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Abstract: In spite of the tremendous success in artificial intelligence technology and a high level of
automation in geospatial data obtaining processes, there is still a need for topographical field data
collection by professional surveyors. Understanding terrain topology and topography is a cognitive
skill set that has to be demonstrated by geospatial Subject Matter Experts (SME) for the productive
work in the topographic surveying field. For training of the mentioned above skillset, one has to be
exposed to the theory and must also practice with surveying instruments in field conditions. The
challenge of any surveying/geospatial engineering workforce training is to expose students to field
conditions which might be limited due to equipment expenses and meteorological conditions that
prevent good data collection. To meet this challenge, the Integrated Geospatial Technology research
group is working on a geospatial virtual reality (VR) project which encompasses the following
components: (a) immersive visualization of terrain; (b) virtual total station instrument; (c) virtual
surveyor with reflector installed on the virtual rod. The application scenario of the technology we are
working with has the following stages: (1) student is installing total station on the optimal location; (2)
students move virtual surveyor on the sampling points they consider to be important (3) contours are
generated and displayed in 3D being superimposed on 3D terrain; (4) accuracy of terrain modeling is
observable and measurable by comparing the sampling model with initial one.

Keywords: virtual reality; cyberlearning; training geospatial workforce

1. Introduction

Nowadays, geospatial technologies are part of the new paradigm of cyber-infrastructure [1] that
demands a geospatial workforce training methodology to accommodate cyberlearning technologies [2].
Topographic surveying is one of the most demanded operational workflows needed for both mapping
and engineering geospatial application scenarios. Understanding of terrain topology is a critical skill
set that has to be developed by any surveyor who is involved in topographic data collection. Training
of those skills for surveyors requires the use of various instruments (total stations/GPS systems) in the
field. Such a filled training session is sensitive to the seasons of the year and weather conditions which
stimulate demand to move surveying education to the virtual space. Virtual Reality and Augmented
Reality (VR/AR) technologies open an opportunity of exploring online training opportunities for
geospatial workforce training and education. There are some examples of the possible applications of
such a technology in the field of education. Those publications describe both common principles of VR
cyberlearning [3] and specific aspects of the surveying VR implementation [4,5]. Specifically, research
paper [6] reports on virtual instruments developed for teaching surveyors, which can be enriched by
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small Unmanned Aerial Systems (sUAS) data and Terrestrial LIDAR Scanner (TLS) point-clouds, as
described in [7]. Papers [8], [9], and [10] are devoted to the development of cognitive theories behind
virtual reality training and education. Paper [11] discusses various applications of Unity technology for
VR simulation generation. In paper [12], authors proposed the original solution of the very important
research question on the optimal number and position of the ground control points for the sUAS
case. Finally, paper [13] describes immersive virtual reality technology for specifically surveying
engineering education purposes. Nevertheless, all of the research listed above was implemented
based on standalone computer systems. Nowadays mobile technologies and cloud computing enable
another solution to the geospatial VR implementations which are more computationally efficient and
can be deployed on networked inexpensive systems. The major difference of the current research
is the attempt to deploy inexpensive mobile VR compared to standalone systems described in the
papers mentioned above. Of course, those studies are theoretically based on another in-depth research
study in the sphere of Augmented Reality (AR)VR, such as [14–16]. Where [14] performs an excellent
VR/Mixed Reality (MR)/AR technology review, [15] deals with biomedical and attentional aspects of
such technologies, and [16] is devoted to the rigorous cognitive analysis of the experiment from the
human factors standpoint.

The development of the virtual training tool sets is now prevalent in mainstream research efforts.
For example, the manuscript [17] describes the cognitive and technological aspects of surveyors training
“gamification” [18,19] that culminated in the development of operation workflows of the 3D multiuser
virtual learning environment (3DMUVLE) educational game design framework. This research study
demonstrates a very useful connection of the gaming application scenarios with learning outcomes
and their assessments in the frame of cyberlearning; however, implementation of the variety of the
specific surveying technologies and instruments may serve as a complication factor for the creation of
generic application scenarios. The most interesting work was performed in [20] where online training
was focused on digital terrain modeling practice. The challenge of current research is to develop a
cyberlearning approach for terrain data collection specifically for topographic surveying.

