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Abstract: This paper proposes a flow-path-network-based (FPN-based) algorithm, constructed
from a square-grid digital elevation model (DEM) to improve the simulation of the flow
path curvature (C). First, the flow-path network model was utilized to obtain an FPN.
Then, a flow-path-network-flow-path-curvature (FPN-C) algorithm was proposed to estimate C
from the FPN. The experiments consisted of two sections: (1) quantitatively evaluating the accuracy
using 5 m DEMs generated from the mathematical ellipsoid and Gauss models, and (2) qualitatively
assessing the accuracy using a 30 m DEM of a real-world complex region. The three algorithms
proposed by Evans (1980), Zevenbergen and Throne (1987), and Shary (1995) were used to validate the
accuracy of the new algorithm. The results demonstrate that the C value of the proposed algorithm
was generally closer to the theoretical C value derived from two mathematical surfaces. The root
mean standard error (RMSE) and mean absolute error (MAE) of the new method are 0.0014 and
0.0002 m, reduced by 42% and 82% of that of the third algorithm on the ellipsoid surface, respectively.
The RMSE and MAE of the presented method are 0.0043 and 0.0025 m at best, reduced by up to
35% and 14% of that of the former two algorithms on the Gauss surface, respectively. The proposed
algorithm generally produces better spatial distributions of C on different terrain surfaces.

Keywords: digital elevation model (DEM); flow path curvature (C); flow-path-network-based
(FPN-based); flow-path-network-flow-path-curvature (FPN-C); flow line

1. Introduction

Terrain curvature is an important topographic parameter that reflects the shape characteristics
and concave–convex change in different orientations [1,2], and effects the distribution of the soil
organic content [3,4]. It has significant application values in terrain analysis [5–9], hydrology [10–13],
soil [14–17], hazard [18–20], and other fields [21–23]. The curvature is related to the orientation and
has different definitions of geometry and geology [24].

For a long time, a variety of curvatures developed by researchers have been used to meet the
requirements of practical applications [25–30], such as the mean curvature, maximum curvature,
minimum curvature, plan curvature, profile curvature, tangential curvature, flow path curvature,
and so on. Less acknowledged is the flow path curvature (C), which is also known as the rotor
curvature or streamline curvature [31]. It measures the rate of the change of the flow paths along the
horizontal direction, and describes the degree of twisting of the flow lines [4,32–34]. Although the flow
path curvature was not considered in the complete classification system of curvatures constructed by
Shary [35] at first, it has been widely utilized in the theory of the electromagnetic field [36]. For example,
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Pradhan and Guha [37] discussed the effects of the flow path curvature on the downstream evolution
of the three-dimensional flow field to accurately make the corrections of the field in the bifurcation
model. Results showed that the flow path curvature is mainly responsible for generating the Dean-type
secondary circulation and skewed velocity distributions. Pathak, et al. [38] studied the impact of the
flow path curvature on the flow field in the k–ε turbulence model and validated the superiority of
the improved model with this curvature. Yang and Tucker [39] selected some widely used turbulence
models to assess their performance affected by large flow path curvature and demonstrated that
the proper corrections of the flow path curvature can reduce the large solution errors. It still has a
few applications in other fields. For example, Tjerry and Fredsøe [40] presented that the flow path
curvature is another control factor of the geometry of a fully developed sand wave and certified
that this curvature is necessary to determine the position of the maximum sediment transport under
low riverbed shear stresses. Bagheri and Kabiri-Samani [41] researched the simulation of the flow
over the streamlined weirs based on numerical modeling and proved that a proper curvature of the
streamlines can reduce the adverse flow situations and generate a favorable weir structure along the
channels. Foroutan, et al. [42] conducted the unsupervised classification of an arid mountainous area
based on twenty-two digital elevation model (DEM) derivatives including the flow path curvature.
Results demonstrated that this classification is conducive to the uniform division of the area and
identification of debris, gravity, and wash slopes. Moreover, it may be beneficial to perform surface
runoff simulation due to its impact on the flow velocity of water and surface sediment [3], which will
be the topic of our next research. The accuracy and reliability of flow path curvature are still worth
exploring. Thus, in this paper, we consider this type of curvature in more detail.

The terrain surface can be described solely by a continuous and single-valued representation
z = f (x, y) and here, x and y, respectively, indicate the coordinates in the x direction and y direction,
and z is the elevation. The flow path curvature is estimated by the first-order ( fx and fy) and
second-order partial derivatives ( fxx, fxy and fyy). It can be defined as (

(
fx2
− fy

2
)
∗ fxy − fx ∗ fy ∗ ( fxx −

fyy)/
(

fx2 + fy
2
)3/2

(units: m−1) by Shary [26]. It is measuring the twist of flow lines. When it is larger
than zero, flow lines rotate clockwise. When it is smaller than zero, flow lines rotate counterclockwise,
otherwise the flow line does not swing along the straight line [3,42,43]. The flow path curvature is often
derived from the square-grid digital elevation model (DEM), which is valued for its simple structure
and continuity in the representation of topographic surfaces.

The commonly-used algorithms use the center grid cell and its eight surrounding grid cells based
on a moving window of 3 × 3 to calculate the C of the center grid cell. The elevation value of the
nine grid cells is approximated by the differentiate operation or local fitting curve. For example,
the method proposed by Evans [44] uses the six-parameter second-order polynomial to represent
the terrain surface, and derives different partial derivatives by the least-squares fitting algorithm to
calculate C. It has a high accuracy when considering the smoothing of the high-frequency noise of
the DEM [24,45]. Under the above method, Zevenbergen and Thorne [46] proposed a method which
utilizes the partial nine-parameter fourth-order polynomial to describe the surface, and so the fitting
curve can be passed through the nine grid cells and obtain the solely different partial derivatives
for the C calculation. Its aim was to enhance the accuracy of the different partial derivatives, but it
has not achieved the desired results because it lacks the smoothing and denoising effect of DEM [43].
The high-order polynomial interpolation method may result in incorrect topographic features [24].

Because the general second-order surface does not pass through all of the nine grid cells, the method
presented by Shary [35] employs the constrained five-parameter second-order polynomial to fit the
surface, and is also based on the least-squares fitting algorithm to derive the different partial derivatives
for estimating C. It is similar to the Evans algorithm, except for the different averaging processes.
Considering the equidistant distribution characteristics of a regular grid, Moore, et al. [47] proposed
a difference method using the numerical differentiation to calculate partial derivatives for the C
estimation. It directly uses the elevation of the center grid cell and eight neighboring grid cells to derive
the different partial derivatives for estimating C. It is similar to the algorithm proposed by Zevenbergen
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and Thorne [46], but they calculated the second-order partial derivatives using different methods.
In order to improve accuracy and adaptability to the different terrain surfaces, Shary, Sharaya and
Mitusov [30] proposed the modified Evans–Young method, which is based on the Evans algorithm,
to calculate the curvature after using filters to handle the center grid cell. The above mentioned
methods utilize the local terrain surface representation to derive the partial derivatives by the different
interpolation algorithm and a moving window. They are more helpful to consistently extract the local
curvature, but are not suitable for complex topography regions for higher-scale problems in terrain
analysis [48]. Moreover, the accuracy of these algorithms is affected by interpolation errors, and there
are difficulties in selecting suitable algorithms for the applications.

