the last 30 years. The period between June and September is dominated
by hot and dry conditions, ideal for the ignition and propagation of fires (Source: meteoblue).

Seasonal climate and recent weather conditions also shape FMC, the key factor determining
how readily fuels burn. While live plants and trees can hold as much as three times their weight in
moisture during a healthy growing season, dead fuels hold far less moisture, topping out at about 30%.
Furthermore, moisture levels of dead fuels can fluctuate daily [52]. Chios is one of the most fire-prone
areas in Greece with a total burnt area for the period 1993–2005 of 30,255 ha, the result of 446 recorded
fires and a mean burned area per incident estimated at 67.8 ha. In July 2007, fires occurred in the
north part of the island while in 2012 the most devastating fire of the past 30 years burned more than
14,800 ha. Extensive fires also occurred in the summer of 2016 at the regions of Plata (23th July) and
Sidirounta (26th August), burning 4,343 and 622 ha respectively (Figure 4).
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Figure 4. The study area in a Landsat-8 scene acquired on 13 July 2016 used in this study and the area
of interest in the bounding box (a); the smoke plume dispersing over the Aegean sea from a historic
fire that occurred in on Chios captured by the MODIS sensor on NASA’s AQUA satellite Aqua on
18th August 2012 (b).

2.2. Data

The present study is based on open access and freely available earth observation products and
algorithms. Data from the Landsat 5, Landsat-7 ETM+ and Landsat-8 OLI satellite sensors, the Shuttle
Radar Topography Mission (SRTM) Digital Elevation Model (DEM), the Corine Land Cover (CLC)
2012 (v.18.5.1) and the OpenStreetMap (OSM) were used to derive the fire risk map and the associated
burn scars from three past fire seasons (2007, 2012 and 2016). CLC was retrieved in GeoTIFF raster
format at 100 m spatial resolution from the Copernicus Land Monitoring Service.

The SRTM DEM was used for the extraction of the physiographic attributes (i.e., slope, aspect,
and elevation) and illumination. A visual investigation of the Advanced Land Observing Satellite
(ALOS) DEM provided by JAXA and the SRTM DEM provided by NASA, both at a resolution of
1 arc-second (30 m), revealed that these two datasets are very similar in the area of study; the SRTM
DEM was eventually selected, as it is not affected by cloud cover. Two 1 arc-second global SRTM tiles
cumulatively covering the region of interest (38 North/25 East and 38 North/26 East) were downloaded
in GeoTIFF format from the EarthExplorer website. They were then co-registered, subsetted to the
area of interest (AOI), spatially resampled to a 30 m × 30 m grid to approximate the Landsat-8 spatial
resolution, and projected on the latter’s coordinate system (WGS 84/UTM zone 35N).

Three pairs of Landsat images were used to map the footprint of the three fire events to investigate
the robustness of the methodology proposed at the local scale. The burn scar from the fire occurring
in the middle of July 2007 in the north part of the island was extracted from a pair of Landsat-5 TM
images acquired on 05 July 2007 at 08:46 and 28 July 2007 at 08:52. The fire of 2012 was estimated from
a pair of Landsat-7 ETM+ images acquired on 10 July 2012 at 08:47 and 15 November 2012 at 08:48.
The largest fire that occurred in July 2016 was mapped with pre- and post-fire Landsat-8 OLI scenes
acquired on 13 July 2016 at 08:52 and 29 July 2016 at 08:52 respectively. The cloud cover of the whole
scene is less than 1% with no apparent haze over any of the images and the entire island of Chios is
covered with a single Landsat image (Path 181, Row 33). All Landsat data were downloaded from
the Earth Resources Observation and Science Center (EROS) of the U.S. Geological Survey (USGS) at
level-1 standard processing level.
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2.3. Methodology