2. Research Methods

To meet this challenge, we developed a cyberlearning framework that was devoted to training
students in understanding the proper process to select points for the topographic surveying in a
virtual simulation. The cyberlearning environment was based on a VR model encompassing a Digital
Elevation Model (DEM), a virtual total station, and a virtual reflector. Unity [11] was used to create
the VR environment to build the topographic surveying VR simulation. The operational workflow
diagram of the Surveying VR cyberlearning toolset is depicted in Figure 1. Cyberlearning workflow
consisted of (a) setting a total station position, (b) repetitive movement of the virtual reflector to
the positions where terrain sampling points were selected by the student for the measurements, (c)
generation of contour lines based on sampling points selected by students, (d) visual and quantitative
comparison of the DEM and contours generated based on student measurements with proper ones
generated based on source DEM and instructor-sample measurements. Technical implementation of
the operational workflow was achieved by means of integration of the inexpensive mobile computing
and state-of-the-art stand-alone inexpensive and open-source terrain modeling toolsets. Elements of
gamification were introduced by a score defined by a minimal number of sampling points versus the
higher accuracy of the DEM generated as a result of the cyberlearning session. That approach was
implemented and discussed in detail in the current section with preliminary results outlined in the
Section 3 of current manuscript.

Learning outcomes of the technology outlined here were (a) understanding of the terrain modeling
and sampling principles, (b) comprehension of terrain interpolation methods, (c) understanding of
the regular and structural terrain modeling, (d) profound understanding of the field data collection
during topographic surveying. Per the technology developed, these outcomes were achieved via the
following processes: (1) generation of the terrain of the pre-defined level of complexity; (2) preparation
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of the operational VR model comprising that terrain, total station, and rover; (3) student exposure to
the virtual terrain topographic surveying with measurements of timing; (4) exporting of the mobile VR
data for processing and accuracy obtaining; (5) assessment of the learning outcomes numerically by
means of accuracy, timing, and score analysis; (6) feedback of the assessment results to the student
and decision on the next iteration with the terrain of the same complexity or moving to a more
complex level.
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The design of the virtual total station and reflector/rover was carried out in Blender [21] and are
depicted in Figure 2.
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The virtual terrain in Unity was transformed into Android Mobile Application [22] and can be
executed on any smartphone or tablet with an Android operating system of version 4.4 or higher.
Technical implementation of the Surveying VR was performed by means of a low-cost Samsung VR
system [23] and a control device [24] and is depicted below in Figure 3.
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Figure 4. Surveying VR cyberlearning system in action: virtual total station setup (a); virtual reflector
setup (b); virtual measurement (c) and measured points locations (d).

Students involved with the applied cyberlearning process were exposed to the fact that obtaining
surveying topo-points on proper elements of the terrain such as the lowest and highest elevation points
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and structural lines (lines where terrain slopes and aspect is changing), known as breaklines, would
lead to the same DEM as a regular grid sampling. Since the computational power of the smartphones
we deployed for virtual reality was not sufficient, we exported VR obtained measurements results
as a csv (comma separated value file) which was processed by external applications of sufficient
computational power. To visualize DEM, contour lines were generated for each experiment by external
software application, illustrated in Figure 5.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 5 of 12 

 

measurements results as a csv (comma separated value file) which was processed by external 

applications of sufficient computational power. To visualize DEM, contour lines were generated for 

each experiment by external software application, illustrated in Figure 5. 

Figure 5. Sample of regular terrain model contours (a) and those who are generated from structural 

lines sampling (b). 

Numerical estimation of the accuracy for each cyberlearning sample can be computed as root 

mean square errors of the points interpolated based on the current students’ attempt as 

𝑅𝑀𝑆 = √
(ℎ𝑖 − ℎ𝐷𝐸𝑀)2

𝑛 − 1
 (1) 

where hi = interpolated elevation based on current attempt sampling points; hDEM = interpolated 

elevation based on DEM; n =number of points included in the interpolation area. 