To overcome the aforementioned disadvantages, we present a flow-path-network-based
(FPN-based) algorithm to derive the flow path curvature (C) based on the vector-based approach.
It uses the flow-path network model [49] to generate the one-dimensional flow path network (FPN).
Then, a new flow-path-network-flow-path-curvature (FPN-C) algorithm is presented to calculate the C
from the FPN. It aims to improve the calculation accuracy of the C and avoid the interpolation error
and the choice of the calculation algorithm in practical applications. The experiments consisted of two
sections: (1) quantitatively evaluating the accuracy of the new algorithm on the 5 m DEMs generated
from the mathematical ellipsoid and Gauss surface models, and (2) qualitatively assessing the accuracy
of the proposed method by using a real-world DEM of a hilly plateau and mountainous region.

The structure of the paper is arranged as follows. The methods of the FPN-based approach are
presented in Section 2. Section 3 describes the experiments. The experiment results are shown in
Section 4. The accuracy of the proposed approach is discussed in Section 5. Section 6 concludes the
paper and illustrates directions for further research.

2. Methods

The methods consist of two sections in this paper: (1) obtaining a flow path network (FPN) using
the flow-path network model; (2) proposing an FPN-C algorithm to calculate the flow path curvature
(C) from the FPN. The detailed process of the FPN-based algorithm is shown in Figure 1.
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2.1. Obtaining a Flow Path Network (FPN) Using the Flow-Path Network Model

In this paper, the flow path network (FPN) is tracked by the flow-path network model [49], and its
detailed steps are shown in Figure 1. First, a no-depression DEM was acquired by filling the sinks
and local pits of the original DEM. Second, the triangular facet network algorithm [50] was used to
construct the triangular facet network (TFN). Third, the flow direction of the triangular facets over
the TFN was determined by its aspect and slope as shown in Figure 2, which were calculated by
the equations presented by Zhou, Pilesjö and Chen [50]. When the coordinate values of the three
vertices of a triangular facet were assumed as p1(x1, y1, z1), p2(x2, y2, z2), and p3(x3, y3, z3), the plane
equation of the facet could be specified as z = a ∗ x + b ∗ y + c. Here, a, b, and c could be derived from
Equation (1). The aspect (α) and slope (β) could be derived from Equation (2). Thus, the flow direction
over the triangular facet could be represented by a vector whose direction and length were determined
by the aspect and slope, respectively. The process of estimating the flow direction was different from
that of Terrain Analysis Using Digital Elevation Models (TauDEM). This is because the latter utilizes
the multiple flow direction (D∞) algorithm to estimate the flow direction which is represented as the
direction of the steepest downward slope over the eight triangular facets centered on a grid cell [51].
The downward slope of each triangular facet is symbolized by a vector whose direction and length are
determined by the ratio of elevation change to length in the x direction and y direction, respectively [52].
It obtained the flow direction using grid-based DEM, and the method in this paper estimated the flow
direction based on the three-dimensional vector facet. Fourth, the random resampling algorithm [53]
was used to obtain the flow source points from the original DEM. Finally, combining the flow direction
of the triangular facets over the TFN with the flow source points, an FPN was tracked based on the
flow-path network model; its detailed steps have already been described in this paper [49].

a =
(y1 − y3) ∗ (z1 − z2) − (y1 − y2) ∗ (z1 − z3)
(x1 − x2) ∗ (y1 − y3) − (x1 − x3) ∗ (y1 − y2)

b =
(x1 − x2) ∗ (z1 − z2) − (x1 − x3) ∗ (z1 − z2s)
(x1 − x2) ∗ (y1 − y3) − (x1 − x3) ∗ (y1 − y2)

c = z1 − a ∗ x1 − b ∗ y1

(1)

 α = tan−1
(√

a2 + b2
)

β = π− tan−1
(

b
a

)
+ π

2 ∗
a
|a|

(2)
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𝛽 = 𝜋 − tan−1 (
𝑏

𝑎
) +

𝜋

2
∗
𝑎

|𝑎|

 (2) 

Figure 2. Flow direction over the triangular facet drawn from a random point.
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2.2. Proposing an FPN-C Algorithm to Calculate the Flow Path Curvature (C) from the FPN

Considering the relatively stable curvature of the one-dimensional flow line over the FPN,
an FPN-C algorithm was proposed to calculate the flow path curvature (C) from the flow line.
The algorithm directly estimated the C based on the vector flow line rather than the first-order and
second-order derivations of the scattered grid cells.

2.2.1. Selecting the Suitable Flow Line to Calculate the Flow Path Curvature (C)

The flow path curvature (C) of a grid cell was assumed to be derived from the flow line passing
the grid cell. There may be numerous flow lines through a grid cell, and they are parallel for the same
flow direction of each grid cell. Therefore, it was necessary to select the suitable flow line from the FPN.

The selection method is as follows: (1) Judge whether the number of flow lines passing through the
calculated grid cell is equal to 1. If it is equal to 1, there will be only one flow line passing through the
grid cell, and the flow line will be regarded as the suitable flow line, otherwise; (2) find all of the flow
lines passing through the calculated grid cell, namely, the pass-lines; (3) select the flow lines throughout
the calculated grid cell from the pass-lines, namely, the through-lines. The standard throughout a grid
cell depends on the length of the flow line within the grid cell and whether it is larger than the length
of the grid cell; (4) regard the longest line among the through-lines as the suitable flow line.

2.2.2. Smoothing the Flow Line by the B-Spline Interpolation Method

The most suitable flow line within a grid cell consists of several break points; each broken line
may have significantly different curvature, and it is not reasonable to expect that any of the broken
lines can be utilized to estimate C. Thus, we smoothed the flow line so that the whole line in a grid cell
could be used to derive an accurate flow path curvature (C).

The spline interpolation method is commonly used to obtain smooth curves in the
mathematical [54–56], physical [57–60], and other fields [61–64]. In this study, the flow line was
smoothed by the B-spine interpolation method (B-spline method), which is suitable for handling
the multivalued functions that may appear on the flow line. To keep the overall smoothness and
a continuous slope and curvature at the break points, the cubic B-spine interpolation algorithm
was utilized to smooth the flow line by using these break points within the calculated grid cell.
Moreover, the flow line was cut up by a threshold to reduce the likelihood of overfitting. To prevent the
lines in the grid cell being too short and the number of the break points not being enough, the threshold
should not be too small.