The flowchart to derive the parameters related to fire risk assessment is presented in Figure 5.
The CLC 2012 dataset was used to derive the LULC layer, the SRTM DEM data was used to derive the
slope, elevation and illumination layers, and the OSM data was used to derive the proximity to road
layer. Human settlement proximity was estimated from a vector layer built by taking into consideration
the OSM map and the 2011 population-housing Census published from the Hellenic Statistical
Authority [53]. The resulting factors were categorized in five levels from one to five (LULC from zero
to four) according to the thresholds presented in Table 1. Finally, each of these five layers was assigned
a weight and then analyzed and combined to produce the final result. The Landsat scene pairs were
used for the extraction of the burned area as the aftermath of the three large fire incidents, as well as the
NDII spectral index. The processing was performed in GDAL, Bash and R programming languages,
and the maps were created using QGIS. The software and data used are in the open access domain,
which makes the implementation of the proposed methodology readily available and without any cost
for software or data. The derivation of each layer is described in detail in the following paragraphs.
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Figure 5. The flowchart of the work progress. Landsat-5/7/8 images were used for each one of the
three fire incidents investigated in the current study and the flowchart, other than the use of a different
Landsat image, which was identical for each case.

Table 1. Factors and categorical values used in the model.

Categorical Value LULC NDII Illumination Slope (Degrees) Proximity to
Roads (m)

Proximity to
Settlements (m) Elevation (m)

Very low According to
next table (0) >0.008 <1,546,000 <5 >1600 >3200 >760

Low According to
next table (1) 0.006–0.008 1,546,000–1,612,000 5–10 800–1600 1600–3200 570–760

Medium According to
next table (2) 0.004–0.006 1,612,000–1,678,000 10–15 400–800 800–1600 380–570

High According to
next table (3) 0.002–0.004 1,678,000–1,744,000 15–25 100–400 200–800 190–380

Very high According to
next table (4) <0.002 >1,744,000 >25 <100 <200 <190

2.3.1. Vegetation—Land Use/Land Cover

The amount of fuel available for combustion was derived from the CLC 2012 dataset. The classes
identified on Chios were reclassified in integer numbers from zero to four (Table S1) based on the
land cover type and taking into consideration the possibility of fire ignition for each land cover type.
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For example, rice fields and similar irrigated areas were assigned a low score, since, although they
are representing vegetation with considerable vegetation biomass, the permanent water table makes
these areas unlikely for the ignition or the propagation of a fire. Olive groves, fruit trees, and berry
plantations, despite having high content in biomass, are assigned a lower score value (i.e., 2) in
comparison to non-irrigated trees as suggested in the existing literature [54].

2.3.2. NDII

The NDII index (Equation (1)) is a reflectance measurement that is sensitive to changes in water
content of plant canopies and plant roots. In the present study, the index is used as a proxy for FMC.

NDII = (ρ819 − ρ1649)/(ρ819 + ρ1649) (1)

where ρ is the spectral reflectance at 1649 and 819 nm, the shortwave infrared and near infrared bands,
respectively. Throughout the range beyond 1.3 µm, leaf reflectance is approximately inversely related
to the total water present in a leaf, a function of the moisture content. In the range from about 0.7 to
1.3 µm, a plant leaf typically reflects 40–50% of the energy incident upon it primarily due to the internal
structure of plant leaves [55].

The NDII index was first assessed for different years after 2006, at different dates of the July–August
period, and an emerging repetitive pattern was identified for the island (except for the areas burned
in 2007, 2012, and 2016). Thus, four cloud free images during the summer of 2006 (2 July, 17 July,
19 August and 4 September), before the major fire events, were chosen to derive the NDII, and the
average value of the four was used as the representative NDII layer.

2.3.3. Topography

Since temperature has a constant lapse rate and oxygen levels are reduced with height, elevation
and the fire occurrence are inversely related. The DEM was used for elevation values and was
reclassified in five classes (in 190 m increments). High values (corresponding to high altitudes) were
attributed to the lowest risk class value. Slope directly influences moisture levels, as steeper slopes are
subject to higher water runoff rates compared to shallow slopes, and rugged topography is generally
more exposed to direct sunlight (illumination), which leads to drier vegetation. Moreover, steep
topography plays a role in the formation of local winds and allows fire to spread more quickly up
slopes. Slope was derived from the DEM, and the values were aggregated in groups according to
FFTAICP and were given the weight factor presented in Table 1.

2.3.4. Illumination

Illumination is a measure of how much direct sunlight is received by a surface, based on its angle
and aspect. It is calculated based on a mathematical model that provides the amount of sunlight
that strikes any point on Earth’s surface during a given day. Illumination directly relates to surface
temperature and therefore to the moisture of fuels and the fire ignition risk factor. We followed the
methodology proposed in [56]. For the derivation of illumination, the map coordinates of the center of
the scene were used as presented in Table 2.