In terms of the gamification score, each student attempt was computed as a weighted inverse 

sum of accuracy and number of sampling points involved for obtaining those accuracy attempts, as 

expressed below: 

𝑆𝐶𝑂𝑅𝐸 = 𝑁1 ∗
1

𝑅𝑀𝑆
+ 𝑁2 ∗

1

𝑁𝑃
 (2) 

where RMS is the error of the attempt (accuracy of elevations); NP is the number of sampling points 

collected in the current attempt; N1, N2 = weights of accuracy and optimal sampling. 

We initially used N1 = 200 and N2 = 100 to obtain integer numbers for the score. Those numbers 

can be also deployed as a means of assessment of the learning outcome and grading instrument. 

3. Cyberlearning Implementation and Results 

To make our cyberlearning experience available to most devices, we implemented it on the 

Google Android VR platform [23]. Figure 6 shows the Surveying VR App working on the test 

smartphone.  

  
(a) (b) 

Figure 5. Sample of regular terrain model contours (a) and those who are generated from structural
lines sampling (b).

Numerical estimation of the accuracy for each cyberlearning sample can be computed as root
mean square errors of the points interpolated based on the current students’ attempt as

RMS =
√ (hi − hDEM)2

n− 1
(1)

where hi = interpolated elevation based on current attempt sampling points; hDEM = interpolated
elevation based on DEM; n =number of points included in the interpolation area.

In terms of the gamification score, each student attempt was computed as a weighted inverse
sum of accuracy and number of sampling points involved for obtaining those accuracy attempts, as
expressed below:

SCORE = N1 ∗
1

RMS
+ N2 ∗

1
NP

(2)

where RMS is the error of the attempt (accuracy of elevations); NP is the number of sampling points
collected in the current attempt; N1, N2 = weights of accuracy and optimal sampling.

We initially used N1 = 200 and N2 = 100 to obtain integer numbers for the score. Those numbers
can be also deployed as a means of assessment of the learning outcome and grading instrument.

3. Cyberlearning Implementation and Results

To make our cyberlearning experience available to most devices, we implemented it on the Google
Android VR platform [23]. Figure 6 shows the Surveying VR App working on the test smartphone.
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Figure 6. (a): a demo of an implemented VR application on an Android smartphone. (b): a view of the
smartphone inside the Samsung VR goggles.

As was mentioned before, the processing power of smartphones was not sufficient for the digital
elevation modeling we deployed an existing inexpensive external terrain modeling toolset—Golden
Software Surfer [25]. Sampling points for each gaming attempt were transferred as a text file for the
Surfer which enabled the production of DEMs and visualizations of contours for each cyberlearning
attempt. Golden Surfer also enables experiments with different elevation interpolation methods such
as IDW, Kernel, and Kriging which enabled us to establish another learning outcome of the terrain
interpolation method understanding. This can be assessed by means of visual analysis of the results in
Surfer. We also encouraged our students to work with the open-source CloudCompare toolset [26]
for the numeric and graphical comparison of source DEM and those which were generated based
on cyberlearning samples. The use of CloudCompare was optional and helped significantly in both
numerical and visual analysis for terrain model comparison.

As the first step, the test area had been surveyed by terrestrial laser scanning, and a high-precision
reference DEM was created. The reference DEM in contours and 3D forms is presented in Figure 7.
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Figure 7. Contours (a) and 3D model (b) of the reference test area.

In what follows, we supposed that the test area was surveyed separately by a professional surveyor
and by a student with a lack of necessary skills. Figure 8 presents the contours of the reference test area.
These contours were based on the twenty points that were collected by a professional surveyor and by
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a student in a different manner depending on the level of the skillset. The contour interpolation has
been carried out using the Kriging method. For the sake of better presentation, the surveying points
(red circles) have been overlaid. In Figure 8, the left image is the professional surveyor’s contours, and
the right one is the student’s contours.
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Figure 8. Contours and surveying points from the professional surveyor (a) and the student data (b).

