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Abstract: Freshwater lakes supply a large amount of inland water resources to sustain local and regional
developments. However, some lake systems depend upon great fluctuation in water surface area.
Poyang lake, the largest freshwater lake in China, undergoes dramatic seasonal and interannual variations.
Timely monitoring of Poyang lake surface provides essential information on variation of water occurrence
for its ecosystem conservation. Application of histogram-based image segmentation in radar imagery has
been widely used to detect water surface of lakes. Still, it is challenging to select the optimal threshold.
Here, we analyze the advantages and disadvantages of a segmentation algorithm, the Otsu Method,
from both mathematical and application perspectives. We implement the Otsu Method and provide
reusable scripts to automatically select a threshold for surface water extraction using Sentinel-1 synthetic
aperture radar (SAR) imagery on Google Earth Engine, a cloud-based platform that accelerates processing
of Sentinel-1 data and auto-threshold computation. The optimal thresholds for each January from 2017 to
2020 are −14.88, −16.93, −16.96 and −16.87 respectively, and the overall accuracy achieves 92% after
rectification. Furthermore, our study contributes to the update of temporal and spatial variation of
Poyang lake, confirming that its surface water area fluctuated annually and tended to shrink both in the
center and boundary of the lake on each January from 2017 to 2020.

Keywords: Poyang lake; Otsu method; Google Earth Engine; water occurrence; hydrological dynamics;
water area changes

1. Introduction

Water is significant for all ecosystems on Earth. The presence of surface water on Earth mainly
consists of oceans, lakes and rivers [1]. The extent of lakes accounts for nearly 3% of the surface [2]
and is endowed with irreplaceable functions to supply water [3], control flooding [4], sustain species [5]
and provide ecosystem services to nations and regions [6] due to the unique role of water in climate [7],
biological diversity [8] and human wellbeing [9]. Meanwhile, natural phenomena and human activities
affect the variation of water occurrence in response, especially the water dynamics of inland freshwater
lakes [10]. Timely monitoring of freshwater lake surface is indispensable for sustainable development [11]
and regional and global ecosystem dynamics [12].

Remote sensing, the science and art of detecting objects from a distance, has been the most common
approach to monitor and analyze land features for several decades [13]. In imagery, land features are
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typically represented as mixed classes of different vegetation cover and surface types. There are many
satellite-based sensors that differ in terms of temporal and spatial resolution, corresponding to revisit
time and ground area represented by a pixel, respectively. Medium resolution imagery is the most widely
used for lake water surface detection, (with approximately 10 days revisit time and each pixel ranging
from 10 to 30 m), due to its open access compared to the cost of acquiring higher resolution imagery [14]
and are less prone to the mixed pixels problem of coarse resolution imagery [15]. Aside from temporal
and spatial resolution, there are both passive sensors and active sensors. Passive sensors, known as
optical systems, have been employed since the 1970s when the first satellite sensor, Landsat multispectral
scanner (MSS), was launched into space [16]. However, lack of vertical information, issues with wetland
vegetation overlapping canopy, and haze and cloud cover problems have largely impeded the accuracy of
results [17]. Thus active sensors, particularly radar systems, have also contributed to remote sensing of
water dominated systems, such as lakes. Radar backscatter is sensitive to moisture content and roughness
of landscape, and the wavelength of C-band Sentinel-1 sensor enables penetration of both clouds and thick
canopies to deal with the challenges of complicated weather and flora conditions [18].

Nevertheless, the procedure of processing Sentinel-1 radar data involving data acquisition, calibration,
speckle filtering, geometry and terrain correction, classification and validation [19] is extremely time
consuming with use of traditional image process platforms, even those with built-in toolboxes, such as
ENVI and ERDAS software packages [20]. This cost can limit the timeliness and efficiency of research.
With the help of high-performance computing and network systems, Google Earth Engine (GEE) allows
online processing and analysis of radar imagery by writing light-weight scripts with a Google account,
speeding the process in a cloud-based platform [21]. The plethora of data catalogs and innovative
processing algorithms provided by GEE can effectively eliminate the barriers caused by the traditional
platforms. The water detection algorithms based on radar sensors have emerged in several categories:
thresholding, classification and object-based image analysis. In general, thresholding has commonly
been adopted to discriminate water from nonwater surface in the logarithmic representation of the radar
imagery, where the water and nonwater features are shown as two Gaussian distributions in the histogram
of backscatter coefficient of radar data in dB scale. Although it is limited by double bounce scattering
issues because waters beneath vegetation layers may cause extra radar backscatter [22], thresholding is still
an efficient and simple method for water extraction of rural areas in winter season with less complicated
vegetation coverage.

