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Abstract: Indoor environments can be very complex. Due to the challenges in these environments 

in combination with the absence of mobile wayfinding aids, a great need exists for innovative 

research on indoor wayfinding. In this explorative study, a game was developed in Unity to 

investigate whether the concept of gamification could be used in studies on indoor wayfinding so 

as to provide useful information regarding the link between wayfinding performance, personal 

characteristics, and building layout. Results show a significant difference between gamers and non-

gamers as the complexity of the player movement has an important impact on the navigation 

velocity in the game. However, further analysis reveals that the architectural layout also has an 

impact on the navigation velocity and that wrong turns in the game are influenced by the landmarks 

at the decision points: navigating at deeper decision points in convex spaces is slower and 

landmarks of the categories pictograms and infrastructural were more effective in this particular 

building. Therefore, this explorative study, which provides an approach for the use of gamification 

in indoor wayfinding research, has shown that serious games could be successfully used as a 

medium for data acquisition related to indoor wayfinding in a virtual environment. 
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1. Introduction 

Buildings are typically characterized by a much smaller scale level and a higher degree of detail 

compared to outdoor environments. Additionally, the field of vision is much more limited, and 

indoor environments can vary a lot more in size and shape. As a result, building complexity can 

possibly lead to a loss of orientation, and indoor wayfinding is more complex compared to 

wayfinding in large outdoor areas. Due to the challenges in these indoor environments, in 

combination with the absence of mobile wayfinding aids, there is a great need for innovative research 

on indoor wayfinding. Therefore, the concept of big data has recently become very important due to 

both the amount of available data and the speed in which these could be collected. Big data create 

opportunities and challenges for a data analysis with the aim of acquiring useful information for 

various purposes. One of these purposes is wayfinding research, in particular in the indoor 

wayfinding domain. In this domain, a new possibility for data acquisition has recently emerged, 

called gamification. This technique includes a relatively new concept that is defined as the use of 

game design elements in non-game contexts [1]. Several studies have tried to gain a better insight in 

cognitive route planning and communication for indoor wayfinding. The use of gamification for 

indoor wayfinding, however, is still in its initial phase, requiring more research on its opportunities 

in scientific studies. 

Therefore, this explorative study used a gamified approach to collect data on the user’s 

wayfinding capabilities. The game was developed from scratch, and this study covers all facets of 

gamification research from the game design to data analysis. This way, both the possibilities and 
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weaknesses of this technique are explored, and the results could help future researchers who are 

considering gamification for data acquisition. 

1.1. Indoor Environments and Spatial Cognition 

Regarding research on wayfinding, the term legibility is often used in the literature. It is mainly 

used in studies on indoor wayfinding and, according to Weisman [2], defined as how easily 

individuals find their way in an indoor environment. In the study by Weisman [2], three different 

factors are named that determine the legibility. These factors are differentiation of appearance, visual 

access, and layout complexity, which are all closely related to the concept of gamification since they 

could be easily adjusted in the virtual environment of a game. 

As for differentiation of appearance, landmarks can be seen as the key to the process of planning 

movement in a goal-oriented and efficient way, often called wayfinding. In the study by Passini [3], 

wayfinding is also described as a dynamic process, involving complex human behavior and various 

cognitive skills. Planning and executing a route indoors might prove challenging. It involves a 

decision-making process whereby possible routes and/or route segments are appraised and selected 

in order to reach a certain destination [4]. To illustrate this process, Downs and Stea [5] described a 

four-step framework consisting of orientation, route selection, route control, and recognition of 

destination. Firstly, orientation means locating oneself with respect to nearby orientation points (i.e., 

landmarks) and the chosen destination. Secondly, the most optimal route is selected to reach a 

destination as effortlessly and efficiently as possible [4]. Thirdly, route control is the constant 

verification that an individual is following the selected route by linking the environmental 

representation with reality by the presence of corresponding features in the environment (e.g., 

landmarks). Fourthly, a person must be aware that he/she has reached the chosen destination in order 

to conclude this wayfinding process [4,5]. Important to note is that landmarks are the key to this 

process of comprehending the spatial structure of a building, constructing a mental map, and 

recognizing locations and orientation. They structure the human cognitive map of the environment 

and are used to reason about spatial information in a simplified way. Therefore, they are irrefutably 

important during indoor wayfinding [6]. 

As for visual access and layout complexity, the study by Viaene [6] emphasizes that a building 

imposes specific wayfinding challenges and that the process of planning movement in a goal-oriented 

and efficient way is often troublesome in an indoor environment. In order to better understand 

wayfinding behavior in such environments, a method called space syntax could be used. It covers 

three elementary aspects of wayfinding: access graphs, axial maps, and isovist (or visibility) fields 

[7]. In general, space syntax provides formal descriptions through quantitative methods and it 

indicates the spatial intelligibility of a space, also described as the property of the space, that allows 

an observer to understand it in such a way as to be able to find his or her way [8]. So as to meet the 

specific needs, different methods of space syntax have been introduced. The ones mostly used include 

the inter connectivity density (ICD), visibility graph analysis (VGA), and isovists [9]. The latter has 

been used in different studies, for example, the research by Wiener and Franz [10] correlating 

environmental characteristics with wayfinders’ spatial preferences. 

Furthermore, personal characteristics could influence wayfinding behavior and have an effect 

on the manner in which people experience space [11]. In different studies, the effects of gender, age, 

and familiarity with the building have been applied to investigate the differences between user 

groups. For example, the study by De Cock et al. [12] includes personal factors and relates decision 

point characteristics to the perceived complexity of indoor wayfinding. 

Where most algorithms in indoor wayfinding systems are limited to the currently known 

shortest path algorithms, recent studies tried to gain a better insight into the cognitive route planning 

by means of online surveys or real-life experiments [13,14]. However, they make use of traditional 

research mediums that have a number of disadvantages. In the real-life experiments, the number of 

participants is limited, while in the online surveys, the participants are not really immersed in the 

environment. The game aspect could solve both problems, as it attracts more participants and those 

participants are more involved in the task at hand. 
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1.1. Conceptualizing Gamification 

Although there is no universal definition of gamification, the definition of Deterding et al. [1] is 

widely accepted and refers to gamification as the use of game design elements in non-game contexts. 

Zichermann and Cunningham [15] suggest gamification is to establish brand, engage users, and 

influence their behavior by using game mechanics in areas other than traditional gaming contexts. It 

is important to note that alternative terms have also been used for gamification, such as serious games 

[16]. Deterding et al. [1] separate gamification from serious games and describe them as the design of 

full-fledged games for non-entertainment purposes. Kapp [16], however, considers the use of serious 

games as a form of gamification that he defines as a careful and considered application of game 

thinking to solve problems and encourage learning using all the elements of games that are 

appropriate. This shows that the boundary between a serious game and gamification can often be 

small and is somewhat empirical and subjective: is Foursquare a game or a gamified application? 

