
 International Journal of

Geo-Information

Article

GeohashTile: Vector Geographic Data Display
Method Based on Geohash

Chang Zhou 1, Huimei Lu 1, Yong Xiang 2,* , Jingbang Wu 3 and Feng Wang 4

1 School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
changzhou@bit.edu.cn (C.Z.); luhuimei@bit.edu.cn (H.L.)

2 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
3 School of Computer and Information Engineering, Beijing Technology and Business University,

Beijing 102488, China; wujingbang@btbu.edu.cn
4 Department of Computer and Information Science at the University of Mississippi, University, MS 38677,

USA; fwang@cs.olemiss.edu
* Correspondence: xyong@mail.tsinghua.edu.cn

Received: 30 May 2020; Accepted: 25 June 2020; Published: 30 June 2020
����������
�������

Abstract: In the development of geographic information-based applications for mobile devices,
achieving better access speed and visual effects is the main research aim. In this paper, we propose
a new geographic data display method based on Geohash, namely GeohashTile, to improve
the performance of traditional geographic data display methods in data indexing, data compression,
and the projection of different granularities. First, we use the Geohash encoding system to
represent coordinates, as well as to partition and index large-scale geographic data. The data
compression and tile encoding is accomplished by Geohash. Second, to realize a direct conversion
between Geohash and screen-pixel coordinates, we adopt the relative position projection method.
Finally, we improve the calculation and rendering efficiency by using the intermediate result caching
method. To evaluate the GeohashTile method, we have implemented the client and the server of
the GeohashTile system, which is also evaluated in a real-world environment. The results show
that Geohash encoding can accurately represent latitude and longitude coordinates in vector maps,
while the GeohashTile framework has obvious advantages when requesting data volume and average
load time compared to the state-of-the-art GeoTile system.

Keywords: GIS; Geohash; vector tile; Leaflet

1. Introduction

Geographic information-based applications such as navigation services, and electronic taxi
services offer great convenience to daily life and contribute to the increasing popularity of personal
mobile devices [1,2]. To achieve a better user experience, it is necessary to increase access speed while
ensuring visual effects (i.e., significant information retention).

The existing method to find the best balance between “access speed” and “visual effect” is
to reduce data transmission and improve index efficiency by dividing, indexing, and compressing
large-scale map data. First, the data elements transmitted by most literature are vector map data
carrying latitude and longitude coordinates [2,3]. If one-dimensional characters can be used to
represent the latitude and longitude values, that is a feasible way to reduce the amount of data
transmission and improve query efficiency. Second, for most tile maps, grid spatial indexing is
considered to be an effective way to improve access to the massive data. However, grid spatial
indexing uses a three-field query, which makes it inefficient in the case of massive data [4].
Third, data compression needs to make sure that compressed data does not significantly deteriorate
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visual effects. The quantization method compresses data by reducing the number of bits
and the precision of real-valued coordinates [5], which can maintain the topological relationship
of objects. However, how to choose a reasonable data quantization scale is a problem to be solved
when realizing good visual effects.

Our solution is to use one-dimensional characters to represent latitude and longitude coordinates
and improve query efficiency, and to achieve data compression without significantly reducing visual
effects. Geohash meets our requirements with its characteristics of one-dimensional, query convenience
and data compression [6]. Using Geohash in map tiles presents the following challenges. Challenge 1:
Using one-dimensional character representations for latitude and longitude is not a trivial task in terms
of map projection. Currently, the world’s mainstream maps, such as Google Maps [7] and Microsoft
Bing Maps [8], use the web Mercator projection method. This method adopts the isometric positive
axis cylinder projection mode, and simulates the earth as a sphere, which is one of the most used web
map projections [9]. Nevertheless, these projection methods are designed for latitude and longitude.
If one-dimensional characters of non-latitude and longitude are used to represent the location of
geographic coordinates, this kind of method cannot be used. This problem can be solved by finding
a direct calculation method between one-dimensional coordinate and pixel coordinate. Challenge 2:
It is difficult to unify tile encoding and coordinate representation. So far neither Google Maps nor Bing
Maps achieves the unity of tile encoding and coordinate representation. Challenge 3: New approaches
are demanded to achieve both data partitioning and data compression. Our research strives to tackle
all the 3 challenges.

To improve the speed of vector map access while ensuring a visual effect, this paper proposes
a new Geohash-based geographic data display method named GeohashTile, which uses the Geohash
encoding system to improve the performance of data partitioning, indexing, and compressing.
To overcome the three challenges listed above, our GeohashTile uses one-dimensional characters,
Geohash, to partition and index large-scale geographic data. The GeoJSON format data encoded by
Geohash of different lengths are used to achieve data compression. The Geohash encoding method
also unifies the tile encoding and coordinate representation. We use the relative position projection
method to realize the direct conversion between Geohash and screen-pixel coordinates. In addition,
GeohashTile also considers the preparation of Geohash data by the server.