According to the principle of the cubic B-spline interpolation algorithm, we could obtain a B-spline
curve (P(u)), which is a piecewise function, as shown in Equation (3). If there were n + 1 points and a
node vector (U =

{
u0, u1, . . . , un+k+1

}
, (k = 3)) used to smooth the curve, there would be an n basic

function. Each function (Ni,k(x), (i = 0, 1, . . . , n)) could be defined as Equation (4), and the operational
relationship between the basic functions is shown in Figure 3. Under the rules of interpolation
continuity and differential continuity, we could obtain Equation (5). Combing the equation with
Equations (3) and (4), we could calculate the P0, P1, P2, . . . , Pn to obtain the P(u). Figure 4 illustrates a
smoothing flow line by the cubic B-spline method.

P(u) = P0 ∗N0,3(u) + P1 ∗N1,3(u) + P2 ∗N2,3(u) + · · ·+ Pn ∗Nn,k(u) (3)
Ni,0(u) =

{
1, ui < u < ui+1

0, other

Ni,m(u) =
(u−ui)∗Ni,k−1(u)

ui+k−ui
+

(ui+k+1−u)∗Ni+1,k−1(u)
ui+k+1−ui+1

, m ≤ 3, uk ≤ u ≤ un+1

(4)

N′i,m(u) =
k− 1

ui+k+1 − ui
∗Ni,m−1(u) +

k− 1
ui+k − ui+1

∗Ni+1,m−1(u) (5)
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2.2.3. Fitting the Circle by the Least Square Algorithm

The premise of fitting a circle is selecting a series of points from the smoothing flow line in the
calculated grid cell. Therefore, it was key to choose the proper points from the line in the grid cell.

In this paper, the points were obtained by equally dividing the smoothing flow line, such as the
black points shown in Figure 5. The least square algorithm with the greatest effect was utilized to fit
the circle (the assumption of the circle equation is x2 + y2 + a ∗ x + b ∗ y + c = 0) by the several points
in the calculated grid cell (the assumptions of these points are (xi, yi), i = 1, 2, 3, . . . , n). Once the value
of a,b, and c was determined, the circle was obtained. According to the principle of the least square
method, we could obtain the objective function (as shown in Equation (6)). The optimal circle was
matched when the objective function reached its minimum, and a, b, and c could be acquired from
Equation (7).

f (a, b, c) =
n∑

i=1

(
x2

i + y2
i + a ∗ xi + b ∗ yi + c

)2
(6)


∑n

i=1 x3
i +

∑n
i=1 xi ∗ y2

i∑n
i=1 y3

i +
∑n

i=1 x2
i ∗ yi∑n

i=1 x2
i +

∑n
i=1 y2

i

+


∑n
i=1 x2

i
∑n

i=1 xi ∗ yi
∑n

i=1 xi∑n
i=1 xi ∗ yi

∑n
i=1 y2

i
∑n

i=1 yi∑n
i=1 xi

∑n
i=1 n




a
b
c

 =


0
0
0

 (7)

where f (a, b, c) denotes the objective function, i denotes the ith point, and xi and yi are the coordinate
values of the ith point in the x direction and y direction, respectively.
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The method can use more than three points to complete the circle fitting, and when more points
are applied it is possible to achieve a better performance. Thus, the standard of dividing the line evenly
in this paper was ensuring that there were more than ten points within the calculated grid cell. The red
circle in Figure 5 was acquired by these points in the black grid cell, based on the above algorithm.

2.2.4. Calculating the C by the Fitting Circle

According to Figure 5, the flow path curvature (C) of each grid cell was computed by the radius of
the fitting circle (the assumption of the radius is r) and any three ordered points (the assumptions of
the three blue points are P0(x0, y0), P1(x1, y1), P2(x2, y2)) in the grid cell. The circle radius could be
derived from three parameters of the circle (assumption of the parameters are a, b, c) by the equation
(r = 0.5 ∗

√
a2 + b2 − 4 ∗ c). Thus, the absolute value of C was the reciprocal of the radius, namely,

1/r. Its plus–minus sign was determined by the cross product of
→

P0P1 and
→

P1P2. If
→

P0P1·
→

P1P2 was
greater than zero, C would be −1/r, which denoted that the counterclockwise flow rotated in the
flow direction, otherwise, C would be 1/r, which denoted that the clockwise flow rotated in the flow
direction. In addition, if C was zero, the flow would not have any swing.

3. Experiments

We conducted experiments using two mathematical models to quantitatively evaluate the accuracy
of the new algorithm in this study. Moreover, the new algorithm was applied to a real-world DEM of a
hilly plateau and mountainous area, located in the central Ganzi Tibetan Autonomous Prefecture of
Sichuan Province to qualitatively assess its accuracy.

3.1. Quantitative Experiment

The ellipsoid surface model (Equation (8)) and Gauss surface model (Equation (9)) [65,66] were
selected to generate the DEMs with a 5 m resolution. We utilized the DEMs generated from four
ellipsoid surface models (namely, E1, E2, E3, and E4) and four Gauss surface models (namely, G1, G2,
G3, and G4) with different complexities to validate the accuracy of the new method. Table 1 shows
the parameters of the eight mathematical surfaces. The theoretical flow path curvature (C) could be
derived from the mathematical formulas of the equations summarized in Table 2.

x2

a2 +
y2

b2 +
z2

c2 = 1, z > 0 (8)

z = a
[
1−

( x
M
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]
e−(
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−(

y
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−

( x
M

)3
−

( y
N

)5
]
e−(

x
M )2
−(

y
N )

2
− ce−(

x
M+1)2

−(
y
N )

2
(9)
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Table 1. Parameters of the eight mathematical surface models.

Surface Types Parameters

E1 a = 400, b = 300, c = 300,−400 < x < 400,−300 < y < 300
E2 a = 400, b = 300, c = 800,−400 < x < 400,−300 < y < 300
E3 a = 400, b = 300, c = 1200,−400 < x < 400,−300 < y < 300
E4 a = 400, b = 300, c = 1600,−400 < x < 400,−300 < y < 300
G1 a = 3, b = 10, c = 1/3, M = 500, N = 500,−500 ≤ x, y ≤ 500
G2 a = 30, b = 100, c = 3, M = 500, N = 500,−500 ≤ x, y ≤ 500
G3 a = 60, b = 200, c = 6, M = 500, N = 500,−500 ≤ x, y ≤ 500
G4 a = 90, b = 300, c = 9, M = 500, N = 500,−500 ≤ x, y ≤ 500

Table 2. Formulas describing the two mathematical surfaces and calculating the theoretical C value.