One classical method to select the threshold is to manually pick the smallest valley values between
the two peaks of distributions based upon visual inspection by the researcher. The main issue of this
method is the bias caused by each individual observer. The solution to offset the researcher’s observation
bias is to apply computer programming to select a less biased lowest point in the valley, which can be
computationally efficient in linear time. However, the intensity histogram presented by radar imaging
may not necessarily provide a sharp valley but usually a flat region between the peaks. Thus, it will be less
accurate or reasonable to pick the smallest valley value in this case, as the value of the selected point may
deviate slightly from the value of its neighboring points in the open intervals next to the selected point.
Furthermore, due to the noise in radar detection, the strict convex property is not guaranteed in the valley
region between the two peaks. In other words, there may exist multiple local peaks and minimums which
are close to each other. In this case, the method of picking the smallest valley value is badly influenced by
the noise.

The Gaussian Mixture Model is another conventional method for binary classification based on
distribution. The distribution of water and nonwater objects in the radar intensity (dB) histogram presents
approximately as two Gaussian Distributions with separate means µ1 and µ2 and standard deviations σ1

and σ2 [23]. One of the distributions is the conditional probability of the dB value of the water pixels while
the other is the conditional probability of the dB value of the nonwater pixels. The objective of this model
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is to maximize conditional probability of the prediction ŷ given any dB values (x). According to the Bayes
Theorem, this equates to maximizing the multiplication of the conditional probability of x over ŷ and the
marginal probability of ŷ.

However, the issue with such formulation of the problem is based on the assumption of the prior
distribution of water and land as a Gaussian Distribution. However, such an assumption cannot be
directly assumed to be correct for universal cases. Moreover, the distribution parameters µ1, σ1, µ2, σ2 are
unknowns. The researcher also needs to identify estimators for these four parameters through the density
diagram. Possible solutions for estimation of these unknown parameters can be iterative methods such as
Expectation Maximization Method [24], however, it is unstable for two reasons. First, the iteration process
is time consuming to reach a satisfied accuracy. Second, it is also likely to be constrained in some local
optimum points and thus never reaches global optimal solution [25].

Instead, we propose to use the Otsu Method to solve this thresholding problem. The Otsu Method is
an unsupervised method and it was initially designed to select a threshold to separate an object out of its
background, through the gray-level histogram of the image [25]. In application, the Otsu Method can be
widely extended to work on other density histograms or distributions other than gray-level histogram from
images and can also be applied for multi-thresholding problems. The Otsu Method is a better approach
for this problem as compared to some conventional solutions because it automatically selects a threshold
from two mixed distributions through the density histogram [25]. In addition, the Otsu Method does
not require prior knowledge nor assumptions of the distribution of objects [25]. Furthermore, the Otsu
Method is equivalent to the K-Means Method but the Otsu Method can provide the global optimal solution,
while K - Means Method may be limited to the local optimum point [26]. Although it is computationally
complex and heavy because of iterative searching [26], GEE can speed up the Otsu Method with its cloud
computing platform. For instance, the Otsu Method has been applied on the cloud-free Landsat TM
images for urban land cover detection, which focused on differentiating the urban land and nonurban
land region in Haidian District of Beijing, China [27]. This research resulted in an accuracy of 84.83% for
the Otsu Method, which was larger than the accuracy of 74% for the conventional postclassification change
detection method [27]. Another study used the Otsu Method on the SAR data for the detection of oil spills
over sea surfaces, which tried to find a threshold on the radar data to draw the edge of spilled oil film
floating over the sea [28]. It examined the Penglai oil field and the Gulf of Dalian, resulting in an error rate
of 3.0% on the Penglai oil field and an error rate of 13.0% on the Gulf of Dalian for the Otsu Method [28].
Even though the Otsu Method has already been widely applied in thresholding problems, it has been
seldom used for surface water extraction. Furthermore, most previous studies do not provide algorithms
and detailed scripts for implementation of the Otsu Method. Thus, we were interested in the application
of the Otsu Method for surface water detection and providing reusable code for future implementation.