The apparent sunrise (05:03) and the apparent sunset (19:40) on 13 July 2016 were then estimated
and the whole hours between the apparent sunrise and sunset were identified from 6:00 to 19:00 with
one digit increment. The values of the azimuth and zenith angles for each whole hour interval were
calculated for the latitude and longitude of the center of the scene as estimated above, (from the website
“http://www.esrl.noaa.gov/gmd/grad/solcalc/” (Input data: Geographic coordinates of the center of
the scene, 13th July 2016, offset to UTC: +2, Daylight saving time: NO). Finally, the solar radiation
(illumination) was estimated (Table 3) based on Equation (2):

Solar radiation = 1365 × cos(Z) × 0.84sec(Z) (2)

http://www.esrl.noaa.gov/gmd/grad/solcalc/
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This formula yields the solar radiation dependent on the local time. For every whole hour of
Table 3, the sun azimuth, sun elevation and the DEM are input in the hillshade function of QGIS.
Therefore, the 14 rasters added up with the output from Equation (2) as the weight factor in the raster
calculator to produce the illumination map. Thereafter, the illumination values of the raster layer
were reclassified in five categories based on break points taken from the first standard deviation of the
histogram and not in near-equal intervals, as in the case of slope, elevation and proximity to roads.
Pixels with minor illumination values were assigned low class values (i.e., 1–2), while pixels with high
illumination were assigned high values (i.e., 4–5).

Table 2. Map extent of the scene and coordinates of the center.

Map Scene Details Coordinates (Decimal Degrees) Coordinates (DMS)

Upper left 396149.405, 4273610.302 25d48′26.32′′ E, 38d36′17.72′′ N

Lower left 396149.405, 4221110.302 25d48′54.18′′ E, 38d 7′54.76′′ N

Upper right 428579.405, 4273610.302 26d10′46.97′′ E, 38d36′29.25′′ N

Lower right 428579.405, 4221110.302 26d11′ 6.14′′ E, 38d 8′ 6.09′′ N

Center 412364.405, 4247360.302 25d59′48.45′′ E, 38d22′12.50′′ N

Table 3. The values of the azimuth and elevation for whole hour equal intervals for the center of the
chosen scene on 13 July 2016.

Local Time Sun Azimuth Zenith (Z) Solar Radiation

6:00 69.51 80.64 76.158

7:00 77.98 69.41 292.635

8:00 86.54 57.79 524.575

9:00 96.11 46.06 736.849

10:00 108.41 34.59 908.933

11:00 127.59 24.18 1028.342

12:00 162.71 17.29 1086.067

13:00 208.94 18.55 1076.603

14:00 238.71 26.84 1001.416

15:00 255.34 37.68 866.16

16:00 266.62 49.28 681.24

17:00 275.79 61.01 462.022

18:00 284.25 72.57 228.822

19:00 292.8 83.63 31.476

2.3.5. Human Factor—Proximity to Roads and Settlements

While it is not possible to model human behavior (neglect, pyromania, etc.), the statistical approach
developed by [57] shows a clear correlation between number of fire outbreaks and the proximity to
a road or a settlement. Forested areas and activity centers (e.g., camping sites) provide easy access
to the forest and influence the probability of ignition. In this study, the proximity to primary and
secondary roads and populated settlements was chosen to represent the human factor. The thresholds
selected for the road network proximity were 50 m, 200 m, 400 m, and 800 m.
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2.3.6. Risk Factor Weight Attribution