Surface Types Formulas Describing the Surfaces and Calculating Theoretical the
Theoretical C Value

Ellipsoid

fx = −
c2
∗xp

a2∗zp
, fy = −

c2
∗yp

b2∗zp

fxx = −
c4
∗

(
1−

y2
p

b2

)
a2∗z3

p
, fxy = −

c4
∗xp∗yp

a2∗b2∗z3
p

, fyy = −
c4
∗

(
1−

x2
p

a2

)
b2∗z3

p

C 1 =
((

fx2
− fy

2
)
∗ fxy − fx ∗ fx ∗

(
fxx − fyy

))
/
(

fx2 + fy
2
)3/2

Gauss

p = e−(
x
M )2
−(

y
N +1)

2

, q = e−(
x
M )2
−(

y
N )

2

, r = e−(
x
M +1)2

−(
y
N )

2

a1 = −
4∗xp

M2 +
2∗xp

3

M4 , a2 = 0.2
M −

3.4∗xp
2

M3 +
2∗xp

4

M5 +
2∗xp∗yp

5

M2∗N5

a3 = −
2∗xp

M2 + 2
M , b1 = (1−

( xp
M

)2
) ∗ (

2∗yp

N2 + 2
M ), b2 =

2∗yp

N2

b3 =
5∗yp

4

N5 +
0.4∗xp∗yp

M∗N2 −
2∗xp

3
∗yp

M3∗N2 −
2∗yp

6

N7

c1 = 4
M2 −

14∗xp
2

M4 +
4∗xp

4

M6 , c2 = 2
M2 −

(
2∗xp

M2 + 2
M

)2

c3 =
7.2∗xp

M3 −
14.8∗xp

3

M5 −
2∗yp

5

M2∗N5 +
4∗xp

5

M7 +
4∗xp

2
∗yp

5

M4∗N5

d1 =
(

4∗xp

M2 −
2∗xp

3

M4

)
∗

(
2∗yp

N2 + 2
N

)
, d2 =

(
2∗xp

M2 + 2
M

)
∗

2∗yp

N2

d3 =
10∗xp∗yp

4

M2∗N5 +
(

0.2
M −

3.4∗xp
2

M3 +
2∗xp

4

M5 +
2∗xp∗yp

5

M2∗N5

)
∗

(
2∗yp

N2

)
h1 = (1−

( xp
M

)2
) ∗ (− 2

N2 +
(

2∗yp

N2 + 2
N

)2
), h2 = 2

N2 −
4∗yp

2

N4

h3 =
20∗yp

3

N5 +
0.4∗xp

M∗N2 −
2∗xp

3

M3∗N2 −
22∗yp

5

N7 −
0.8∗xp∗yp

2

M∗N4 +
4∗xp

3
∗yp

2

M3∗N4 +
4∗yp

7

N9

fx = a ∗ a1 ∗ p− b ∗ a2 ∗ q + c ∗ a3 ∗ r, fy = −a ∗ b1 ∗ p + b ∗ b3 ∗ q + c ∗ b2 ∗ r
fxx = −a ∗ c1 ∗ p + b ∗ c3 ∗ q + c ∗ c2 ∗ r, fxy = a ∗ d1 ∗ p− b ∗ d3 ∗ q− c ∗ d2 ∗ r
fyy = a ∗ h1 ∗ p + b ∗ h3 ∗ q + c ∗ h2 ∗ r

C =
((

fx2
− fy

2
)
∗ fxy − fx ∗ fx ∗

(
fxx − fyy

))
/
(

fx2 + fy
2
)3/2

1 Theoretical flow path curvature (C) value at the point (xp, yp, yp).

In this paper, the 5 m DEMs were resampled to obtain 15,031 and 40,000 flow source points at
random on the ellipsoid and Gauss surfaces, respectively. The threshold values of 30, 50, 100, and 150 m
were used to cut up the flow line over the FPN on the E1 and G1 in the process of choosing the optimal
threshold. During the circle fitting by the least square algorithm, we ensured that there were more
than ten points within the calculated grid cell. Next, we selected the optimum threshold value to
estimate the C value on E2, E3, E4, G2, G3, and G4. Finally, the simulated C value was compared
with the theoretical C value by the root mean standard error (RMSE) and mean absolute error (MAE),
to validate its accuracy. The RMSE and MAE are expressed as follows:

RMSE =

√√ n∑
i=1

(
C′i −Ci

)2
/n (10)
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MAE =
n∑

i=1

∣∣∣C′i −Ci
∣∣∣/n (11)

where Ci denotes the theoretical value, C′i denotes the simulated value, n denotes the number of grid
cells, and i denotes the ith grid cell.

3.2. Comparison Algorithms

In this study, three common published methods were compared to the proposed method.
These algorithms used the elevation values of the surrounding cells to compute the C of the central cell
using a 3 × 3 window, as shown in Figure 6.
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The first is the method proposed by Evans [44]. The expression of the fitting surface and the
equation for calculating C are expressed as Equation (12).

f (x y) = ax2 + by2 + cxy + dx + ey + f
fx = (Z3 + Z6 + Z9 −Z1 −Z4 −Z7)/(6 ∗ g)
fy = (Z7 + Z8 + Z9 −Z1 −Z2 −Z3)/(6 ∗ g)

fxx = (Z1 + Z3 + Z4 + Z6 + Z7 + Z9 − 2 ∗ (Z2 + Z5 + Z8))/
(
3 ∗ g2

)
fxy = (Z9 + Z1 −Z7 −Z3)/

(
4 ∗ g2

)
fyy = (Z1 + Z2 + Z3 + Z7 + Z8 + Z9 − 2 ∗ (Z4 + Z5 + Z6))/

(
3 ∗ g2

)
C =

((
fx2
− fy

2
)
∗ fxy − fx ∗ fx ∗

(
fxx − fyy

))
/
(

fx2 + fy
2
)3/2

(12)

where Zi denotes the elevation of the ith grid cell.
The second is the method proposed by Zevenbergen and Thorne [46]. The expression of the fitting

surface and the equation for calculating C are expressed as Equation (13).

f (x y) = ax2y2 + bx2y + cxy2 + dx2 + ey2 + f xy + gx + hy + i
fx = (Z6 −Z4)/(2 ∗ g)
fy = (Z8 −Z2)/(2 ∗ g)

fxx = ((Z4 + Z6)/2.0−Z5)/g2

fxy = (Z9 + Z1 −Z7 −Z3)/
(
4 ∗ g2

)
fyy =

(
(Z1 + Z8/2.0−Z5)/g2

C =
((

fx2
− fy

2
)
∗ fxy − fx ∗ fx ∗

(
fxx − fyy

))
/
(

fx2 + fy
2
)3/2

(13)
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where Zi denotes the elevation of the ith grid cell.
The third is the method proposed by Shary [35]. The functional expression of the fitting surface

and the equation for calculating C are expressed as Equation (14).