Whether someone “plays” or “uses” Foursquare is a matter of perception, so there is a lack of an 

unambiguous definition for the concept of gamification. The end result of gamification may or may 

not be a fully-fledged game and players may use it in different ways [17]. Moreover, gamification is 

more about motivating people to take actions [1], perhaps in a structured way, and follow specific 

rules to achieve variable outcomes. 

In this study, the use of a serious game in scientific research was considered as a form of 

gamification and thus a specific subset of the concept. A serious game was created to facilitate data 

acquisition for scientific research in the indoor wayfinding domain. While some participants may 

experience the serious game as fun and a form of entertainment, others may see it purely as 

participation in a scientific study based on the principle of a gamified application. 

1.2. Relevant Work 

Although the concept is relatively new in scientific research, the practice of gamification has 

probably been used for as long as games have existed. Before 2002, gamification was barely known, 

but recently it has been recognized as a powerful tool for data acquisition and a training application 

in several research domains. During the past decade, applications such as Foursquare went viral, 

with millions of downloads, and gamification became a popular technique so as to support the user 

engagement in game-based applications. Recently, it has also become a more popular subject for 

academic inquiry, which is reflected in the growing amount of research during the past ten years [18]. 

The user data of gamified mobile applications provide a large data source and offer a number of 

opportunities for scientific studies. Researchers identified, for example, that the creation of 

competition combined with a reward system (e.g., receiving coins in the mobile Swarm game) is a 

promising method to motivate and retain volunteers [19]. In addition, regarding data acquisition for 

scientific research, gamification applications utilize such a reward system, which is commonly related 

to the use of badges as rewards [20]. 

The healthcare domain furthermore investigates the manner in which serious games could be 

used for the rehabilitation of spatial wayfinding after brain damage. The work represented in [21], 

for example, focuses on virtual sessions including various wayfinding exercises in the form of a 

serious game combined with psychological support offered by a domain specialist. Another 

interesting work in the healthcare domain is the so called Sea Hero Quest mobile game, a multi-

platform adventure game designed specifically to help advance the understanding of loss in spatial 

navigation, and therefore understand one of the first symptoms of dementia [22]. 

As for scientific research within geography, the use of gamification and serious games provides 

interesting opportunities for research on movement behavior and wayfinding. Existing studies 

already applied volunteered geographical information (VGI) of a gamified platform, in particular 

Foursquare data, to conduct research on mobility and travel behavior [23]. Furthermore, the study 

by McKenzie [24] learns that the Foursquare game-based data could be utilized to identify the 

frequently visited and, in other words, popular locations in a specific area. Unlike our serious game, 

the use of outdoor environments is one of the main themes in literature regarding gamified 

applications and research on wayfinding behavior. The work represented in [25,26], for example, 
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investigates how so called mobile geogames can support users to enhance their map comprehension, 

orientation, and wayfinding skills in urban areas. By developing the Ori-Gami app, the authors 

mainly focus on spatial literacy, also known as the skill of learning about and improving interaction 

with one’s surroundings as a key competency to be acquired in geography education [26]. The work 

represented in [27–30] are examples of additional mobile geogames with purposes including data 

acquisition, leisure, and education related to the geography subject. 

Regarding indoor environments, related work often focuses on building design for human-

aware environments by creating a gamified process of crowd simulation, path traces, and heatmaps 

of evacuation dynamics [31,32]. These works are examples of analysis tools to assist architects and 

designers in generating and analyzing human-aware design options. By providing a means to 

implement the design process as gamified levels with built-in architectural constraints, a planner, 

environment designer, or architect can convert a design problem into a playable game to provide a 

fun and interactive collaborative platform for architectural building design. 

1.3. Research Goal 

While related work on wayfinding mainly makes use of gamification for research in large 

outdoor areas [25,26,33], this study focused on the more challenging indoor environment. Therefore, 

the goal of this research was to develop a serious indoor navigation game in the Unity 3D software 

development kit. In the first step, the wayfinding data was collected from several participants who 

played the game. Next, this study investigated whether an analysis of the acquired data could result 

in useful information regarding the link between wayfinding performance, personal characteristics, 

and building layout in an indoor environment. By doing so, this study might provide new insights 

for further research and the use of serious games in terms of scientific research on indoor wayfinding. 

This paper is organized as follows. In the next section, the game development and the data 

processing are discussed. Section 3 presents the results, followed by a discussion and the conclusions 

in Sections 4 and 5, respectively. 

2. Materials and Methods 

2.1. Unity Game Development 

2.1.1. Game Concept 

In order to play the game, called “Indoor Navigation Simulator”, participants needed to create 

an account by following a registration process. The next step was logging into the game, where the 

goal of the game was explained first and a tutorial could be played so as to get a better feeling of the 

control system. Participants, namely students and staff of the Geography Department, had to play 

three different levels. The order in which the participants needed to play was randomized, each level 

covered a different part of the building, and all levels had the same difficulty. Each level started by 

showing the participants an instruction video, in which they saw an avatar navigating through the 

indoor environment and following a planned route from the origin to the destination. Participants 

could only watch this video once, and before watching, they were given a hint to look at recognizable 

environmental features. The ultimate goal of the game was to walk the same route as in the 

instruction video, as fast as possible, so as to obtain a high score in the ranking. 

2.1.2. Registration and Questionnaire 

The first step in the game development was the design of a registration scene in which personal 

information of the participants could be acquired by use of a basic questionnaire. In this scene, the 

participants choose a user name and are asked for their age and study discipline. Additionally, the 

participants are asked two questions: Do you often have trouble with indoor wayfinding and do you 

often play videogames? Every participant received a unique ID, which was important for the storage 

of the data whilst playing the game. Important to note is that if the participants played multiple times, 

the data were always related to their unique ID. The participants were not able to play without 
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completing the registration and log-in. To ensure this, the play button could only be clicked when the 

participants had completed their game log-in. Furthermore, the input verification was implemented 

in the registration scene, obligating the participants to answer all the questions before being able to 

register. 

2.1.3. Virtual Environment 

The second step in the game development was designing a virtual environment. This 

environment was established in Autodesk AutoCAD and consisted of a single floor with a reception, 

cafeteria, and a varying amount of rooms based on an existing hospital floor. The dimensions were 

designed in such a way that a normally scaled avatar could easily pass and navigate through the 

building within an acceptable time. Figure 1 represents the designed floorplan of the indoor 

environment, including the used dimensions in meters on a scale of 1:300. 

 

Figure 1. Floor plan of the indoor environment. 

In order to create a realistic environment, different game objects were added in the Unity 3D 

environment. The doors and stairs were implemented in the game and the floor was given a material 

with a wooden texture. Various artificial lights were set up and the stairs had a metallic texture. 