The individual maps produced for all the factors examined (vegetation cover, NDII, illumination,
slope, elevation, proximity to roads and settlements) are presented in Figure 6. A weighting factor
was attributed to each one of the factors according to their relative significance on fire ignition
and propagation. In most fire-related Multiple-Criteria Decision Analysis (MCDA), vegetation
volume-related factors are considered the most important followed by the energy received
(or temperature) and humidity. Gigović et al. [58] has compiled an assessment of the causative
factors for fire spreading based on previous GIS MCDA studies and expert opinion and concluded that
land use, topography, climate, and socioeconomics are the generic groups in sequence of importance
in the context of forest fire spread. In the current study, the relative importance between factors was
judged based on a meta-analysis. By considering findings from the literature review on this matter
primarily, and secondarily taking into account the co-author’s knowledge about the environmental and
landscape conditions in Chios, the order of importance between the factors was established. Thereafter,
the weight factor attribution is a critical step in an MCDA problem and several approaches have been
developed such as the Analytical Hierarchy Process (AHP) [59], fuzzy inference system (FIS) [60] and
compromise programming (CP) [61]. In the current study, we followed the pair-wise comparisons.
The factor considered the most important was the LULC class as it is related to fuel available for
combustion; the second factor considered was NDII since it relates to vegetation water content and
consequently the humidity in the canopy, which is inversely related to fire ignition capacity. The third
most important factor was illumination, which represents the solar radiation (and subsequently
the solar energy available) per pixel. The slope factor follows, while human factors (i.e., road and
settlement proximity) and elevation were given the lowest weights, sequentially. The numerical values
of the weights were calculated according to the pair-wise comparison method (Table 4). In order
to avoid the elimination of the weakest factor (i.e., elevation), which is a common problem for the
pair-wise comparison technique, calculations of the diagonal of the table were taken into account as
well. The final step of the process was to sum the seven raster layers using the calculated average
and produce the fire risk map depicting the fire danger across the study area (Figure 7) based on
Equation (3):

Fire risk = (0.25 × LULC) + (0.21 × NDII) + (0.18 × Illumination) + (0.14 × Slope) +

(0.11 × Road proximity) + (0.07 × Settlement proximity) + (0.04 × Elevation)
(3)

Table 4. Pair-wise comparison of the fire risk factors for the extraction of the relevant weights.

Factor LULC NDII Illumination Slope Road Proximity Settlement Proximity Elevation

LULC V

NDII V VI

Illumination V VI I

Slope V VI I S

Road proximity V VI I S RP

Settlement proximity V VI I S RP SP

Elevation V VI I S RP SP E

SUM V = 7/28 = 0.25 VI = 6/28 = 0.21 I = 5/28 = 0.18 S = 4/28 = 0.14 RP = 3/28 = 0.11 SP = 2/28 = 0.07 E = 1/28 = 0.04



ISPRS Int. J. Geo-Inf. 2020, 9, 516 11 of 19

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 11 of 20 

Fire risk = (0.25 × LULC) + (0.21 × NDII) + (0.18 × Illumination) + (0.14 × Slope) + 

(0.11 × Road proximity) + (0.07 × Settlement proximity) + (0.04 × Elevation) 
(3) 

 

Figure 6. The results for all the individual factors examined in the fire risk model proposed. Figure 6. The results for all the individual factors examined in the fire risk model proposed.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 12 of 20 

 

Figure 7. The fire risk map as a final product of the proposed approach. All the input layers were 

resampled to a 30 m × 30 m grid for the production of the map, equivalent to the 30 m spatial 

resolution of the Landsat satellite. 

Table 4. Pair-wise comparison of the fire risk factors for the extraction of the relevant weights. 

Factor LULC NDII Illumination Slope 
Road 

Proximity 

Settlement 

Proximity 
Elevation 

LULC V       

NDII V VI      

Illumination V VI I     

Slope V VI I S    

Road 

proximity 
V VI I S RP   

Settlement 

proximity 
V VI I S RP SP  

Elevation V VI I S RP SP E 

Figure 7. The fire risk map as a final product of the proposed approach. All the input layers were
resampled to a 30 m × 30 m grid for the production of the map, equivalent to the 30 m spatial resolution
of the Landsat satellite.



ISPRS Int. J. Geo-Inf. 2020, 9, 516 12 of 19

2.3.7. Burned Area Derivation

Optical satellite images were used to derive the burned area of three historic fire events that
occurred during the summertime; a recent fire in 2016, the major fire on the island in the last 30 years,
which occurred in 2012, and an older fire in 2007. Information about the Landsat optical images is given
in the “Data” section. All images were first converted from Digital Numbers (DN) to top-of-atmosphere
(TOA) reflectance according to Zanter [62] and based on Equation (4):

ρλ′ = Mρ × Qcal + Aρ (4)

where:

ρλ′ = TOA Planetary Spectral Reflectance, without correction for solar angle (unitless)
Mρ = Reflectance multiplicative scaling factor for the band.
Aρ = Reflectance additive scaling factor for the band (which is different for each satellite).
Qcal = L1 pixel value in DN

The Landsat-7 images suffer from the scan line effect and the no-data values introduced in the
images after May 2003 due to the failure of the Scan Line Corrector (SLC). To compensate for this
data loss, the no-data pixels values were filled by interpolating the valid pixels at the edges of each
void polygon.