f (x y) = ax2 + by2 + cxy + dx + ey + Z5

fx = (Z3 + Z6 + Z9 −Z1 −Z4 −Z7)/(6 ∗ g)
fy = (Z7 + Z8 + Z9 −Z1 −Z2 −Z3)/(6 ∗ g)

fxx = (Z1 + Z3 + Z7 + Z9 + 3 ∗ (Z4 + Z6) − 2 ∗ (Z2 + 3 ∗Z5 + Z8))/
(
5 ∗ g2

)
fxy = (Z9 + Z1 −Z7 −Z3)/

(
4 ∗ g2

)
fyy = (Z1 + Z3 + Z7 + Z9 + 3 ∗ (Z2 + Z8) − 2 ∗ (Z4 + 3 ∗Z5 + Z6))/

(
5 ∗ g2

)
C =

((
fx2
− fy

2
)
∗ fxy − fx ∗ fx ∗

(
fxx − fyy

))
/
(

fx2 + fy
2
)3/2

(14)

where Zi denotes the elevation of the ith grid cell.
The three above-mentioned algorithms are referred to hereafter as the Evans, Zevenbergen,

and Shary algorithms, respectively. C++ was used to implement the Evans, Zevenbergen, and Shary
algorithms, and the proposed algorithm was implemented using C++ and Python.

3.3. A Real-World Application

A 30 m resolution DEM of a hilly plateau and mountainous region was selected to qualitatively
prove the accuracy of the new algorithm (Figure 7). The test DEM consisted of 300 × 300 grid cells
with an area of 81 km2, and elevation values between 2751 and 4523 m. The study area is located
in the central Ganzi Tibetan Autonomous Prefecture of Sichuan Province, and ranges from 30◦39′ to
30◦47′ N and 100◦47′ to 100◦55′ E. The terrain of the region is complex, with a high-density erosion
characteristic so that the flow path is clearly visible. Before the experiment, a no-depression DEM was
obtained by a preprocess of filling the sinks and local pits using ArcGIS Desktop10.1. The threshold
values of 100, 150, 200, and 250 m were used to cut up the flow line over the FPN. The flow source
points were randomly sampled from the 30 m DEM. The Evans, Zevenbergen, and Shary algorithms
were compared to the new algorithm on the real-world DEM as well.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 11 of 25 
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4. Results

The experimental results consist of two sections: (1) the results of the quantitative assessment
of the accuracy of the flow path curvature (C) derived from the mathematical models using RMSE
and MAE; (2) the results of the qualitative estimation of the accuracy of C derived from the real-world
DEM using the error of the spatial distribution.

4.1. Quantitative Assessment

Figure 8 illustrates the DEMs generated from four ellipsoid and four Gauss surfaces with various
parameters, and Table 3 shows the complexity parameters of E1, E2, E3, E4, G1, G2, G3, and G4. Table 4
illustrates the RMSEs and MAEs for the C calculated by the proposed algorithms under the different
threshold values (30, 50, 100, and 150 m) on the E1 and G1.
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Table 3. Complexity parameters of the eight mathematical surfaces (DEM resolution = 5 m).

Surface
Types

Flatter
Rates

Average
Reliefs (m)

Average
Slopes (◦)

Standard
Deviations (m)

E1 0.75 43.8 41.7 70.3
E2 2.0 185.7 62.8 187.6
E3 3.0 278.6 69.9 281.3
E4 4.0 371.5 74.0 375.1
G1 - 0.3 0.5 1.3
G2 - 3.4 5.4 13.1
G3 - 6.9 10.7 26.1
G4 - 10.3 15.6 39.2

Table 4. Root mean standard errors (RMSEs) and mean absolute errors (MAEs) for the C calculated by
the proposed algorithms under the different threshold values on the E1 and G1.

Surface
Types

Evaluation
Factors

Threshold Values (m)

30 50 100 150

E1
RMSEs 1 0.0014 0.0014 0.0014 0.0015
MAEs 2 0.0002 0.0002 0.0002 0.0002

G1
RMSEs 0.0044 0.0043 0.0043 0.0043
MAEs 0.0027 0.0025 0.0025 0.0025

1 RMSE in meters; 2 MAE in meters.

From Table 4, we can see that the optimum threshold value for cutting the flow line over the FPN
was 100 and 50 m on the ellipsoid and Gauss surfaces, respectively. The three comparison algorithms
could not derive C on the boundary of the study area using a moving 3 × 3 window. Thus, Table 5
shows the RMSEs and MAEs for the C values calculated by the comparison algorithms and proposed
algorithm under the optimal threshold on the eight surfaces, except for the error on the boundary.

Table 5. RMSEs and MAEs for the C calculated by the comparison algorithms and proposed algorithm
on the eight surfaces, except for the error on the boundary.

Surface
Types

Evaluation
Factors

Algorithms

Evans Zevenbergen Shary FPN-Based

E1
RMSEs 1 0.0012 0.0024 0.0012 0.0014
MAEs 2 0.0002 0.0011 0.0002 0.0002

E2
RMSEs 0.0012 0.0024 0.0012 0.0014
MAEs 0.0002 0.0011 0.0002 0.0002

E3
RMSEs 0.0012 0.0024 0.0012 0.0014
MAEs 0.0002 0.0011 0.0002 0.0002

E4
RMSEs 0.0012 0.0024 0.0012 0.0014
MAEs 0.0002 0.0011 0.0002 0.0002

G1
RMSEs 0.0066 0.0040 0.0066 0.0043
MAEs 0.0029 0.0019 0.0029 0.0025

G2
RMSEs 0.0070 0.0050 0.0070 0.0052
MAEs 0.0041 0.0032 0.0041 0.0038

G3
RMSEs 0.0087 0.0073 0.0087 0.0076
MAEs 0.0059 0.0051 0.0059 0.0058

G4
RMSEs 0.0111 0.0101 0.0111 0.0102
MAEs 0.0079 0.0072 0.0079 0.0077

1 RMSE in meters; 2 MAE in meters.
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4.2. Spatial Distribution of Residuals on the Mathematical Surface Models

From Table 5, we can see that the RMSEs and MAEs for the C values calculated by all four
algorithms are constant, which is in accordance with the theoretical derivation. Figure 9 shows the
spatial distribution of the residuals of the simulated C values relative to the theoretical C values on
E1, E2, E3, and E4. Figures 10–13 illustrate the spatial distribution of the residuals of the simulated
C values relative to the theoretical C values on G1, G2, G3, and G4, respectively. A positive value
indicated that the simulated C value was greater than the theoretical C value, and a negative value
indicated that the simulated C value was less than the theoretical C value. Table 6 shows the number
of residual values within different levels of the four methods on E1, E2, E3, E4, G1, G2, G3, and G4.
Table 7 shows the proportion of residual values within different levels of all four algorithms on E1, E2,
E3, E4, G1, G2, G3, and G4. Table 8 shows the change of the proportion of the large and small errors for
the new algorithm on E1, E2, E3, E4, G1, G2, G3, and G4.
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Table 6. Number of residual values within different levels of four methods on E1, E2, E3, E4, G1, G2,
G3, and G4.