Furthermore, the roof was attached, including various domes, to give the participants a realistic 

indoor feeling while wayfinding. Important to note is that the link with reality was still very small 

and the used model was only a simplified version of the building. Therefore, information about 

participants being familiar with the building was not taken into account, nor were participants 

informed about the origin of the environment.  
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2.1.4. Avatar Implementation and Player Movement 

The third step was the implementation of an avatar and his movement so as to give the 

participants the opportunity to navigate through the building. For this study, an animation figure 

was used as the avatar, imported from the Unity asset store. The avatar was given realistic 

characteristics such as the influence of gravity as a result of a so-called rigidbody. To make sure the 

avatar was not pulled through the surface or could not walk through the walls, a mesh collider was 

applied to both the avatar and the 3D-model of the building. By doing so, one of the game boundaries 

was created that made movement through walls impossible. Furthermore, the scripting interface of 

the rigidbody was applied to add forces to the avatar and to control it in a physically realistic way. 

The forward and backward forces, linked to the input of the forward and backward arrow key, 

respectively, were scripted and appended to the avatar. These forces were combined with the rotation 

of the avatar, linked to the input of the left or right arrow keys, and employed to implement the 

player movement in the game. Figure 2 illustrates the used avatar and includes information on the 

orientation of the x- and y-axes of the local coordinate reference system used in the Unity. The 

acquisition and storage of data is further explained in the next section. 

 

Figure 2. Avatar implementation and orientation of the local coordinate reference system. 

2.1.5. Level Development 

In the fourth step, based on the floor plan of the building (Figure 1), three different routes were 

developed that completely cover the building. Some parts of the routes overlapped, so players could 

approach certain decision points from different directions, depending on the level. Each route had 

approximately the same length and, therefore, featured a similar level of difficulty. During each level, 

the position of the player’s avatar was extracted, and the participants were tracked by storing their 

x-, y-, and z-coordinates together with a timestamp in a PgAdmin database. To be able to link this 

data to the routes and decision points (DP) in the building, invisible triggers were put after each 

decision point. These triggers were set as box colliders that enabled the “OnTriggerEnter” function. 

A script was created that automatically increased the DP integer by one if a collision between the 

avatar and a trigger occurred. Starting from zero, the decision point value kept increasing until the 

last trigger in a level was reached. The latter was called the end trigger, which automatically reset the 

decision point integer to zero, stored information into the database, and started the next scene in the 

game. 
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Furthermore, so as to investigate the wayfinding performance, the levels were developed to 

automatically detect the wrong turns and to acquire information about when and where these were 

made by a participant. Since it suffices to know when and where a participant made a wrong turn, 

the game automatically asked the participants to turn around when they were mistaken. Figure 3 

illustrates the three indoor routes used for the different game levels. 

 

Figure 3. Illustration of the indoor route design from origin (O) to destination (D) for all three levels. 

2.1.6. Landmarks 

As discussed during the introduction, a movement in a goal-oriented and efficient way is often 

troublesome in an indoor environment. In order to overcome these difficulties, the participants need 

various cognitive skills and the ability to memorize different instructions over time. One of these 

skills is the recognition of remarkable environmental features or landmarks. In this case study, these 

were various game objects in the building that structured the human cognitive map of the 

environment and were used for the orientation and formation of the mental map. Therefore, in the 

fifth step, 21 different landmarks were used on 32 decision points, and 18 decision points had no 

landmarks. Table 1 demonstrates an overview of the different landmarks, related to the level and 

decision points at which they occurred in the game. Appendix A additionally provides an overview 

of all decision points in the three different levels and represents those by means of their unique ID as 

a combination of the DP integer and the level in which they occurred (Unique ID in Table 1). 
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Table 1. Landmark overview. 

Number ID Landmark DP Level Unique ID 

1 1 Reception Desk 0 1 1 

2 2 Painting 1 1 1 11 

3 3 Plant 3 1 31 

4 4 Chairs 4 1 41 

5 5 Snack Automat 5 1 51 

6 6 Stairs 6 1 61 

7 7 Fire Extinguisher 7 1 71 

8 8 Poster 10 1 101 

9 9 Stairs Icon 12 1 121 

10 10 Waiting Chairs 1 2 12 

11 3 Plant 3 2 32 

12 11 Emergency Exit Icon 4 2 42 

13 12 Painting 2 5 2 52 

14 13 Stairs 6 2 62 

15 14 Lavatory Icon 9 2 92 

16 8 Poster 10 2 102 

17 7 Fire Extinguisher 13 2 132 

18 9 Stairs Icon 14 2 142 

19 6 Stairs 15 2 152 

21 7 Fire Extinguisher 0 3 3 

22 9 Stairs Icon 1 3 13 

23 5 Snack Automat 2 3 23 

24 4 Chairs 3 3 33 

25 3 Plant 4 3 43 

26 2 Painting 1 6 3 63 

27 16 Briefcase 7 3 73 

28 17 Bookcase 8 3 83 

29 18 Restaurant Icon 9 3 93 

30 19 Lion Statue 11 3 113 

31 20 Painting 3 13 3 133 

32 21 Stairs 14 3 143 

2.1.7. Ranking and Game Competition 

The competition was embedded during the sixth step by means of a ranking so as to create a 

social game component. The ranking was based on a top ten of the best total timing results of the 

participants and aimed to create a competition between various individuals striving for the best time. 

Since the competition and the creation of a social component is one of the main game characteristics, 

it was of high importance to implement this final attachment. The ranking was built by use of 

Structured Query Language (SQL) and moreover a query, selecting the ten records with the smallest 

total timestamp. The names and best total timing outcomes of ten distinct participants were shown 

and could be accessed before and/or after playing the game. This way, participants tended to be more 

stimulated to aim for a better time and might play multiple times, intending to reach a higher score. 

Figure 4 gives an overview of the developed “indoor navigation simulator” game and represents a 

participant finding his way in one of the levels aiming to achieve a high score. 
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Figure 4. Indoor navigation simulator game example. 

2.2. Game Testing and Distribution 

Throughout the lengthy process of game production, the game construction was tested by 

internal team members, which was called the alpha testing phase. When the latter satisfied the needs 

of the alpha testing, a next testing phase, namely the beta testing phase, was conducted by means of 

a pilot test on eight participants [34]. During the test, no bugs occurred in the game and the data were 

successfully acquired. Afterwards, the participants of the pilot test were asked for potential 

improvements to the game, which mostly resulted in comments on the player movement difficulty 

by non-gamers. Therefore, a tutorial was created in which participants could practice their 

movements in a simplified indoor environment, aiming to give the participants a first experience 

with the movement mechanism of the game. 

Finally, the game was built with target platform windows in a x86-64 architecture. The screen 

width and height of ,respectively, 1440 and 900 pixels were chosen, and the quality level was set to 

ultra-high. The Unity 3D software development kit automatically built the game, resulting in an 

executive file and its corresponding data files. The “Inno Setup Compiler” software was used to 

create an installer based on all game files and the corresponding executive file. The final product was 

the installation set-up for the game, named the “Indoor Navigation Simulator Setup (x86)”. This 

executive file and the installation manual were sent to all students and staff of the Geography 

department at Ghent University. During data-acquisition, the game was played by 52 different 

participants, resulting in more than 20,000 collected point locations related to the indoor 

environment. Various wrong turns were registered, and 11 participants played the game more than 

once, creating the opportunity for research on a learning effect. 