Each pair of pre- and post-fire images was first used to derive the difference Normalized Burned
Ratio (dNBR) index for each fire event. NBR was introduced by Key and Benson [63] and is derived
from the algebraic combination of the formula in Equation (5):

NBR = (near IR −middle IR)/(near IR + middle IR) (5)

where dNBR is the difference of the NBR product of the two images; one taken before a fire incident
(pre-fire) and one after (post-fire) as in Equation (6):

dNBR = (pre-fire NBR) − (post-fire NBR) (6)

The dNBR was chosen as it has been successfully used in forest fire burn scar detection in Greece
in past studies [64–67]. The pixels with values higher than 0.1 characterize burned areas. The map
that was produced shows the area that was burned during each specific fire incident (Figure 8).
The histograms of the fire risk map for the whole island and the area burned are presented separately.
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2007 (left), 2012 (middle), and 2016 (right) laid over the fire risk map produced from the multi-criteria
model proposed.
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3. Results and Discussion

The final fire risk map is in good agreement with all the individual layers considered. The value
ranges for the individual factors taken into account were determined for the specific characteristics of
the study area. The factor that was assigned the highest weight was land cover, which relates to the
abundance of fuel available for fire ignition and propagation. This parameter attributes a high level of
risk in areas already identified as high risk for fire combustion (Table S1), which was based on the CLC
land use/land cover classification. An example of the good agreement between the fire risk map and
the actual burned area is shown in the forested areas in the central axis of the island.

The actual fires recorded in 2007, 2012 and 2016 were located in areas that were categorized as
‘high’ and ‘very high risk’ by the GIS model. This agreement becomes apparent in Figure 9, where the
histograms of the fire risk map of the whole island and the area corresponding to the burn scars are
presented. The pixels of burned areas follow a distribution, which in general corresponds well to the
higher fire risk index in the final map produced in the GIS proposed; it is essential to note that low fire
risk values (<3) are absent from the burned areas while they cover a considerable percentage of the
whole island distribution.
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the area burned from the fires in 2007 (upper right), 2012 (lower left) and 2016 (lower right).

The areas burned by the 2007, 2012 and 2016 fires generally have southern and western aspects
that receive a relatively high solar illumination (Figure 9). A clear correlation between the number of
fire outbreaks and the proximity to a road was also observed. In addition, there is good agreement
with the elevation parameter. Chios is generally a mountainous island, and the flat areas are primarily
found in the southern and eastern parts, while the highest peaks are in the Northern part of the island
(Pelineo Mt, St, Ilias top reaching 1297 m).

An interesting observation concerning the fire ignition in the year 2016 is the prevailing weather
conditions. On 25 July 2016, when Greece declared a state of emergency on Chios, the fire that broke
out was fanned by windy conditions. The wind direction was northerly, with a minimum speed of
11 km/hr and a maximum speed of 23 km/hr (data from an adjacent meteorological station of the
island—Mytilini National Meteorological Service station). This supports the argument of an ignition
in the north part of the burn scar and the spread of the fire towards the south. This argument supports
the proposed GIS’s prediction for ‘very high’ risk factor at the location of the fire ignition. The air
temperatures for the specific day were T minimum = 23 ◦C and T maximum = 34 ◦C; and the minimum,
maximum and average relative humidity were 17%, 48% and 34%, respectively. This specific weather
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profile, a hot and dry day with relatively strong winds during the warm season of the year and well
into that season (hot and dry for a prolonged period), favors the spread of a fire [67].

The fires that devastated the island in 2012 lasted for 5 days (18–22 August). The same
meteorological station gave the following data for 18 August 2012: The minimum temperature
was 24 ◦C while the maximum was 29 ◦C, and the minimum and maximum relative humidities were
45% and 65%, respectively (reasonably high relative humidity), with an average of 56%. The wind
speed ranged from a minimum of 19 km/hr to a maximum of 28 km/hr. The values of these parameters
were similar for the following days as well. Even though the weather profile was somewhat different,
meaning not very high temperatures and not very low humidity, there was a devastating fire. This fact
could highlight the importance of further assessment of the static component in fire risk analysis that
has been performed in this study.