Therefore, the objectives of the present work are to:

1. Implement the Otsu Method and write reusable scripts to automatically select thresholds for surface
water extraction using Sentinel-1 data on Google Earth Engine

2. Analyze the advantages and disadvantages of an unsupervised classifier from both mathematical
and application perspectives

3. Contribute to the knowledge base of hydrological variation at Poyang lake by mapping surface water
extent of the lake in January 2017, 2018, 2019 and 2020

2. Materials and Methods

2.1. Study Area

Poyang lake, the largest freshwater lake in China, is located between Nanchang City and Jiujiang City,
to the north of Jiangxi Province. The basin crosses from 28◦22′ to 29◦45′ N and 115◦47′ to 116◦45′ E,
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which belongs to a humid, subtropical monsoon climate zone, with an average annual temperature of
17.5 ◦C and average annual precipitation of 1665 mm [29]. Poyang lake basin is fed by the Xiu, Gan, Fu,
Xin and Rao rivers, while the basin connects to the Yangtze river through an outflow channel at the north
end of the lake (Figure 1). The lake has a surface area of approximately 4000 square kilometers at its summer
high-water level [30,31]. Beyond its size, Poyang lake is also significant for several economic and ecological
reasons. For instance, Poyang lake’s aquatic ecosystems are wintering home to thousands of migratory
waterbirds, including the Siberian crane—a critically endangered species whose 4000 surviving individuals
spend their winters almost solely in the wetlands around Poyang lake [32]. However, Poyang lake has
undergone a series of significant transformations that threaten the variability and critical habitats in
the region. While surface water areas have traditionally fluctuated on a seasonal scale—peaking in the
summer and receding in the winter—large interannual declines in mean water level have been observed
in recent years [33]. The substantial variations of the surface water area and dramatic seasonal water level
fluctuations of 8 to 22 m each year are caused by the regional hydrological regime, which is controlled
both by the five catchment rivers and the Yangtze River [34]. Additionally, groundwater dynamics are
highly affected by the variations in the lake water level, rather than local precipitation, indicating a close
hydraulic relationship between groundwater and the lake [35].

Figure 1. Location of Poyang lake within the Yangtze River Basin (left) and at an average level (right).

2.2. Platform and Data

Google Earth Engine (GEE, https://earthengine.google.com) consists of a multipetabyte satellite
imagery data catalog colocated with a high-performance, intrinsically parallel cloud computation service.

https://earthengine.google.com
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Users can access GEE through an Internet-accessible application programming interface (API) and
an associated web-based interactive development environment (IDE) that enables rapid prototyping
and visualization of results. This cloud computing platform not only makes it easy to access most of
the geospatial datasets but also enables high throughput analysis. There are many examples where
environmental scientists empowered their research with help of GEE, such as population mapping [36],
cropland mapping [37], extraction of glacial lakes [38] and probabilistic wetland mapping [39].

Sentinel-1 is the first Copernicus Program satellite constellation deployed by the European Space
Agency. This space mission is composed of two satellites, Sentinel-1A and Sentinel-1B, carrying a C-band
synthetic-aperture radar instrument which collects data in all weather, day or night [40]. Since radar
sensors have the advantage in detecting moisture and water because of their ability to penetrate clouds,
Sentinel-1 is one of the most common datasets for surface water detection [41] and flood mapping [42].

The winter low-water season of Poyang lake provides important foraging habitat and wintering area
for many waterbirds of special concern, including the critically endangered Siberian crane. Because of
the importance of water level during this time, we looked at images taken in January over subsequent
years. We loaded Sentinel-1 Level-1 IW GRD images from the data catalog of GEE from January 2017–2020
(Table 1). The imagery acquired on January of 2020 was used to evaluate our Otsu Method implementation
on GEE. The others were used to analyze the water area change in January across 4 years from 2017 to 2020.

Table 1. Data Collection for Inundation Area Detection.

Platform Type Spatial Resolution Date Band Instrument Orbit

Sentinel 1 B GRD 10 m 4 January 2020 VV IW 19666
Sentinel 1 B GRD 10 m 9 January 2019 VV IW 14416
Sentinel 1 B GRD 10 m 2 January 2018 VV IW 8991
Sentinel 1 B GRD 10 m 7 January 2017 VV IW 3741

2.3. Otsu Method

In this section, we firstly introduce the main idea of the Otsu Method [25,26] in a general framework
and then we discuss how the Otsu Method is applied on this thresholding problem with a radar value
density histogram.