The contributions of this work are summarized as follows:

1. We design a vector geographic data structure based on Geohash architecture, named GeohashTile,
which can use Geohash’s efficient partitioning and one-dimensional indexing of vector geographic
data for easy querying.

2. We use Geohash to unify geographic coordinate representation and map tile encoding,
and organize and store vector geographic data with different granularity and detail, so as to
reduce response time and network data transfer. Using relative position projection, we realize
the direct conversion of Geohash and screen-pixel coordinates, making it easy to calculate. We also
apply the intermediate results caching method to reduce the amount of calculations.

3. We further implement the GeohashTile system and evaluate it by extensive experiments.
The results show that the GeohashTile system provides efficient vector tile service in a convenient
and user-friendly way, which also demonstrates that the GeohashTile system outperforms
the GeoTile system in terms of both data transmission amount and loading time.

The rest of the paper is organized as follows. The background and related works are reviewed
in Section 2. Section 3 presents the main idea of the GeohashTile framework and server configuration.
Client configuration including GeohashTile calculation process, GeoServer map data request process,
Geohash map data projection process and intermediate results caching process are reviewed
in Section 4. Section 5 evaluates and analyzes the performance of GeohashTile by comparing it to
the state-of-the-art works. Section 6 concludes our paper with potential topics for further exploration.
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2. Background and Related Work

In this section, we review and discuss the vector map and spatial index methods involved
in the application of Web client access to map data. We then introduce the Geohash encoding method
and GeoServer and Leaflet used by our GeohashTile system as well as the comparison of related work.

2.1. Vector Map

Vector data maps are emerging as mobile users demand more interactive and informative
mapping services. Vector data can present and distinguish features correctly in different colors at all
resolutions [10]. Web Map Tile Service (WMTS) [11] can be used to solve the problems of the uneven
distribution and the long transmission delay of vector data, which is also the map service standard for
Web Map Service (WMS) [12] and pyramid technology. In the framework of WMTS, maps are divided
into images called tiles, which can be transmitted to the client according to the requested area. The tiles
are reassembled on the client side by using their respective coordinates. The encoding of vector
data is also a critical factor affecting its transmission performance and reusability. XML and JSON
are two vector data encoding methods commonly used in web applications [13]. XML (Extensible
Markup Language) [14] is a markup language that is used as the standard for Internet information
exchange. It has good semantics and extensibility, and can flexibly represent and organize data.
GML (Geography Markup Language) [15] and KML (Keyhole Markup Language) [16] are two
XML-based encoding methods. KML mode is more concise, while GML provides advanced functions
for describing complex maps. Since XML uses a heavyweight grammar, the size of KML and GML are
usually larger and complex in format, which are not conducive to data transmission on the Internet [17].
JSON (JavaScript Object Notation) is a lightweight data representation format that is easy to read
and write and can be resolved quickly and efficiently. GeoJSON [18] is an open-standard format
for encoding various geographic data structures, which can be used to represent simple geographic
features such as Geometry, Feature or FeatureCollection and their properties. Compared with GML
and KML, GeoJSON can be parsed by computer more conveniently and quickly and can describe
complex data structures with good readability [19]. GeoJSON as a lightweight data encoding method
is suitable for data transmission between mobile devices [20]. TopoJSON is an extension of GeoJSON
to encode topology [21]. The directed arc of TopoJSON is recorded only once and geographic
coordinates are used as integers instead of floating-point numbers. Therefore, compared with
GeoJSON, TopoJSON eliminates redundancy, but it destroys the independence of the original object
and coordinates need to be decoded for use, which is not conducive to data analysis and sharing [2].

For vector map data, pyramid technology is still an effective organization method, called vector
tile map. Considering the transmission performance, readability, and easy analysis of the encoding
method, we chose GeoJSON as the encoding method of vector data for mobile devices.

2.2. Spatial Index Technology

Spatial index technology is the key technology to improve the efficiency of massive spatial data
query. Using a spatial index to manage and maintain the tile pyramid has important application
value, and its performance directly affects the overall performance of geographic information network
services. Grid index and quadtree index are widely used spatial indexing methods in the tile pyramid
model [22–24].

The grid index is a rectangular grid arrangement that divides the geographic lines according
to a certain resolution level [4]. The grid index method requires that when querying any tile
in the pyramid, one only needs to conjunctive query the three values, which are X, Y and Z representing
rows, column coordinates and scaling levels, respectively. Grid index is one of the earliest index
methods and has a simple form. However, the three-field query also makes it inefficient in the case of
massive data.
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The pyramid-based quadtree index is named after each of its internal nodes with four sub-nodes,
which is a common indexing method for multi-resolution online maps. The indexing method has
the advantages of simple coding and easy implementation, and has been adopted by most major
network map service providers including Google Maps [7] and Microsoft Bing Maps [8]. Google Maps
is indexed in the same way as a grid index. The three fields of (x, y, z) are used to represent the tile
index values. Therefore, there is also a problem that the mass data query is inefficient. Bing Maps
uses two fields of (z, quadkeys) to represent the tile index value, wherein quadkeys, called quadtree
keys, optimize the index and storage by combining the two-dimensional block XY coordinates into
a one-dimensional string by bitwise cross-combination. Wan et al. [25] uses two-level tile query
methods, namely a large vector map scope (the global map grid) and the sub-scope. Quadtree index
was used in both two-level queries to improve the index efficiency, but increased the work of tile
region expansion.