For all the years tested, the assessment was satisfactory since the majority of actual fires were
located in areas that were identified as high and very high-risk zones, which has also been documented
in other similar studies [26,40,68–71]. The overall performance of the approach proposed in the
current paper and the respective GIS (highlighting the flexibility to be developed based on geospatial
information solely) showed that it has the potential to contribute to the efforts of forest fire prevention
as a useful and user-friendly tool for forest fire management.

Weather is the most dynamic factor determining fire danger as it affects FMC—particularly
of the dead fuel and to an extent determines wind direction [72,73]. This is the reason why most
of the operational fire risk assessment/forecasting systems are primarily based on meteorological
data measurements and/or predictions. As mentioned earlier, Greece currently uses such a system.
However, the volume of meteorological data necessary is large, and their calibration requires thorough
ground data collections. The meteorological variables used are obtained from weather stations that
provide information for point locations. Thus, it is necessary to apply interpolation techniques to
create a spatially continuous variable, yet this approach can yield different outputs from different
interpolation algorithms based on the same input variables [74]. In situations where the weather
stations are more than 20 km away, interpolation methods may produce poor results [75]. In this study,
a remote sensing approach was used to account for the meteorological factors, resulting in an estimate
of the change in canopy water content over time. In addition, we integrated NDII, a liquid-water
spectral index that is a robust indicator of water availability in the soil for use by vegetation.

The final map produced in the study is not a forecast or outlook model tied to a particular
day or season. It is instead intended for longer-term strategic wildfire planning and associated fuel
management, something which is currently lacking not only in the specific area but across Greece.
When paired with the specific spatial data depicting resources and assets in the area, our method
showed that it could successfully approximate relative wildfire risk. The proposed GIS can be used
for other areas as well, since the respective datasets are available, at no actual or associated costs
of data and license acquisition. When the aforementioned fire risk assessment tool is applied in
a new environment, it should be adjusted and evaluated for the meteorological conditions and the
vegetation cover of the new area. This approach could, for example, be easily adjusted to other regions
of Greece but also across the Mediterranean region since there is some degree of similarity in the
region’s landscapes and climate.

Reliable fire risk forecasting constitutes one of the most important components of wildfire
management and public safety. Maps like the one produced in the current study can be useful for civil
protection agencies and associated authorities, in that groups involved could set up an appropriate
firefighting infrastructure for the areas more prone to fire occurrence. Like those produced in the
current study, maps will prove helpful to the local land managers, as this type of data would enable
the groups involved to set up an appropriate firefighting infrastructure for the areas more prone to fire
occurrence. For example, in the case of Chios, fire watchtowers could be created in the areas that have
been identified as vulnerable and there could be an improved planning of the main subsidiary roads
and other access routes. Our approach could also assist in creating a reliable system to efficiently fight
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small and large occurring fires by identifying areas where wildfires are likely to occur. Services and
communities may prioritize areas of concern and guide decision-making efforts accordingly.

The current intended to create an easily used fire risk assessment GIS based on publicly available
geospatial data. The lack of other types of data, for example, meteorological data (that would have to
be requested and/or purchased from services, or do not exist in an organized manner) is an important
constraint. Although fires are such an essential and consistent challenge for Greece, the data that is
readily available for fire warning is certainly coarse by current standards and not relevant to the area/s
topographic and physiographic characteristics.

4. Conclusions

Large forested areas are burned every year in the Mediterranean, leading to widespread
environmental and economic damage. The valuable assets at risk include the wildland environment
and our collective cultural and historical heritage and justify the development of targeted measures
such as 1. preventing wildfire when possible, and 2. managing wildfires when and where ignitions
occur. In these two respects, integrated solutions with a broad scope should be promoted to ensure the
protection of these important natural and cultural assets.