Here we use the following notations:

• set C is the index set of all elements.
• i is the index of i-th element, where i ∈ C refers to i-th element belonging to the whole set C we are

considering. xi is the value for this i-th element and without loss of generality, we can assume that xi
are sorted. Explicitly, xi < xj, if i < j, for i, j ∈ C.

• pi is the probability or density of the element i. It is clear that ∑
i∈C

pi = 1.

• we try to split up the set C into two disjoint subclusters of index C0, C1, where C0, C1 ⊂ C and
C0

⋃̇
C1 = C.

• µj is the center or the mean value of cluster Cj, for j = 0, 1:

µj =

∑
i∈Cj

pi · xi

∑
i∈Cj

pi
, for j = 0, 1

• µ is the center or the mean value of the whole set C:

µ = ∑
i∈C

pi · xi = ∑
i∈C0

⋃̇
C1

pi · xi
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• Vj is denoted as the inner-variance of the cluster Cj, which is defined as the weighted summation of
the squared distance of cluster Cj’s each data point from its center µj, for j = 0, 1:

Vj = ∑
i∈Cj

pi · (xi − µj)
2 , for j = 0, 1

• V0,1 is denoted as the interclass variance between the cluster C0 and cluster C1 [25], which is defined
as the weighted summation of the squared distance of each cluster’s center µj from the center of the
whole set µ:

V0,1 = ∑
j=0,1

(( ∑
i∈Cj

pi) · (µj − µ)2)

• V is denoted as the total-variance, which is defined as the weighted summation of the squared
distance of all data points from the center of the whole set µ. Furthermore, we can see that V is
actually exactly the variance σ2

C of the set C:

V = ∑
i∈C

pi · (xi − µ)2

The main idea of the Otsu Method is to minimize the summation of the inner-variance Vj of all
clusters Cj, which is called intraclass variance [25]. The inner-variance of a cluster shows the summation
of squared distance of each element to the center of the cluster as we defined, and the smaller value of the
inner-variance presents the closer distance of each point toward the center of the cluster, which shows a
closer relationship or higher similarity that the elements in this cluster share. Therefore, the best separation
of the whole set of elements should group the similar elements in the same cluster as optimally as possible.
In mathematics, this is equivalent to minimizing the summation of inner-variance inside each cluster.
The objective function is formulated as follows:

min
C0,C1

∑
j=0,1

Vj = min
C0,C1

∑
j=0,1

∑
i∈Cj

pi · (xi − µj)
2 (1)

Furthermore, the summation of each cluster’s inner-variance and the interclass variance should be
equal to the total-variance of the whole set [25], which is a constant for a fixed data set.

V = ∑
j=0,1

Vj + V0,1 (2)

Therefore, the previous objective function Equation (1) is equivalent to maximizing the interclass
variance V0,1:

max
C0,C1

∑
j=0,1

(( ∑
i∈Cj

pi) · (µj − µ)2) (3)

Now, in applying the Otsu Method on the density histogram, we can have:

• The set of all possible bin’s values on the density histogram as Θ, which is also the hypothesis space
for the estimation of the threshold.

• The density corresponding to the bin with value θ is denoted as pθ and we should have 1 = ∑
θ∈Θ

pθ .

• For each bin value θ ∈ Θ, we can put a corresponding index iθ into the indexed set C, where iθ-th bin
on the density histogram has a bin value of θ. Therefore, xiθ = θ and piθ is equal to the density pθ of
the bin with value θ from the density histogram.

• The final prediction of the threshold is denoted as θ̂ ∈ Θ, which corresponds to the index iθ̂ ∈ C.
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• the two separate clusters formed by a threshold θ is C0 = {i : i < iθ , i ∈ C} and C1 = {i : i ≥ iθ , i ∈ C}.

The final estimation of the threshold θ̂ should be the one based on which the subcluster C∗0 and C∗1
can reach the optimal value of the objective function in Equation (3). Then, we can have:

iθ̂ = min
i∈C∗1

i (4)

θ̂ = xiθ̂
(5)

This optimization problem can be solved in at most quadratic polynomial time of the size of the finite
set Θ, i.e., the time complexity will be O(|Θ|2). One possible implementation as shown in Algorithm 1 is
to iterate through the finite set and record the element in the set that provides the highest value for the
objective function. Each inner iteration takes linear time to calculate the objective function.