Surface Types Levels
Algorithms

Evans Zevenbergen Shary FPN-Based

E1
(−∞, −0.002] 563 1288 563 42

(−0.002, 0.002] 14,388 12,939 14,388 14,916
(0.002, +∞) 80 804 80 45

E2
(−∞, −0.002] 563 1288 563 42

(−0.002, 0.002] 14,388 12,939 14,388 14,916
(0.002, +∞) 80 804 80 45

E3
(−∞, −0.002] 563 1288 563 42

(−0.002, 0.002] 14,388 12,939 14,388 14,916
(0.002, +∞) 80 804 80 45

E4
(−∞, −0.002] 563 1288 563 42

(−0.002, 0.002] 14,388 12,939 14,388 14,916
(0.002, +∞) 80 804 80 45

G1

(−∞, −0.005] 3492 1708 3492 1341
(−0.005, −0.001] 10,294 9965 10,294 10,380
(−0.001, 0.001] 12,723 16,486 12,723 15,400
(0.001, 0.005] 10,107 10,507 10,107 11,408
(0.005, +∞) 3384 1334 3384 1471

G2

(−∞, −0.005] 8105 6037 8105 2846
(−0.005, −0.001] 9986 11,219 9986 13,098
(−0.001, 0.001] 5869 7294 5869 6825
(0.001, 0.005] 11,330 13,087 11,330 11,628
(0.005, +∞) 4710 2363 4710 5603
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Table 6. Cont.

Surface Types Levels
Algorithms

Evans Zevenbergen Shary FPN-Based

G3

(−∞, −0.01] 5660 5267 5660 4673
(−0.01, −0.001] 12,379 11,928 12,379 12,685
(−0.001, 0.001] 5157 6684 5157 5982

(0.001, 0.01] 14,692 14,567 14,692 14,752
(0.01, +∞) 2112 1554 2112 1908

G4

(−∞, −0.01] 8309 7843 8309 7356
(−0.01, −0.001] 9622 9178 9622 9774
(−0.001, 0.001] 4955 6631 4955 6019

(0.001, 0.01] 12,222 11,871 12,222 12,300
(0.01, +∞) 4892 4477 4892 4551

Table 7. Proportion of residual values within different levels of the four methods on E1, E2, E3, E4, G1,
G2, G3, and G4.

Surface Types Levels
Algorithms

Evans Zevenbergen Shary FPN_Based

E1
(−∞, −0.002] or

(0.002, +∞) 4.28% 13.92% 4.28% 0.58%

(−0.002, 0.002] 95.72% 86.08% 95.72% 99.42%

E2
(−∞, −0.002] or

(0.002, +∞) 4.28% 13.92% 4.28% 0.58%

(−0.002, 0.002] 95.72% 86.08% 95.72% 99.42%

E3
(−∞, −0.002] or

(0.002, +∞) 4.28% 13.92% 4.28% 0.58%

(-0.002, 0.002] 95.72% 86.08% 95.72% 99.42%

E4
(−∞, −0.002] or

(0.002, +∞) 4.28% 13.92% 4.28% 0.58%

(−0.002, 0.002] 95.72% 86.08% 95.72% 99.42%

G1

(−∞, −0.005] or
(0.005, +∞) 17.19% 7.61% 17.19% 7.03%

(−0.005, −0.001] 25.74% 24.91% 25.74% 25.95%
(−0.001, 0.001] 31.81% 41.22% 31.81% 38.50%
(0.001, 0.005] 25.26% 26.26% 25.26% 28.52%

G2

(−∞, −0.005] or
(0.005, +∞) 32.04% 21.00% 32.04% 21.12%

(−0.005, −0.001] 24.97% 28.05% 24.97% 32.75%
(−0.001, 0.001] 14.67% 18.24% 14.67% 17.06%
(0.001, 0.005] 28.32% 32.71% 28.32% 29.07%

G3

(−∞, −0.01] or
(0.01, +∞) 19.43% 17.05% 19.43% 16.45%

(−0.01, −0.001] 30.95% 29.82% 30.95% 31.71%
(−0.001, 0.001] 12.89% 16.71% 12.89% 14.96%

(0.001, 0.01] 36.73% 36.42% 36.73% 36.88%

G4

(−∞, −0.01] or
(0.01, +∞) 33.00% 30.80% 33.00% 29.77%

(−0.01, −0.001] 24.06% 22.95% 24.06% 24.44%
(−0.001, 0.001] 12.39% 16.58% 12.39% 15.04%

(0.001, 0.01] 30.55% 29.67% 30.55% 30.75%
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Table 8. Change of the proportion of the large and small errors for the new algorithm on E1, E2, E3, E4,
G1, G2, G3, and G4.

Surface Types Levels
Comparison Algorithms

Evans Zevenbergen Shary

E1
(−∞, −0.002] or

(0.002, +∞) −86.45% 1 −95.83% −86.45%

(−0.002, 0.002] +3.87% 2 +15.50% +3.87%

E2
(−∞, −0.002] or

(0.002, +∞) −86.45% −95.83% −86.45%

(−0.002, 0.002] +3.87% +15.50% +3.87%

E3
(−∞, −0.002] or

(0.002, +∞) −86.45% −95.83% −86.45%

(−0.002, 0.002] +3.87% +15.50% +3.87%

E4
(−∞, −0.002] or

(0.002, +∞) −86.45% −95.83% −86.45%

(−0.002, 0.002] +3.87% +15.50% +3.87%

G1
(−∞, −0.005] or

(0.005, +∞) −59.10% −7.62% −59.10%

(−0.001, 0.001] +21.03% −6.60% +21.03%

G2
(−∞, −0.005] or

(0.005, +∞) −34.08% +0.57% −34.08%

(−0.001, 0.001] +16.29% −6.47% +16.29%

G3
(−∞, −0.01] or

(0.01, +∞) −15.34% −3.52% −15.34%

(−0.001, 0.001] +16.06% −10.47% +16.06%

G4
(−∞, −0.01] or

(0.01, +∞) −9.79% −3.34% −9.79%

(−0.001, 0.001] +21.39% −9.29% +21.39%
1 A negative value indicates that the reduction in the proportion of the large and small errors; 2 a positive value
indicates that the rise of the proportion of the large and small errors.