The assessment of forest and shrubland fire impact is unquestionably an essential consideration
for the improved management of wildland resources. Additionally, any efforts aimed at fire prevention,
through the identification of high-risk areas, is also of crucial importance. This paper presented the
design and creation of a multi-criteria GIS model for the production of a fire risk assessment tool and its
application on the island of Chios, an area of exceptional ecological and cultural value. The proposed
approach was tested comparing the fire maps produced (for the years 2007, 2012 and 2016) with our
GIS-based results. A significant advantage of the method proposed is the use of a validated layer
of information for the ‘vegetation’ factor, thus avoiding possible errors associated with produced
classifications. Other factors that have an effect on wildland fire were calculated, namely a proxy
to FMC, illumination, topography, and proximity to human infrastructure. The relative importance
between the factors was examined and determined and a map that provides information about the
areas that are at a higher wildfire risk was produced. To validate the methodology proposed, actual
historical fire occurrence maps were employed and compared to the fire hazard zone area derived
from the prediction model. The results were in agreement as the actual fire spots were located in areas
that are identified as high and very high-risk zones as in similar studies.

The added valued of the framework proposed is that it relies on data that is freely and readily
available, overcoming the difficulties associated with the provision of other types of data that need to
be requested or purchased. At the same time, the products are user-friendly and save the potential
users from the burden of trying to understand complex parameters or technical details that go beyond
their level of experience. This advantage may allow local communities to have up-to-date and accurate
information and act accordingly to prepare effective fire management strategies. The authors plan to
test the methodology proposed for other areas of the country that have been repeatedly affected by
wildfires and investigate the robustness and the predictive performance of the GIS model.

Supplementary Materials: The following are available online at http://www.mdpi.com/2220-9964/9/9/516/s1,
Table S1: Corine Land Cover classes present in the scene and the categorical value of LULC score attributed
according to the CLC type.
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58. Gigović, L.; Jakovljević, G.; Sekulovic, D.; Regodić, M. GIS multi-criteria analysis for identifying and mapping
forest fire hazard: Nevesinje, Bosnia and Herzegovina. Teh. Vjesn. Tech. Gaz. 2018, 25, 891–897. [CrossRef]

59. Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281.
[CrossRef]

60. Zadeh, L. Probability measures of fuzzy events. J. Math. Anal. Appl. 1968, 23, 421–427. [CrossRef]
61. Yu, P.L. A class of solutions for group decision problems. Manag. Sci. 1973, 19, 936–946. [CrossRef]
62. Zanter, K. LANDSAT 8 (L8) Data Users Handbook (LSDS-1574 Version 5.0); United States Geological Survey:

Sioux Falls, SC, USA, 2019.
63. Key, C.H.; Benson, N.C. Measuring and remote sensing of burn severity. In Proceedings of the Joint Fire

Science Conference and Workshop: Crossing the Millennium: Integrating Spatial Technologies and Ecological
Principles for a New Age in Fire Management, Boise, ID, USA, 15–17 June 1999.

64. Kontoes, C.; Poilvé, H.; Florsch, G.; Keramitsoglou, I.; Paralikidis, S. A comparative analysis of a fixed
thresholding vs. a classification tree approach for operational burn scar detection and mapping. Int. J. Appl.
Earth Obs. Geoinf. 2009, 11, 299–316. [CrossRef]

http://dx.doi.org/10.1080/10106049.2019.1611946
http://www.nzdl.org/gsdlmod?e=d-00000-00---off-0hdl--00-0----0-10-0---0---0direct-10---4-------0-0l--11-en-50---20-help---00-0-1-00-0-0-11-1-0utfZz-8-00-0-0-11-10-0utfZz-8-10&cl=CL1.16&d=HASH40ec50fb1eb727e72e746a.8.7.4&gt=1
http://www.nzdl.org/gsdlmod?e=d-00000-00---off-0hdl--00-0----0-10-0---0---0direct-10---4-------0-0l--11-en-50---20-help---00-0-1-00-0-0-11-1-0utfZz-8-00-0-0-11-10-0utfZz-8-10&cl=CL1.16&d=HASH40ec50fb1eb727e72e746a.8.7.4&gt=1
http://www.nzdl.org/gsdlmod?e=d-00000-00---off-0hdl--00-0----0-10-0---0---0direct-10---4-------0-0l--11-en-50---20-help---00-0-1-00-0-0-11-1-0utfZz-8-00-0-0-11-10-0utfZz-8-10&cl=CL1.16&d=HASH40ec50fb1eb727e72e746a.8.7.4&gt=1
http://dx.doi.org/10.1108/09653560410568480
http://dx.doi.org/10.1016/0034-4257(89)90023-0
http://dx.doi.org/10.17348/era.8.0.153-167
http://ec.europa.eu/environment/nature/natura2000/index_en.htm
http://ec.europa.eu/environment/nature/natura2000/index_en.htm
http://dx.doi.org/10.1038/s41467-018-06358-z
https://news.ucar.edu/1437/wildfires-weather-climate
https://news.ucar.edu/1437/wildfires-weather-climate
http://www.statistics.gr/en/2011-census-pop-hous
http://www.statistics.gr/en/2011-census-pop-hous
http://dx.doi.org/10.2307/634969
https://ibis.geog.ubc.ca/courses/geob370/students/class06/fire/mce.html
http://dx.doi.org/10.1016/j.foreco.2006.08.176
http://dx.doi.org/10.17559/tv-20151230211722
http://dx.doi.org/10.1016/0022-2496(77)90033-5
http://dx.doi.org/10.1016/0022-247X(68)90078-4
http://dx.doi.org/10.1287/mnsc.19.8.936
http://dx.doi.org/10.1016/j.jag.2009.04.001