Algorithm 1: OtsuMethodFindOptimalThresholding (Time: O(|Θ|2))

Input: {(θi, pθi )}
|Θ|
i=1 is the set of bins for the density histogram.

Output: θ̂ is the final prediction of the optimal threshold between the two classes.
Procedure:
θ̂ ← ∞
objective_value← 0
for each bin i in the input density histogram do

C0 ← ∅
C1 ← ∅
for each bin j in the input density histogram do

if θj < θi then
C0 adds j

else
C1 adds j

end
end
curr ← Compute objective function value based on Equation (3) with using C0, C1

if curr > objective_value then
θ̂ ← θi

else

end
end
return θ̂

We can further improve the time complexity of the Otsu Method into linear time complexity of O(|Θ|).
If we store the value of µ0 and µ1 from previous outer loop iteration, then it will take constant time O(1)
for recomputing the objective function value based on the Equation (3) for the newly updated C0 and C1

in this current round.
Because the Otsu Method iterates through all the possible values for the threshold and compares the

objective values with all these possible thresholds, the implementation of Otsu Method in Algorithm 1
provides a global optimal solution for the objective function in Equation (3).
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2.4. Water Detection

Once the preprocessing procedure was completed by GEE, the histogram of VV band was generated,
and the Otsu method was used to search over the thresholds that are represented by the bins in the
histogram. The optimal threshold was computed to classify the data, where the partition whose values
are smaller than the threshold are labeled as water while the partition whose values are larger than
the threshold are labeled as nonwater. In order to reduce the effect of double bounce scattering issues,
we defined the label of water as purely open water area, while the label of nonwater included the
submerged and emergent aquatic vegetation and land features. The specific implementation of the
Otsu Method can be found through the link: source code for the Otsu Method (by Sulong Zhou).
The postprocessing procedure that removes noise and improves the quality of the classified output
involving mask extraction, majority filtering and boundary clean was carried out in ArcGIS to remove the
water bodies not geographically related to Poyang lake, small islands of pixels and odd edge of clusters.

2.5. Accuracy Assessment

We denote a point x with its true label y drawn from the true distribution D as (x, y) ∼ D, where the
true distribution D is actually unknown. Specifically, x is the radar dB value for a pixel and defined as:

y =

{
1 , if the true label of x is Water

0 , if the true label of x is Non-Water

Based on the estimation of the optimal threshold θ̂ from the Otsu Method, we can provide the
prediction of the label ŷ for point x as:

ŷ = fθ̂(x) = 1x<θ̂ (6)

where,

1x<θ̂ =

{
1 , if x < θ̂

0 , otherwise

Accuracy measures the agreement between a standard assumed to be correct and a classified image
of unknown quality [43]. Classification errors occur when a pixel (or feature) belonging to one category
is assigned to another category. Errors of omission occur when a feature is left out of the category
being evaluated; errors of commission occur when a feature is incorrectly included in the category being
evaluated [44]. An error of omission in one category will be counted as an error in commission in another
category. Explicitly, for a pixel’s dB value x and its true label y from the unknown true distribution D,
the error happens when ŷ 6= y. Therefore, accuracy can be mathematically defined as the follow:

Accuracy = E(x,y)∼D1ŷ=y (7)

Since the true distribution D is unknown, it is not possible to calculate the accuracy through
Equation (7). Therefore, we need an estimator to estimate such accuracy. One possible way to estimate
is based on the Empirical Distribution [45]. A test set T = {(xi, yi)}n

i=1, which forms an empirical
distribution D̂, is used to approximate the true distributionD, where each element (xi, yi) is independently
and identically (i.i.d) drawn from the true distribution D.

{(xi, yi)}n
i=1

i.i.d∼ D

https://code.earthengine.google.com/fa1261aaac551bede0eb8bb82cf2eaee
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The empirical estimator of accuracy ̂Accuracy for classification function fθ̂ can be expressed as:

̂Accuracy =
1
n
· ∑
(xi ,yi)∈T

1ŷi=yi , where ŷi = fθ̂(xi) (8)

Since (xi, yi) ∈ T, for ∀i = 1, . . . , n, is i.i.d drawn from the true distribution D, this estimator
̂Accuracy in Equation (8) is an unbiased estimator of the true Accuracy as defined in Equation (7) [46],

proved as follows:

Proof of Unbias Estimator.