2.3. Data Processing 

In this section, the measures for data cleaning are explained first in the pre-processing 

subsection, as well as the calculation of the navigation velocities before performing statistical tests. 

Finally, the data analysis phase is described with a focus on the user and decision point 

characteristics’ investigation, the effectiveness of the landmarks on indoor wayfinding, and the 

correlation between the wayfinding performance and building layout.  
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2.3.1. Pre-Processing 

In general, approximately 20 percent of the data could not be used due to an unforeseen server 

failure as a result of VPN connection errors or too many simultaneous server requests. After data 

cleaning, 41 individual datasets could be applied for the user characteristics’ analysis and decision 

point characteristics’ analysis, 11 datasets might be useful for a learning effect analysis. 

The navigation velocity is utilized in statistical analysis since it gives the opportunity to compare 

different decision points with each other. This value is calculated by means of time and Euclidean 

distance between the tracked point locations. As for the research on user characteristics, the traveling 

distance and time regarding the 3 levels were calculated for each participant so as to obtain their 

overall navigation velocity as the average of the three different levels. 

2.3.2. Statistical Analysis 

In the statistical analysis, the influence of the user and decision point characteristics on the 

wayfinding behavior was investigated. Additionally, the effectiveness of the landmarks and 

architecture on wayfinding performance was studied, followed by research on a learning effect by 

playing the game. Five different steps were executed based on various measures such as the 

navigation velocity and wrong turns of the participants. It is important to notice that the calculated 

navigation velocities were not normally distributed and thus non-parametric tests were used in this 

study. 

In the first step of the analysis, the influence of the personal characteristics on the total navigation 

velocity and amount of wrong turns was looked into. If the Kruskal–Wallis test indicated a difference 

between various groups of participants, pairwise, one-sided Mann–Whitney U-tests with Bonferroni 

correction were used to determine between which groups the differences lay. In order to investigate 

the difference between the proportions of wrong turns in the groups, a two-proportion z-test was 

used. The groups were formed by the answers to the questions, namely, whether the participants 

often get lost or not and whether or not they often play games. Additionally, the learning effect was 

investigated by means of participants’ data who played the game multiple times. The total navigation 

velocities, aggregated for all three levels and the amounts of wrong turns, were compared for 

different tries by use of a graphical representation. Moreover, two-sided Mann–Whitney U-tests were 

executed so as to investigate the significance of such effects and to conclude whether they are present 

in this study. 

In a second step, the influence of the decision point characteristics was tested by determining 

whether there were any significant differences between the velocities of the participants at different 

decision points or landmark categories. All decision points were classified in two ways: according to 

the decision point topology and according to the required wayfinding action. First of all, based on 

the decision point topology, a distinction was made between a single-turn (i.e., a turn with only one 

wayfinding option), a multiple-turn (i.e., a turn with more than one wayfinding option), and finally 

the start and end of each level. A Kruskal–Wallis and pairwise one-sided Mann–Whitney U-test were 

used so as to examine the significant differences between the groups. Second of all, based on the 

required wayfinding action, a distinction was made between going straight forward, turning to the 

left, and turning to the right. As for this categorization, both the wrong turns and the differences 

between the navigation velocities were analyzed with, respectively, a Chi-square goodness-of-fit test 

and a Kruskal–Wallis test accompanied with pairwise one-sided Mann–Whitney U-tests. 

In a third step, the landmarks were divided into different groups in order to explore the 

landmarks’ effectiveness on the indoor wayfinding performance. Following the study by Viaene [6], 

six different categories of landmarks were employed: infrastructural, pictograms, decorations, 

objects, furniture, and no landmark at all. The differences between the velocities and wrong turns in 

the landmark categories were analyzed using the same tests as in the previous step. Figure 5 

illustrates the categorization of the landmarks by means of the corresponding images. 
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Figure 5. Landmark categorization. 

In a fourth step, the correlation between the mean visual depth (MVD) measures and the 

navigation velocities at different decision points was analyzed. The MVD is a global VGA measure 

that is calculated as the mean global number of visual turns to reach one specific point from every 

other point in the building. It was calculated with the isovist.org software as values between 4 

(shallow or well-integrated) and 10 (deep or badly integrated) [35]. Since the calculated navigation 

velocities were not normally distributed, the Spearman rank correlation coefficient was used for this 

analysis. At first, the Spearman rank correlation between the computed navigation velocity and the 

MVD measure was determined for all decision points. Next, the same test was executed on the 

decision points located in the deep spaces on the one hand and in shallow spaces on the other hand 

to investigate the difference in navigation velocity between these two groups. It is quite important to 

note that, for this case study, deep spaces were mainly located in convex spaces and shallow spaces 

were mainly located in the narrow hallways. Figure 6 summarizes the statistical analysis and gives 

an overview of the used measures and conducted tests in each step. 
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Figure 6. Flowchart of the statistical analysis. 

3. Results 

3.1. User Characteristics 

Table 2 gives an overview of the user characteristics, including data on the age category, 

education level, answers to the general questions during the registration, and the wrong turns during 

wayfinding in the first try. The participants provided their own estimation of wayfinding capabilities 

by answering the questionnaire but were also divided into groups based on their effective 

presentation (at least one wrong turn), which was not always the same.  
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Table 2. User characteristics. 

Age category Education level At least one wrong turn 

18–20 27% Higher 98% Yes 83% 

21–25 56% Primary 2% No 17% 

26–30 10%     

30+ 7%     

General questions 

 
Do you often have trouble with indoor 

wayfinding? 
 

Do you often play video 

games? 

Yes 24%  32% 

No 76%  68% 

The resulting P values of the Kruskal–Wallis tests on the differences between the user groups 

can be found in Table 3. Based on these tests, the difference between two types of groups was 

insignificant: groups based on the first question (i.e., Do you often have trouble with indoor 

wayfinding?) and groups of mistaken and non-mistaken participants (i.e., at least one wrong turn) in 

their first try. The first finding means that there were no significant differences in the navigation 

velocities of the participants based on their wayfinding capabilities’ estimation. The second result 

suggests that although participants made a wrong turn, their navigation velocities did not differ 

significantly from the participants that did not make a wrong turn 

Table 3. Significance of differences between the groups of participants based on their navigation 

velocities over the the different levels. 

Groups of participants           P values 

One-tailed significance values resulting from a Kruskal–Wallis test 

Question (1) Do you often have trouble with indoor wayfinding?  .832 

At least one wrong turn     .332 

Question (2) Do you often play video games?   .000* 

One-tailed significance value resulting from a Mann–Whitney U-test (with Bonferroni correction) 

Question (2) Yes > No            .000* 

* Significant at the 95% confidence level. 