4.3. Spatial Distribution of the C Values on the Real-World DEM

The new algorithm was also implemented with a real-world DEM, illustrated in Figure 7, to provide
a comparison of the spatial distribution of the flow path curvature (C) values. We chose a subregion
(number of the grid cells of 100 × 100) delineated by the red box in Figure 7, to support a visual
comparison. The TFN and FPN of the subregion are illustrated in Figure 14. The C values of the
presented method under different threshold values on the subregion are shown in Figure 15. From the
figure, we can see the estimated C value under the cutting-up threshold of 200 m was the optimal value
to be compared with other algorithms. The spatial distribution of the C values calculated by all four
algorithms for the subregion are shown in Figure 16.

Experiments were implemented on a notebook computer with an i5-7200U CPU, 8 GB RAM,
980M NVIDIA GeForce GTX, and Microsoft Windows 10 using the 64-bit option. For the E1, G1,
and real-world DEM, the computing time of the Evans algorithm, almost the same as that of the
Zevenbergen and Shary algorithms, was 42.60, 45.74, and 55.98 s, respectively. The computational time
of the new algorithm was 107.16, 300.32, and 699.13 s, respectively, and it increased with the increase in
the number of grid cells over the DEM.
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5. Discussion

Our new approach attempts to calculate the flow path curvature (C) values from the vector-based
flow path network (FPN). The presented method converts the three-dimensional terrain into a
one-dimensional flow line. The vector flow line can directly reflect the curve projected by the flow path
over the horizontal surface and only utilizes the geometric parameter (coordinate of the break points
and length of the line) to estimate the flow path curvature. Thus, it can avoid the local interpolation
error based on the square-grid DEM and is the optimal choice of calculation algorithm, focusing on
how the flow moves over the terrain surface. The experimental results demonstrate that the new
approach has advantages over the selected comparison methods on the whole and can obtain a high
accuracy with different terrains.

5.1. Accuracy Measures

The results of the quantitative test demonstrate that the C simulated by the FPN-based algorithm
were generally closer to the theoretical value, and the algorithm was able to achieve a high accuracy
for two mathematical surfaces. From Table 5, we can see that the RMSEs of the Evans, Zevenbergen,
and Shary and proposed methods on E1, E2, E3, and E4 were 0.0012, 0.0024, 0.0012, and 0.0014 m,
respectively. Compared to the Evans and Shary algorithms, the RMSE of the proposed method
increased by 17% on E1, E2, E3, and E4. Compared to the Zevenbergen algorithm, the RMSE of the new
method reduced by 42% on E1, E2, E3, and E4. The RMSEs of the Evans and Shary algorithms on G1,
G2, G3, and G4 were 0.0066, 0.0070, 0.0087, and 0.0111 m, respectively. The RMSE of the Zevenbergen
algorithm on G1, G2, G3, and G4 was 0.0040, 0.0050, 0.0073, and 0.0101 m, respectively. The RMSE of
the proposed algorithm on G1, G2, G3, and G4 was 0.0043, 0.0052, 0.0076, and 0.0102 m, respectively.
Compared to the Evans and Shary algorithms, the RMSE of the new algorithm reduced by 35%, 26%,
13%, and 8% on G1, G2, G3, and G4, respectively. Compared to the Zevenbergen algorithm, the RMSE
of the proposed method increased by 8%, 4%, 4%, and 1% on G1, G2, G3, and G4, respectively.
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Moreover, the MAEs of the Evans, Zevenbergen, and Shary and proposed methods on E1, E2, E3,
and E4 were 0.0002, 0.0011, 0.0002, and 0.0002 m, respectively. The MAE of the new approach was the
same as that of the Evans and Shary algorithms on E1, E2, E3, and E4. Compared to the Zevenbergen
algorithm, the MAE of the new approach reduced by 82% on E1, E2, E3, and E4. The MAEs of the Evans
and Shary algorithms on G1, G2, G3, and G4 were 0.0029, 0.0041, 0.0059, and 0.0079 m, respectively.
The MAE of the Zevenbergen algorithm on G1, G2, G3, and G4 was 0.0019, 0.0032, 0.0051, and 0.0072
m, respectively. The MAE of the proposed algorithm on G1, G2, G3, and G4 was 0.0025, 0.0038,
0.0058, and 0.0077 m, respectively. Compared to the Evans and Shary algorithms, the MAE of the
new approach reduced by 14%, 7%, 2%, and 3% on G1, G2, G3, and G4, respectively. Compared to
the Zevenbergen algorithm, the MAE of the new approach increased by 32%, 19%, 14%, and 7% on
G1, G2, G3, and G4, respectively. These results show that the new approach can reduce the impact of
landscape morphology on different terrain surfaces. Therefore, the new algorithm can generally obtain
a relatively good result for the two above-mentioned surfaces.

5.2. Reasonable Spatial Distribution

The results of the spatial distributions of the residual values on the mathematical surfaces and of
the estimated C values on the real-world terrain show the expected distribution patterns, and discrete
patterns and some anomalous distributions. For E1, E2, E3, and E4, the results in Table 6 show that
the number of the residual values between −∞ and −0.002 and between 0.002 and +∞ for the Evans
and Shary algorithms was 563 and 80, respectively. The number of the residual values between −∞
and −0.002 and 0.002 and between 0.002 and +∞ for the Zevenbergen algorithm was 1288 and 804,
respectively. The number of the residual values between −∞ and −0.002 and between 0.002 and +∞

for the new algorithm was 42 and 45, respectively. For the Evans and Shary algorithms, the number
of the residual value between −∞ and −0.005 and between 0.005 and +∞ on G1 was 3492 and 3384,
respectively. The number of the residual value between −∞ and −0.005 and between 0.005 and +∞

on G2 was 8105 and 4710, respectively. The number of the residual value between −∞ and −0.01
and between 0.01 and +∞ on G3 was 5660 and 2112, respectively. The number of the residual value
between −∞ and −0.01 and between 0.01 and +∞ on G4 was 8309 and 4892, respectively.

For the Zevenbergen algorithm, the number of the residual value between −∞ and −0.005 and
between 0.005 and +∞ on G1 was 1708 and 1334, respectively. The number of the residual value
between −∞ and −0.005 and between 0.005 and +∞ on G2 was 6037 and 2363, respectively. The number
of the residual value between −∞ and −0.01 and between 0.01 and +∞ on G3 was 5267 and 1554,
respectively. The number of the residual value between −∞ and −0.01 and between 0.01 and +∞ on
G4 was 7843 and 4477, respectively. For the new algorithm, the number of the residual value between
−∞ and −0.005 and between 0.005 and +∞ on G1 was 1341 and 1471, respectively. The number of
the residual value between −∞ and −0.005 and between 0.005 and +∞ on G2 was 2846 and 5603,
respectively. The number of the residual value between −∞ and −0.01 and between 0.01 and +∞ on G3
was 4673 and 1908, respectively. The number of the residual value between −∞ and −0.01 and between
0.01 and +∞ on G4 was 7356 and 4551, respectively. These results demonstrate that the number of
large errors of the new algorithm is generally lower than that of the other comparison algorithms.