E[ ̂Accuracy] = E[ 1
n
· ∑
(xi ,yi)∈T

1ŷi=yi ]

=
1
n
· ∑
(xi ,yi)∈T

E[1ŷi=yi ]

i.i.d
=

1
n
· ∑
(xi ,yi)∈T

E(x,y)∼D [1ŷ=y]

=
1
n
· n ·E(x,y)∼D [1ŷ=y]

= E(x,y)∼D [1ŷ=y]

= Accuracy

A modified double-blind visual assessment of a random sample of test sites was used to assess
classification accuracy. Firstly, a random set of 304 test sites was generated across the region, and the
algorithm can be found through the link: source code for random points (by Sulong Zhou). This random
set corresponds to the test set T with n = 304 and each element (xi, yi) is i.i.d drawn from the true
distributionD, which is the distribution of dB value and label of the locations in the study area as shown in
Figure 1. Next, it was assigned to a team in Nanchang who visited all accessible points from the set of 304.
Then based on their experience, knowledge, and observation in both real field settings and Google Earth,
they distinguished the visited sites and labeled them as water and nonwater areas. We finally verified the
ground truth data by comparison with false color composite Landsat 8 imagery, and rectified 19 labels.
Explicitly, this step is to assess the true label yi as water or nonwater for each xi in the test set T. Finally,
these labeled test sites {(xi, yi, ŷi)}n=304

i=1 , where ŷi = fθ̂(xi), were input as the ground truth information to
generate a confusion matrix.

3. Results and Discussion

3.1. Confusion Matrix

The overall accuracy before test set rectification was 83.88% (Table 2) while the overall accuracy after
test set rectification increased to 92.11% (Table 3). The diagonal elements (left to right, top to bottom) in
the matrix represent the number of correctly classified pixels of each class, for example, the number of
ground truth pixels with a label of water that was actually predicted as water during classification.

In contrast, the cross-diagonal elements represent misclassified pixels. A large loss of accuracy (40 out
of 93) occurs at the pixels that are water in ground truth data but are classified into nonwater (Figure 2a).
This happens for two reasons. First, many of these points are located at boundary pixels between two
classes. Second, most points are isolated from their neighbor clusters. The boundary area has the mixed

https://code.earthengine.google.com/a63f77a5439c7034d7b3a0d6b45e7560
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pixels problem which means both water and nonwater contribute to the observed spectral response of
the pixel. In addition, the penetrating ability of C-band is unable to detect water hidden below rocks
or vegetation cover where the normalized difference vegetation index (NDVI) is greater than 0.7 [47].
By contrast, there are only nine pixels that are misclassified into water while they are labeled as nonwater
in ground truth data (Figure 2c). This is likely because the VV band can be affected by wind so that
the wavy water surface will be classified into nonwater because of the diffuse refection. On the other
hand, we examined each of those misclassified points and discovered that human errors in test data also
compromise the overall accuracy. Twenty-two out of 40 nonwater test points and three out of nine water
test points were rectified by using Landsat 8 imagery as a reference. As a result, the overall accuracy
increased nearly 9%.

Table 2. Confusion Matrix Before Test Set Rectification.

Predicted Label

Water Nonwater Total

Actual Label
Water 53 40 93

Nonwater 9 202 211

Total 62 242 304

Table 3. Confusion Matrix After Test Set Rectification.

Predicted Label

Water Nonwater Total

Actual Label
Water 75 18 93

Nonwater 6 205 211

Total 81 223 304

Note that the rectification of the test set T does not influence the training process nor the estimation of
the optimal threshold θ̂ provided by the Otsu Method. Since the Otsu Method is an unsupervised learning
algorithm, it does not depend on the label y of data for its training process. This property presents the
feature of data corruption tolerance of the Otsu Method. In other words, corruption in the input data’s
label does not influence the actual training or performance of the Otsu Method. In addition, the test set T
is only used for the statistical estimation or evaluation for the performance of the classification based on
the estimation of optimal threshold θ̂ from the Otsu Method.

Furthermore, for factors influencing the accuracy, it is worth noting that the radar dB value with its
corresponding label is linear nonseparable data [48]. In other words, there does not exist a hyperplane
to clearly separate the dB value corresponding to the label of Water and the dB value corresponding to
Nonwater. Because there exists two different regions or pixels i and j, where i 6= j, such that they have the
same dB value xi = xj, but they are actually having different label yi 6= yj, one region corresponds to water
and another region corresponds to nonwater. Such linear nonseparability may decrease the accuracy of
this learning algorithm, which is unavoidable because the Otsu Method is trying to use a linear threshold
to separate the data. One possible example of such region i and j is shown in the Figure 2b.
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(a) (b) (c)

Figure 2. Three Situations of Misclassification: (a) A pixel (116.4064 E, 28.8405 N) that was misclassified into
nonwater. (b) Two pixels with equal dB values but different truth label y (116.2196 E, 28.9905 N) (116.2201 E,
28.9899 N). (c) A pixel (116.1584 E, 29.2136 N) that was misclassified into water.