Furthermore, the difference between the groups based on the second question (i.e., Do you often 

play video games?) was proven significant and, therefore, a pairwise one-tailed Mann–Whitney U 

test was executed in order to determine which group was characterized by a significantly higher 

navigation velocity. As could be expected, the participants who often play games had a significantly 

higher navigation velocity in the three different levels. Despite the creation of a tutorial after the beta 

testing and the feedback on the difficulty of player movements, a significant difference could still be 

found between the gamers and the non-gamers group. 

Additionally, a two-proportions z-test was executed to investigate a statistically significant 

difference between the number of wrong turns in the groups based on the questions during 

registration. The results show there was no significant difference in the proportion of wrong turns 

between the groups (Table 4).  
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Table 4. Significance of differences between the groups of participants based on the proportion of 

wrong turns over the amount of participants in the group. 

Groups of participants           P values 

Two-proportions z-test 

Question (1) Do you often have trouble with indoor wayfinding?  .465 

Question (2) Do you often play video games?   .804 

* Significant at the 95% confidence level. 

As for the learning effect in the game, 11 participants played multiple times, but only 3 of them 

more than twice. Therefore, only the differences between the first and second try were investigated. 

Figure 7 illustrates the total navigation velocity of the participants in tries 1 and 2, aggregated for all 

three game levels. In most cases, the differences between both tries were only minimal, with the 

exception of the players with ID 13, 23, 24, and 42. It is important to note that only 5 out of 11 

participants reported to have experience in playing games. 

 

Figure 7. Total navigation velocity in tries 1 and 2 for all three levels. 

The results indicate a trend towards a slightly higher total navigation velocity in the second try 

and thus a better wayfinding in the building, but according to the two-tailed Mann–Whitney U-test, 

this trend is not statistically significant (p = .670). 

Finally, Table 5 gives an overview of the number of wrong turns made by the participants in 

their first and second tries. In most cases, the numbers of wrong turns were not very different. This 

observation is supported by the statistical analysis with the two-tailed Mann–Whitney U-test (p = 

.972).  
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Table 5. Number of wrong turns made by participants in tries 1 and 2. 

Player ID   Try 1   Try 2 

10  2  0 

12  0  0 

13  3  0 

14  0  2 

15  1  0 

16  0  2 

23  0  3 

24  0  1 

25  1  2 

41  0  0 

42   1   0 

3.2. Decision Point Characteristics 

The results of the statistical analysis can be found in Table 6. The Kruskal–Wallis test shows that 

there is a significant difference in the velocities of the participants in different categories of decision 

points based on the topology on one hand and the required wayfinding action on the other hand. 

Therefore, pairwise one-tailed Mann–Whitney U-tests were executed so as to determine which 

categories were characterized by significant higher navigation velocities. 

Table 6. Significance of differences between the categories of decision points based on the navigation 

velocity of the participants at each decision point. 

Groups of decision points           P values 

One-tailed significance values resulting from a Kruskal–Wallis test 

Categorization based on the topology     .000* 

Categorization based on the required wayfinding action   .000* 

One-tailed significance values resulting from a Mann–Whitney U-test (with Bonferroni correction) 

Topology-based      

Single-turn > Multiple-turn     .999 

Single-turn > Start/end     .000* 

Multiple-turn > Single-turn     .000* 

Multiple-turn > Start/end     .000* 

Start/end > Single-turn     .999 

Start/end > Multiple-turn     .999 

Wayfinding action-based      

Straightforward > Turn right     .000* 

Straightforward > Turn left     .000* 

Turn right > Turn left     .999 

Turn right > Straight forward     .999 

Turn left > Turn right     .999 

Turn left > Straight forward     .999 

* Significant at the 95% confidence level. 

The results show that the participants had the highest navigation velocity at multiple-turns, 

followed by single-turns and they moved the slowest at the start or end of a route. An additional 

analysis on the start/end category reveals that the low navigation velocity was mostly caused by the 

start decision points and not the end decision points (p = .000). Furthermore, Table 6 shows that the 

navigation velocity was significantly higher at the decision points in which the participants were 

asked to go straight forward, compared with the decision points for which the wayfinding 

instructions required the participant to turn left or right. 
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Finally, Table 7 illustrates the results of the statistical analysis on the amount of wrong turns in 

the decision point categories according to the required wayfinding action. As for the topology-based 

decision points’ categorization, the amount of wrong turns was not taken into account since no wrong 

turns could be made at single turns. The Chi-square goodness-of-fit test was used to determine 

whether the sample, being the observed amount of wrong turns in each decision point category, was 

consistent with a hypothesized distribution. Since not every category had the same number of 

decision points, the expected distribution was not evenly distributed. It was calculated as the product 

of the total number of wrong turns and the proportion of multiple-turns of a specific landmark 

category compared with the total number of multiple-turns. 

Table 7. Chi-square goodness-of-fit test between the observed and the expected amounts of wrong 

turns in the decision point groups categorized on the required wayfinding action. 

Group   Observed   Expected 

Straightforward  13  29.7 

Turn left  38  19.8 

Turn right   15   16.5 

Chi-square .000*        

*Significant at the 95% confidence level. 

The null hypothesis assumes that the observed amount of wrong turns follows the expected 

distribution, proportional with the number of decision points in each category. The alternative 

hypothesis on the other hand assumes that the amount of wrong turns is distributed significantly 

differently. The results show that the null hypothesis could be rejected in this analysis (p = .000). As 

a result, one could argue that significantly less wrong straight forward actions and substantially more 

wrong left-turn actions were made than would be expected, while the number of wrong right-turn 

actions was quite similar to the expected number. 

3.3. Landmark Effectiveness 

Regarding the investigation of the effectiveness of landmarks on the indoor wayfinding 

performance, the significant results of the statistical analysis on navigation velocity are shown in 

Table 8. The P values of the executed Kruskal–Wallis tests show that there was a significant difference 

in the participants’ navigation velocity at the decision points with landmarks from the different 

categories: infrastructural, pictograms, decorations, objects, furniture, no landmark at all. Therefore, 

pairwise one-tailed Mann–Whitney U-tests were executed to determine which categories were 

characterized by significantly higher navigation velocities. It is important to note that all landmarks 

were characterized with the same level of difficulty and they could all be easily identified during 

wayfinding. Furthermore, the decision points at the start of a level were not taken into account in this 

analysis. The previous test showed that it took a while for participants to start moving at the 

beginning of a route, thus, including the starting points could bias the test results with the navigation 

velocity as a measure.  
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Table 8. Significant differences between the landmark categories based on the navigation velocity of 

the participants at each decision point. 