It is easy to see that the student has tried to choose the surveying points almost uniformly, whereas
the professional surveyor has picked up the points in such a way that they are describing the test area
surface as close to reality as possible. Consequently, we obtained two different surfaces that were
based on the same volume of the data sample. Figure 9 depicts those surfaces in the forms of overlaid
contours and the comparison between the surfaces.
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Figure 9. Contours (a) and volumetric surfaces (b) visual comparison.

The better way to analyze these data is a calculation of simple statistical characteristics. The
results of the calculation appeared instantaneously after the virtual fieldwork had been done; therefore,
a student may check the quality of their work and verify their accuracy for self-assessment. Below, in
Table 1, is an example of the assessment.
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Table 1. Statistical characteristics.

Parameter Value, m

Minimum −0.87
Maximum 1.69

Mean 0.12
Root Mean Square (RMS) 0.35

Conclusion
∆ = tRMS ≤ h/3, where

t—probability coefficient (2.0), h—contours step (1.0 m)
∆ = 0.70 ≥ 0.33, you failed

To check whether the interpolation method affects the final conclusion, the results of surveying
for twenty points have been compared with the same points for interpolated surfaces. The comparison
results are presented in Table 2.

Table 2. Comparative analysis of experienced and inexperienced topographic data collection.

Surveyor Student

Mean, m 0.0 Mean, m 0.0
Root Mean Square, m 0.02 Root Mean Square, m 0.02

Minimum, m −0.04 Minimum, m −0.03
Maximum, m 0.07 Maximum, m 0.07

The results in Table 2 look quite similar. One may infer that Kriging interpolation has a minimum
effect on the final decision, and consequently might be neglected.

To validate properly, the results must not only be compared with each other but also with
reference surfaces. Below, the comparison of the professional surveyor’s data and the student’s data
are presented.

In Figure 10, the left panel is the professional surveyor’s contours overlaid by the test area contours
and the right is the contours’ differences.
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In Figure 11, the left panel is the student’s contours overlaid by the test area contours and the
right one is the contours’ differences. From the last two figures, we may calculate the accuracy of
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surveying according to the reference data and determine whether the surveyor or student has passed
the accuracy criterion (see Table 1). The checking procedure results are summarized in Table 3.
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Figure 11. Contours (a) and volumetric surfaces (b) visual comparison between the reference test area
and the student’s data.

Table 3. Statistical characteristics.

Surveyor Student

Mean, m = −0.03 Mean, m = 0.08
Root Mean Square (RMS), m = 0.15 Root Mean Square (RMS), m = 0.38

∆ = tRMS ≤ h/3, ∆ = 0.30 ≥ 0.33, passed ∆ = tRMS ≤ h/3, ∆ = 0.76 ≥ 0.33, failed

From the results, we may conclude that the professional surveyor has passed the test as expected.
Summarized in Table 4 are the resulting recorded times based on formulas (1) and (2) for one

subject on three different terrain complexity levels. The gamification score can be considered as a
summative assessment of the learning outcomes from the cyberlearning lesson described.

Table 4. Surveying VR gamification experimental results.

Surveying VR Experiment Complexity Attempt (1) Attempt (2) Attempt (3) Scores

Simple Terrain Experiment
173-286

RMS (meters) 1.2 1.0 0.7 173
Number of points 15 10 9 200

Time (seconds) 240 140 126 286
Average Terrain Complexity Experiment

65-226
RMS (meters) 3.2 1.8 0.9 65

Number of points 37 30 23 114
Time (seconds) 777 570 414 226

High Terrain Complexity Experiment
38-121

RMS (meters) 5.6 3.8 1.7 38
Number of points 39 31 29 55

Time (minutes) 897 651 551 121
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Improving accuracy and terrain understanding by reducing the number of sample points and the
time to obtain resulting contours indicates the feasibility of our novel Surveying VR cyberlearning
methods and its applicability for the training of the topographic surveying skill sets.