3.2. Water Area

The optimal threshold for 2020 was selected as −16.87 through the histogram, where the low peak
corresponded to water pixels while the high peak corresponded to nonwater pixels (see Figure 3). Similarly,
the optimal thresholds for each year from 2017 to 2019 were −14.88, −16.93 and −16.96 respectively.
Based on the auto-selected thresholds derived from the Otsu Method, the imagery was classified into
water and nonwater regions. As a result, the surface water acreages of Poyang lake from 2017 to 2020 were
obtained and are presented in Table 4 and visualized from left to right in the Figure 4. The surface water
area decreased by nearly 650 km2 between 2017 and 2018, then increased by nearly 640 km2 between 2018
and 2019 and finally decreased by nearly 856 km2 between 2019 and 2020. This shows that surface water
area of Poyang lake decreased with fluctuation, which is consistent with other research on variation of the
surface water of Poyang lake during the time period of 1988–2016 [49].

In addition to the significant interannual variation, our results also showed the spatial variation
of surface water area. The dry or draw down areas mainly occurred in the center and the boundary of
the lake at the same time. The water areas located to the north (connected to Yangtze River) and west
(connected to Gan River) accounted for most of the variation, while the water areas located at the east and
south maintained much less variation.

The water area variations typically are closely associated to water level variations in Poyang lake
basin [50]. Both water area and water level are dominant factors for wetlands in Poyang lake, and thus affect
habitat distribution and accessibility. In this case, our classification results that show the spatiotemporal
water area variations can provide robust linkages to habitat availability and suggest future research to
further quantify this relationship.

Table 4. Area (km2) of Poyang lake from 2017 to 2020.

Year Area (km2)

2017 1959.50
2018 1308.67
2019 1948.72
2020 1092.82
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Figure 3. An Example of Histogram of VV Band in dB value (4 January 2020), the x-axis represents that
backscatter coefficient is calculated in dB scale, the y-axis represents that how many pixels have the same
dB value in a bin and the interval of bins is 0.5.

Figure 4. Inundation Area of Poyang lake in Winter of 2017, 2018, 2019 and 2020 (from left to right).

4. Conclusions

Through this research we mapped the spatio-temporal variation of Poyang lake in January from
2017 to 2020 and showed that the surface water area fluctuated annually and tended to shrink both in
the center and boundary of the lake over the past four years. The variation was consistent with related
Poyang lake research for earlier decades. Our mapping approach involved a novel implementation of
the Otsu Method and processing of Sentinel-1 data in Google Earth Engine. GEE performed well as
a powerful cloud computing platform to implement an exhaustive searching algorithm. We provided
detailed mathematical explanation to enumerate the advantages and limitations of the Otsu Method that
were not clearly indicated in previous remote sensing research. We also demonstrated that the Otsu Method
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can be an effective classifier for threshold auto-selected algorithms to extract water surface with use of
Sentinel-1 data. As a result, the Otsu Method has potential to be applied to other water related studies,
such as water extraction applications for other lake regions, water pollutant detection for environmental
assessment and aquatic habitat mapping for ecological conservation, using the open access scripts of the
threshold algorithm contributed here.

In the future, to reduce the influence of linear nonseparability nature of the data, the 2D Otsu
Method [51] can be applied. However, since the Otsu Method is an unsupervised method, we have
not compared its performance with supervised learning algorithms. The supervised learning algorithm
requires training data that is unavailable for the January of 2020 at this time. In addition, the Otsu
Method is affected by the penetration ability of single C-band radar signal so that it is difficult to capture
water beneath the vegetation. To advance our research toward mapping aquatic habitat availability,
we recommend the comparison between supervised and unsupervised methods by using different series
of imagery to discriminate vegetation zones. This next step will allow us to identify and project the spatial
distribution of available foraging habitat under varying hydrological conditions for species of concern like
Siberian crane and other aquatic organisms.
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