Groups of landmarks           P values 

One-tailed significance value resulting from a Kruskal–Wallis test 

Categorization       .000* 

One-tailed significance values resulting from a Mann–Whitney U-test (with Bonferroni correction) 

No landmark > Furniture      .008* 

Infrastructural > Furniture      .018* 

Objects > No landmark      .000* 

Objects > Infrastructural      .000* 

Objects > Pictograms      .000* 

Objects > Decorations      .000* 

Objects > Furniture      .000* 

* Significant at the 95% confidence level. 

The results show that, compared to the decision points containing landmarks from the categories 

no landmark, infrastructural, pictograms, decorations, and furniture, the navigation velocity at the 

decision points containing landmarks from the objects category was significantly higher according to 

the Mann–Whitney U-tests. Furthermore, compared to the decision points containing landmarks 

from the furniture category, the navigation velocity at the decision points containing landmarks from 

the categories no landmark and infrastructural also were significantly higher. 

Table 9 represents the results of the statistical analysis on the amount of wrong turns at the 

decision points in the landmark-based categories. The Chi-square goodness-of-fit test was used, 

analogous to the analysis of the required wayfinding actions. It is important to note that the no 

landmark category was characterized by no wrong turns. The Chi-square goodness-of-fit test requires 

that all observed or expected frequencies in each category should be 5 at least. As a result, the no 

landmark category was not considered in this test, and the proportions were adjusted to the total 

amount of decision points, excluding the ones in the no landmark category. 

Table 9. Chi-square goodness-of-fit test between the observed and expected amounts of wrong turns 

in the landmark type-based categories. 

Group   Observed   Expected 

Infrastructural  20  27.79 

Pictograms  11  17.36 

Decorations  11  6.95 

Objects  13  10.42 

Furniture   11   3.47 

Chi-square .000*        

*Significant at the 95% confidence level. 

The analysis shows that the null hypothesis could be rejected (p = .000). As a result, one could 

argue that the distribution of wrong turns in the landmark type-based categories of decision points 

was significantly different than the expected distribution of wrong turns. More wrong turns were 

made than expected at the decision points with a landmark from the categories decorations, objects, 

and furniture. The landmarks from the categories pictograms and infrastructural were characterized 

by less wrong turns than expected. 

3.4. Building Layout and Architecture 

In order to determine the link between the theoretical complexity of the floorplan, quantified by 

the mean visual depth measure and navigation velocity, the correlation between these two values 

was analyzed. The general spearman rank correlation coefficient and the coefficient for the decision 

points in deep and shallow spaces can be found in Table 10. It is important to note that the decision 
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points at the start of the levels, characterized by a significantly lower navigation velocity, were not 

taken into account since they could bias the results, as mentioned in Section 3.2. 

Table 10. Spearman rank correlation coefficient of the mean visual depth (MVD) and navigation 

velocity. 

Groups           correlation coefficient 

Spearman rank correlation 

General coefficient       −0.063* 

Deep spaces      −0.156* 

Shallow spaces      −0.012 

* Significant at the 99% confidence level. 

For all decision points in the building, a significant Spearman rank correlation with a coefficient 

of −0.063 could be found. In general, these results shows that Y (the navigation velocity) tends to 

decrease when X (the mean visual depth measure) increases. However, when a distinction is made 

between the deep and shallow spaces, this trend is no longer significant for the shallow spaces, but it 

increases for the deep spaces. Figure 8 illustrates the location of these decision points including 

information on the correlated space syntax measurements. 

 

Figure 8. Decision points in deep and shallow spaces.  
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4. Discussion 

4.1. User Characteristics 

In this study, a number of conclusions could be drawn from the results of research on differences 

in user characteristics. First of all, there were no significant differences in the total navigation 

velocities of the participants divided in groups based on the estimation of their wayfinding 

capabilities. Secondly, no significant difference was found in the proportions of wrong turns over the 

number of participants in the groups based on questions 1 (i.e., Do you often have trouble with indoor 

wayfinding?) and 2 (i.e., Do you often play video games?). Therefore, the estimated wayfinding 

capabilities and the practical wayfinding capabilities did not have a significant impact on the 

navigation velocity. Since similar conclusions were made in a previous study by De Cock et al. [9], 

these results are consistent with the literature. 

In contrast, the experience of the participants with games did render some significant 

differences. From the results of post hoc pairwise testing, it could be concluded that the participants 

that often play games had a significantly better, as in higher, total navigation velocity in the three 

different levels, despite the tutorial video that was introduced after the beta testing phase. This shows 

that most of the time, the navigation velocity and not wrong turns is influenced by the game 

experience of the participants. Therefore, this study indicated that wrong turns are a more objective 

measure for the wayfinding performance in a gamification project and that the participants’ 

experience with player control also has to be taken into account. A previous study by Powers et al. 

[36] confirms this finding by providing evidence that game training can enhance specific perceptual 

and motor skills, including visual and spatial processing and hand–eye coordination. 

Regarding the analysis on a learning effect by playing the game, no significant difference in the 

amount of wrong turns made by the participants in their first and second attempt could be found. As 

for the total navigation velocities, there seems to be a small trend of a higher total navigation velocity 

in the second try, but no significant difference could be seen. As a result, no significant learning effect 

was noticed in this case study, although more than half of these participants were non-gamers. It is 

important to note that a small number of participants played multiple times. Since the Kruskal–Wallis 

test has a low power for small samples, a bigger sample could have yielded different results and thus 

caution is necessary regarding this conclusion. 

4.2. Decision Point Characteristics 

In general, the navigation velocity of the participants was higher in the categories single-turn 

and multiple-turn compared to the navigation velocity at the decision points at the start and end of 

a level. Although research by De Cock et al. [12] shows that starting and ending a route is less complex 

and, therefore, a higher navigation velocity is expected, this study shows rather the opposite. Further 

analysis demonstrates that the low navigation velocity was mostly caused by the start decision points. 

A possible explanation for this observation is the time lag between the start of a level and the start of 

wayfinding by the participants. When the participants click the play game button, it takes a few 

seconds to move their player by use of the arrow keys. Since the timer in the level immediately starts 

after clicking this button, a time lag of a few seconds could generally lower the navigation velocity at 

the decision points at the beginning of each level. The heat flow of the movement in level 1 with a 

resolution of 2 m (Figure 9), for example, graphically confirms this determination. A higher density 

in tracked point locations was clearly present at the beginning of the level compared with the 

neighboring raster cells. 
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Figure 9. Heat flow of the movement from the origin (O) to the destination (D) in level 1 with 

resolution of 2 m. 

As for the multiple-turn category, the results show that the navigation velocity in this category 

was significantly higher compared to the decision points in the single-turn category. At the single-

turns, only one navigational turn was possible and thus a higher navigation velocity could be 

expected compared to the decision points with multiple options, but this was not the case. In order 

to explain this, the individual decision points in the multiple-turn category were analyzed. There 

were 26 decision points in the single-turn category and 16 decision points in the multiple-turn 

category. It is important to note that of these 16 decision points, 8 of them required the participant to 

go straight forward. This study has shown that going straight forward is characterized by 

significantly higher navigation velocity. As a result, going straight forward is faster and the 

significantly higher navigation velocity at multiple-turn decision points could be triggered by the 

high number of straight forward wayfinding actions. Again, this confirms that gaming experience 

has an important influence on the navigation velocity. 