ISPRS Int. J. Geo-Inf. 2020, 9, 516 19 of 19

65. Veraverbeke, S.; Lhermitte, S.; Verstraeten, W.W.; Goossens, R. The temporal dimension of differenced
normalized burn ratio (dNBR) fire/burn severity studies: The case of the large 2007 Peloponnese wildfires in
Greece. Remote. Sens. Environ. 2010, 114, 2548–2563. [CrossRef]

66. Stratoulias, D. Burn Scar Mapping in Attica, Greece using the dNBR (differenced Normalised Burn Ratio) Index
on Landsat TM/ETM+ Satellite Imagery. Master’s Thesis, The University of Edinburgh, Edinburgh, UK, 2010.

67. Mitsopoulos, I.; Chrysafi, I.; Bountis, D.; Mallinis, G. Assessment of factors driving high fire severity potential
and classification in a Mediterranean pine ecosystem. J. Environ. Manag. 2019, 235, 266–275. [CrossRef]

68. Nuthammachot, N.; Stratoulias, D. The synergistic use of AHP and GIS to assess factors driving forest fire
potential in a peat swamp forest in Thailand. Environ. Monit. Assess. 2020, In press.

69. Nuthammachot, N.; Stratoulias, D. Synergistic use of AHP and GIS for mapping forest fire risk in Hua Sai
district, Thailand. Environ. Dev. Sustain. 2020, In press.

70. Taibi, B.E.; Dridi, H.; Bouhata, R. Cartographie de la susceptibilité des incendies de forêt à I’aide de données
de télédétection, des analyses SIG et AHP (étude de cas de Souhan, Algérie). Int. J. Innov. Appl. Stud. 2020,
28, 885–894.

71. Gülçin, D.; Deniz, B. Remote sensing and GIS-based forest fire risk zone mapping: The case of Manisa,
Turkey. Turk. J. Türkiye Orman. Derg. 2020, 21, 15–24. [CrossRef]

72. Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S.
Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537.
[CrossRef]

73. Torres, F.T.P.; Romeiro, J.M.N.; Santos, A.C.D.A.; Neto, R.R.D.O.; Lima, G.S.; Santos, A. Fire danger index
efficiency as a function of fuel moisture and fire behavior. Sci. Total. Environ. 2018, 631, 1304–1310. [CrossRef]

74. Chowdhury, E.H.; Hassan, Q.K. Operational perspective of remote sensing-based forest fire danger forecasting
systems. IsprsJ. Photogramm. Remote. Sens. 2015, 104, 224–236. [CrossRef]

75. Han, K.-S.; A Viau, A.; Anctil, F. High-resolution forest fire weather index computations using satellite
remote sensing. Can. J. Res. 2003, 33, 1134–1143. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rse.2010.05.029
http://dx.doi.org/10.1016/j.jenvman.2019.01.056
http://dx.doi.org/10.18182/tjf.649747
http://dx.doi.org/10.1038/ncomms8537
http://dx.doi.org/10.1016/j.scitotenv.2018.03.121
http://dx.doi.org/10.1016/j.isprsjprs.2014.03.011
http://dx.doi.org/10.1139/x03-014
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Methodology 
	Vegetation—Land Use/Land Cover 
	NDII 
	Topography 
	Illumination 
	Human Factor—Proximity to Roads and Settlements 
	Risk Factor Weight Attribution 
	Burned Area Derivation 


	Results and Discussion 
	Conclusions 
	References