4. Discussion

It can be seen from Table 1 that the time to collect one point is increasing with the increase in terrain
complexity. That is especially significant compared to the first attempt. However, we may assume that
a skill set obtained from the initial work with less complex terrain is transferable for the next level of
terrain complexity. To confirm this, we will compare data for subjects who are starting from complex
terrain at the beginning with those who initially were trained on lower complexity terrains. Our
gamification scoring system compatibility consistency with numerically defined learning outcomes
is confirmed by initial experiments. This enables us to draw the observation from the pedagogical
side that students should first be exposed to the lower complexity terrain exercises in order to better
develop skills defined by the expected learning outcomes. This will reduce the total time needed to
gain such an outcome and corresponds to the methodology we use in training the surveying engineers
and technicians using traditional practices. These observations can be considered as experimental
confirmation of the cognitive science principles of VR applications as they are established in previous
cyberlearning research, such as [3], which is supported by cognitive theories [8–10]. Moreover, by
adding representation to the current list of subjects, our research may garner some interest in cognitive
science such as a geospatial case study. We are planning to establish such interdisciplinary collaboration
in the future.

COVID-19 restrictions have prohibited us from extensive study with human subjects’ due to social
distancing. Our future research will be focused on integrating Surveying VR cloud-based computing
capabilities such as Geocloud [27] or M-App [28]. We will identify proper client–server architecture
cloud-based technology that will enable us to implement Surveying VR cyberlearning technology
deploying a simple smartphone VR apparatus connected to the internet and to avoid the necessity
of multi-platforming.

During recent years Virtual Reality has shown good potential to expand learning domains in
classroom environments. By using Virtual Reality technology in the field of cyberlearning we can shift
the focus from plain learning to an interactive learning environment; however, we have to consider
some problems. Despite all of the efforts in the field of Virtual Reality, we still have challenges using
those technologies and devices inside learning environments. One of the biggest is providing powerful
computers for students inside a classroom for having a good Virtual Reality experience as well as
high-quality HMDs. However, providing these requirements might be difficult for students and
teachers due to their costs; hence, we tried to implement this application for smartphones. Nowadays,
we have a wide variety of smartphones and they are much more affordable than high-end Virtual Reality
apparatuses. Even with all of the limitations of smartphones, such as computing power, we developed
our virtual reality application and tried to provide a good VR experience for our study participants.

As of right now, the environment only includes the terrain, but in reality, there are other ground
features that can be objects of interest or even obstacles during a survey, especially in obtaining a
line of sight. Decisions have to be made by surveyors on the locations of the stations and the ground
points to be collected. In this case, future work will include more ground features to simulate the
decision-making process during a survey. Other instruments and devices, such as GNSS, are also used
in surveying fieldwork, and thus, more types of surveying devices may be included for different types
of procedures.

In spite of multiple implementation problems, caused mostly by mobile VR computational
limitations, we demonstrated the feasibility of the approach for training topographical surveying skills.
Given the limitation or complete elimination of the face-to-face classes in academic organizations due
to COVID-19, deploying such technologies for training in surveying/geomatics engineering programs
can be considered as a reasonable approach.
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5. Conclusions

Surveying VR is a feasible method for training the geospatial workforce that enables the
achievement of the same learning outcomes specifically in terrain understanding for topographic
surveying as a traditional field-based practice. Certainly, there is still a gap between field surveying
experience and cyberlearning. The major reason for that gap is missing experience in the fieldwork
with surveying instruments including centering the tripod over the setting point, work with tribrachs,
instrument leveling, reflectors, crew communications, etc. Even with the increase in the VR application
complexity complete hands-on experience is crucial to be ready for performing the surveying. With the
increase in computational power towards better processors and cloud-based computing, we anticipate
our future efforts will encompass the development of the more realistic cyberlearning simulations to
cover the gaps discussed here.

Given the boost of online education demand due to the COVID-19 pandemic, methodology and
experimental strategy established in the Surveying VR cyberlearning project can be expanded to the
development of skills associated with other geospatial sensors such as LIDAR scanners, UAS, Earth
observation satellites, and others.
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