From Table 7, we can see that the proportions of the large errors obtained by the Evans, Zevenbergen,
and Shary and the proposed method were 4.28%, 13.92%, 4.28%, and 0.58%, respectively. The results
in Table 8 show that the proportion of large errors of the new algorithm reduced by 86.45%, 95.83%,
and 86.45% of that of the Evans, Zevenbergen, and Shary algorithms, respectively. For the Evans,
Zevenbergen, and Shary and the proposed methods, the proportions of large errors on G1 were
17.19%, 7.61%, 17.19%, and 7.03%, respectively. The proportions of large errors on G2 were 32.04%,
21.00%, 32.04%, and 21.12%, respectively. The proportions of large errors on G3 were 19.43%, 17.05%,
19.43%, and 16.45%, respectively. The proportions of large errors on G4 were 33.00%, 30.80%, 33.00%,
and 29.77%, respectively. The results in Table 8 show that the proportion of large errors of the new
approach reduced by 59.10%, 34.08%, 15.34%, and 9.79% of that of the Evans and Shary algorithms on
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G1, G2, G3, and G4, respectively. The proportion of large error of the new approach reduced by 7.62%,
−0.57%, 3.52%, and 3.34% of that of the Zevenbergen algorithm on G1, G2, G3, and G4, respectively.
These results demonstrate that the proportion of large errors of the new algorithm is generally lower
than that of other comparison algorithms.

For E1, E2, E3, and E4, the proportion of residual values of the new approach between −0.002
and 0.002 increased by 3.87% compared to the Evans and Shary approaches. The proportion of
residual values of the new approach between −0.002 and 0.002 increased by 15.50% compared to the
Zevenbergen algorithm. Combing the results in Figure 9, we can see that the residual value of the
new approach was mainly distributed between −0.002 and 0.002, and was smaller than that of the
comparison algorithms on E1, E2, E3, and E4. For the abovementioned order of Gauss surfaces, the
proportion of residual values of the new approach between −0.001 and 0.001 increased by 21.03%,
16.29%, 16.06%, and 21.39% compared to the Evans and Shary approaches, respectively. Compared to
the Zevenbergen algorithm, the proportion of residual values of the new approach between −0.001 and
0.001 reduced by 6.60%, 6.47%, 10.47%, and 9.29%, respectively. Combing the results in Figures 10–13,
we can see that the spatial error of the proposed method was much higher than that of the Evans and
Shary algorithms, and slightly lower than that of the Zevenbergen algorithm on G1, G2, G3, and G4
on the whole. Therefore, the performance of the new approach is generally better than that of the
comparison algorithms on the ellipsoid and Gauss surfaces.

From Figures 14 and 16, we can see that the C value of the proposed algorithm was slightly higher
than that of the Evans, Zevenbergen, and Shary algorithms on the ridges of extremely complicated
terrain surfaces, which symbolized the area with obvious topographic relief. The new algorithm has a
relative advantage over the selected comparison methods in gullies. Generally speaking, the FPN-based
algorithm produces plausible outcomes, which conform to the real terrain. Because of the lack of field
measurements of the partial derivatives, the quantitative evaluation of the proposed algorithm could
not be simulated.

5.3. Consistent Simulation Results

From Table 4, we can see how the accuracy of the new approach varied depending on the threshold
value for cutting up the flow line over the FPN. For E1, the RMSE of the FPN-based algorithm was
0.0014, 0.0014, 0.0014, and 0.0015 m under the threshold values of 30, 50, 100, and 150 m, respectively.
The MAE of the newly proposed algorithm was 0.0002 m under the different threshold values. For G1,
the RMSE of the FPN-based algorithm was 0.0044, 0.0043, 0.0043, and 0.0043 m under the threshold
values of 30, 50, 100, and 150 m, respectively. The MAE of the newly proposed algorithm was 0.0027,
0.0025, 0.0025, and 0.0025 m under different threshold values. Combined with the results shown in
Figure 14, the accuracy of the new algorithm was generally invariant with the change of the cutting-up
threshold for the ellipsoid, Gauss, and real-world surfaces. Therefore, the proposed algorithm achieved
the consistent simulation results.

6. Conclusions

In this paper, we propose a new approach to simulating the flow path curvature (C) using
a vector-based method. This approach utilizes a new FPN-C method to derive C from the flow
path network (FPN). The new algorithm aims to enhance the accuracy of simulating C and avoid
interpolation errors, as well as being the choice of calculation algorithm for practical applications.

The presented method was implemented on the mathematical ellipsoid and Gauss surface models
for a quantitative evaluation. Then, it was applied to a hilly plateau and mountainous region, located
in the central Ganzi Tibetan Autonomous Prefecture of Sichuan Province, as a qualitative assessment.
The results demonstrated that the new algorithm can obtain a relatively good result on different terrain
surfaces. The new approach generally performed better than the comparison algorithms on the two
above-mentioned surfaces. It was validated by both the quantitative evaluation (RMSE and MAE) and
qualitative assessment (the visual comparison of the spatial distribution of the simulated C values
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on the mathematical and real-world surface). The RMSE and MAE of the new method were 0.0014
and 0.0002 m, reduced by up to 42% and 82% of that of the comparison algorithms on the ellipsoid
surface, respectively. The RMSE and MAE of the presented method were 0.0043 and 0.0025 m at best,
reduced by up to 35% and 14% of that of the comparison algorithms on the Gauss surface, respectively.
For the ellipsoid surfaces, the residual value of the new approach was mainly distributed between
−0.002 and 0.002 which was smaller than that of the comparison algorithms. The proportion of large
errors of the new algorithm was 0.58%, reduced by up to 95.83% of that of the comparison algorithms.
For the Gauss surfaces, the proportion of large errors of the new algorithm was 7.03% at best, reduced
by up to 59.10% of that of the comparison algorithms. Moreover, this new approach can achieve
consistent simulation results.

However, the vector-based flow line requires a high computing power in practical applications,
especially in large DEMs. Therefore, the optimization and parallelization of this algorithm will be the
focus of our future work. In addition, the B-spline interpolation method does not pass through the
point used for interpolation. Thus, there may be a better algorithm to further enhance the accuracy
when estimating the flow path curvature, which will be addressed in our future work as well. We will
also continue to improve the calculation of the flow path curvature for the karstic or glacier type
relief surfaces.
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