Next, the analysis of the amount of wrong turns at the decision point categories based on the 

required wayfinding action showed a significant variation from the expected distribution. In general, 

the amount of wrong turns was less than expected concerning going straight forward, which suggests 

that going straight forward is not only easier in terms of player movement but also regarding the 

route remembrance. As for taking a turn to the left, more wrong turns were observed than expected. 

Table 11 gives an overview of the wrong turns made at different decision points categorized by means 

of the decision point topology and landmark type. From this table, it becomes clear that the decision 

point with ID 83 (bookcase) was an outlier showing the largest number of wrong turns. One possible 

explanation for the large number of errors could be the influence of this outlier. Another possible 

explanation could be given by a study by Groepel-Klein and Bartmann [37], which shows that stores 

characterized by a clockwise movement and, thus, turns to the right seem to be more efficient. It is 

possible that the anti-clockwise movement explains the amount of wrong turns made by the 

participants when taking a turn to the left in the “Indoor Navigation Simulator” game. Although 

caution is necessary with this statement because the indoor game environment is different than the 
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environment of a store. In general, it is possible that the anti-clockwise movement is more complex, 

and some participants may have more difficulties with the formation of the mental map when they 

have to go to the left. 

Table 11. Overview of the wrong turns at the decision points with corresponding landmark type and 

topology-based categorization. 

 Decision point 

(Unique ID) 

Wrong 

turns 
Landmark type-based category Topology-based category 

 3 4 Infrastructural Turn right 
 11 4 Decorations Turn left 
 13 4 Pictograms Turn right 
 61 4 Infrastructural Turn left 
 62 8 Infrastructural Straight forward 

 71 3 Infrastructural Straight forward 

 83 11 Furniture Turn left 

 92 1 Pictograms Straight forward 

 101 7 Objects Turn left 

 102 6 Objects Turn left 

 113 7 Decorations Turn right 

 132 1 Infrastructural Straight forward 
 142 6 Pictograms Turn left 

4.3. Landmark Effectiveness 

Regarding the analysis of the landmark effectiveness, the results show a significant difference in 

the navigation velocities in different landmark categories. A post hoc pairwise testing revealed that 

the category objects had the largest share in this significance and was characterized by a significantly 

higher navigation velocity compared to all other categories. 

The previous step in the analysis showed the impact of the complexity of the player movement 

when making a turn. Going straight forward, which is required for the briefcase (DP 73), was less 

complex and resulted in a higher navigation velocity. Taking a turn, which is the instruction on the 

scientific poster in levels 1 (DP 101) and 2 (DP 102), is more complex and could cause a lower 

navigation velocity. In order to fully comprehend the higher navigation velocity in the objects 

category, the player movements and distribution of wrong turns in the other categories should be 

analyzed. Therefore, Table 12 gives a quantitative overview of the categorization based on the 

different types of landmarks, containing the distribution of wrong turns and the movement 

complexity in terms of percentages of cases that require a turn. 

Table 12. Quantitative overview of the categorization based on the different types of landmarks. 

Landmark category    Decision points that require a turn (%) 
Observed 

wrong turns 

Expected 

wrong turns 

No landmark    78% - - 

Infrastructural    58% 20 27.79 

Pictograms    67% 11 17.36 

Decorations    100% 11 6.95 

Objects    67% 13 10.42 

Furniture     100% 11 3.47 

Compared to the turning percentages of the categories no landmark, furniture, and decorations, 

which are respectively 78%, 100%, and 100%, the turning percentage of the objects category was lower 

(67%). More turns indicated a lower navigation velocity and thus this observation could confirm the 

previously found significantly higher navigation velocity at the decision points containing a 
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landmark from the objects category compared to these three categories. The turn comparison also 

explains the higher navigation velocity at the decision points in the no landmark and infrastructural 

categories compared to the decision points in the furniture category. As for the categories 

infrastructural and pictograms, the turn percentage was equal to or lower than that of the objects 

category. This observation does not support the previously found significantly lower navigation 

velocity at the decision points containing an infrastructural landmark or pictogram. Therefore, the 

difference in navigation velocity between the object and infrastructural decision points on the one 

hand and the object and pictogram decision points on the other hand was not influenced by the player 

movement complexity. 

The wrong turns constitute another possible effect on the navigation velocity. As for the decision 

points containing a landmark from the categories decorations, objects, and furniture, the participants 

made more wrong turns than expected. Regarding the categories infrastructural and pictograms, the 

participants did better than expected and made fewer wrong turns. As already mentioned before, an 

unexplained significant difference in navigation velocity existed between these last two categories 

and that of the objects category, the latter characterized by a significantly higher navigation velocity. 

Since there were more wrong turns in the objects category than expected and fewer in the categories 

infrastructural and pictograms, the wrong turns also have no influence on these significant 

differences in navigation velocity. Therefore, the heat flows of the player movements were analyzed. 

A higher density in a grid cell represents more tracked point locations and thus a lower navigation 

velocity or even standing still, which might be caused by doubt or insecurity of the participant. Figure 

10 is a representation of the heat flow for level 1. The grid cells containing a pictogram as a landmark 

(cell IDs 32, 122, and 221) are clearly characterized by a higher density compared with the 

neighboring grid cells. This confirms that the participants needed more time to navigate past these 

decision points and thus stopped for a longer period of time, probably for orientation. Moreover, 

according to the analysis of the wrong turns, the participants made fewer wrong turns at the decision 

points containing a pictogram than would be expected. The pictograms are, therefore, landmarks, 

whereby more thought was given to the choice but ultimately the right choice was made. 

 

Figure 10. Heat flow of the movement from the origin (O) to the destination (D) in level 2 with a 

resolution of 5 m and red squares emphasizing the higher densities in the cells that contain a 

pictogram. 
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In general, the number of turns explains the majority of significant differences in navigation 

velocity. As a result, the impact of the player movements and gaming experience has a dominant 

influence on the navigation velocity measure. However, the player movement has little influence on 

the wrong turns. Since more wrong turns were made at the decision points with a landmark from the 

categories decorations, objects, and furniture, these categories were not very effective in this case 

study. The landmarks from the categories pictograms and infrastructural on the other hand can be 

seen as effective landmarks in this building. As for the pictograms category, the significant difference 

in navigation velocity compared with that of the objects category was probably caused by higher 

densities because of the orientation or more doubt and insecurity. The significant difference in 

navigation velocity between the objects and infrastructural categories cannot be explained by the 

player movement complexity, wrong turns, or high densities at the grid cells (standing still). 

4.4. Building Layout and Architecture 

In general, a small negative correlation coefficient was found, indicating that Y (the navigation 

velocity) tends to decrease when X (the mean visual depth measure) increases. Although this overall 

coefficient was small, it seems that the navigation velocity was lower in the deeper, badly integrated 

zones of the building. When these deeper zones were investigated separately, this presumption was 

reinforced by a slightly larger correlation coefficient. As for the more integrated decision points, this 

effect was no longer significant. 

In this case study (based on a real building), the deeper decision points mainly lay in the convex 

spaces and the well-integrated decision points were mainly found in the narrow hallways. This 

means that navigating at deeper decision points in the convex spaces was slower and there seemed 

to be more doubt about making a turn than for that at more integrated decision points in the convex 

spaces. In the shallow spaces, on the other hand, it seems there was no noticeable variation in the 

navigation velocity influenced by the space syntax, so the participants mainly maintained a constant 

navigation velocity. This interpretation is in line with the findings from a study by De Cock et al. [12], 

in which the turns in the convex spaces are perceived as more complex than the turns in the narrow 

corridors. This might furthermore explain why the navigation velocity at the infrastructural 

landmarks was significantly lower than in the objects category, since the former are mainly located 

in the convex spaces (mean MVD of this category = 6,19) and the latter in the narrow hallways (mean 

MVD of this category = 5,37). According to the correlation coefficients, the navigation velocity at the 

infrastructural decision points decreased according to their deeper location in the building, while the 

navigation velocity at the object decision points remained continuous, which might have led to a 

significantly higher navigation velocity. Table 13 reinforces these findings by representing the 

average MVD values and navigation velocities for the infrastructural and objects categories, 

including several examples of the infrastructural decision points in the deeper zones with a clearly 

lower navigation velocity. 

Table 13. Quantitative overview of the MVD values and navigation velocities. 

Landmark 

category 
   Mean MVD 

value 

Mean navigation  

velocity (m/s) 

Infrastructural    6.19 1.79 

Objects    5.37 1.85 

Infrastructural Decision Point (ID)    
MVD 

value 

navigation  

velocity (m/s) 

61    6.01 1.96 

152    6.44 1.82 

172    6.93 1.58 

143    7.23 1.11 

Figure 11 gives an overview of the locations of the infrastructural and objects decision points in 

the building, including information on the mean visual depth values. 
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Figure 11. Visualization of infrastructural and object decision points. 

To conclude, this research has shown that wayfinding might be harder at the deep convex spaces 

than it is in the shallow convex spaces. This complies with the findings of other research on indoor 

wayfinding, whereby more integrated spaces with high visual access were rated as less complex 

[12,38–40]. Despite the strong impact of player movement complexity, determined in the previous 

steps of this study, it can thus be said that decision point characteristics, landmarks, and building 

layout also seemed to have an important influence on indoor wayfinding in this case study. 

4.5. Limitations and Future Research 

In this study, the data-acquisition was conducted by means of a serious game that gave 

participants the opportunity to navigate through a fictional indoor environment. The advantage of 

using a game is the variety of possibilities that could be implemented during the development. The 

disadvantage, on the other hand, is a time-consuming development process that requires a lot of 

knowledge and experience so as to create a realistic environment (it took 2 months to develop one 

floor with only walls, a player, lighting, and landmarks). As mentioned in a study by van der Kuil et 

al. [21], the movements within the virtual world should be as realistic as possible in order to stimulate 

participation. More than 50 people participated in this study, which is more compared to the number 

of participants in most real-life experiments. A disadvantage is that they did not navigate in a real 

environment, which creates a less immersive experience, although the game experience is still far 

more immersive as compared to a static experiment, such as an online survey. 
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This research focused on a fictional indoor environment with only one floor. Despite the fact that 

the game was developed to be realistic, the link with reality is still limited. Future research can focus 

on more realistic models of existing buildings with multiple floors and make use of detailed Building 

Information Models (BIM). These models could be implemented in the development of a game from 

which the acquired data can be compared to a real-life study in the same building, for example based 

on the use of a location-based system. It could be interesting to analyze a correlation between the real 

and virtual world (i.e., do paths and places causing navigational problems in the real world also cause 

them in the virtual one?). Furthermore, this study shows a link between architecture and performance 

and thus a correlation with the mean visual depth measures. The concept of space syntax introduces 

multiple methods that could also prove useful in future works. Additionally, virtual reality might be 

applied so as to create a more realistic movement and to stimulate participation by use of a game. 

Finally, gamification could be combined with simulations in addition to the mentioned real-life 

experiments, for example, in studies on human behavior during an evacuation. 

5. Conclusion 

This study focused on the concept of gamification and its use in research on indoor wayfinding 

in order to provide useful information regarding the link between the wayfinding performance, 

personal characteristics, decision point characteristics, use of landmarks, and building layout in a 

virtual environment. By means of the “Indoor Navigation Simulator” game, a variety of data was 

acquired such as the personal characteristics of the participants, 3D-point locations, timestamps, and 

wrong turns. The data analysis explored the possibilities of gamification-based data in wayfinding 

research. As for the personal characteristics, no significant differences based on the estimation of 

wayfinding capabilities, nor a learning effect were found. Regarding the experience in playing games, 

a significant difference was seen between the gamers and non-gamers groups and thus a link between 

the wayfinding performance and game experience. As a result, the complexity of the player 

movement had an important impact on the investigated navigation velocity. Going straight forward 

was faster and characterized by easier movements compared to taking a turn, as this player 

movement was more complex. Moreover, the amount of wrong turns was less than expected for 

going straight forward, which suggests that going straightforward is not only easier in terms of the 

player movements but also concerning route remembrance. A further analysis on the wayfinding 

errors demonstrated that more wrong turns were made than expected at the decision points with a 

landmark from the categories decorations, objects, and furniture. Landmarks of the categories 

pictograms and infrastructural were more effective in this particular building, as fewer wrong turns 

were made than would be expected. Finally, a significant correlation was found between the 

wayfinding performance and the mean visual depth measure, indicating a link with the architectural 

layout of the building. In this building, wayfinding at deeper decision points in the convex spaces 

was slower and there seemed to be more doubt about making a turn than at the more integrated 

decision points in the convex spaces. 

By means of a serious game, this study shows the manner in which serious games could be used 

in research on indoor wayfinding. By connecting the game to a server and database, a large variety 

of information could be acquired and utilized in a statistical analysis so as to investigate the link 

between the wayfinding performance, personal characteristics, and building layout in a virtual 

environment. Although the development of the game is time-consuming and there are some 

limitations, the advantages of the game medium are numerous: the game factor attracts more 

participants, some willing to play multiple times, and the participants engaged more in the 

environment compared to using pictures or passive building exploration. This explorative study 

provides an approach for the use of gamification in indoor wayfinding research, and the results might 

be used by researchers who are considering games as a research medium. 
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