Geohash’s index method divides a block in layer M into n blocks in layer M + 1, so it is also
a quadtree index method. Compared with the common index structure, Geohash has no recursive
structure, so the spatial index has only one level, making dynamic updates less complicated [22].
At present, Geohash has been widely used to process spatial data with one-dimensional index [6,22,26,27].

2.3. Geohash Encoding

Geohash encoding converts latitude and longitude into a set of binary strings respectively
and then crosses the two sets of strings bit by bit to generate a new set of binary strings.
The sequence corresponding to even digits in the binary strings is longitude sequence, and the sequence
corresponding to odd digits is latitude sequence. The new string is converted to decimal and encoded
according to base32 (i.e., the range of values is 32 characters of the number 0–9 and the letter b–z
(excluding a, i, l, o)), which can be used to represent two-dimensional arrays with one-dimensional
arrays [22]. When Geohash first divides a map, longitude is divided into 8 sections (23 = 8),
and latitude is divided into 4 sections (22 = 4), which forms 32 (8× 4) regions. After that, each region
is alternately divided into 4× 8 or 8× 4 regions according to the alternating change of parity bits,
which are indexed according to the Z-order curve [27]. The Geohash’s division process is shown
in Figure 1.

Figure 1. Schematic diagram of Geohash division and Z-curve index [27].

Compared with the encoding method of Google Maps, Geohash converts two-dimensional
spatial queries into one-dimensional string matching. With this advantage, Geohash can achieve
fast query with time complexity of O(1) [22]. Compared with the encoding method of Bing Maps,
Geohash encoding also uses latitude and longitude encoding to be bit-crossed and merged into
one sequence storage; the difference is that Geohash uses Base32 encoding method, i.e., there are
32 different sub-sequences under the same prefix, while Bing Maps encoding method is Base4,
i.e., there are only 4 different sub-sequences under the same prefix, so the Geohash query is more
convenient. Literature [22] also shows that the Geohash-based spatial indexing algorithm has
high-performance query capability for massive geographic data. At present, the mainstream map
products, such as Google Maps and Bing Maps, adopt the latitude and longitude representation
of geographic data coordinate positions, while the index adopts another method. According to the
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different encoding length, Geohash can represent the index range and coordinate of tiles simultaneously,
which could realize unified encoding.

2.4. GeoServer and Leaflet

As a widely used webGIS server, GeoServer [28] has the functions of creating, storing, managing,
and using geographic data, which can easily and quickly build geographic information services
and realize the rapid sharing of spatial geographic information among users. GeoServer is
an open-source geographic information network server developed based on Java. It is developed
based on interoperability and supports any data source using an open-standard format. It complies
with the OGC (Open Geospatial Consortium), WFS (Web Feature Service), and WCS (Web Coverage
Service) Standard and provides high-performance compatible WMS (Web Map Service).

GeoServer is a more mature server than ncWMS [29], with better documentation, which allows
users to easily modify the output format of the web feature service (used by the identity feature),
and provides additional features for the vector layer, such as CQL(Contextual Query Language)
filtering or the ability to request data in JSON format [30]. For these reasons, we chose GeoServer to
provide GeoJSON data encoded by Geohash.

Leaflet [31] is one of the open-source JavaScript libraries for map, which is a widely used
open-source software in the WebGIS development project on the B/S side. Developers can develop
and expand based on the interface provided by the library, and realize the call of geographic
information service and the basic operation of map data [32].

Leaflet’s powerful open-source library plug-ins involve all aspects of map applications,
including map service, data provision, data format, geographic encoding, route search, map control
and interaction, etc., and also support the implementation of custom controls. These controls enrich
the functions of Leaflet [33]. This paper is based on the lightweight WebGIS library Leaflet to complete
the function.

2.5. Comparison of Related Work

To provide a clear view on different methods for vector geographic data display in the literature,
we compare them from five aspects of coordinate representation, indexing method, projection method,
intermediate result caching, and scope of application. The intermediate result caching refers to
the cache of relative position projection, which is detailed in Section 4. We select several latest
and representative vector geographic data display methods for comparison, and the comparison
results are shown in Table 1. In terms of coordinate representation, almost all of them are represented
by latitude and longitude; in terms of indexing methods, except for the inverted index mode adopted
by Zouhar et al. [9], all other methods belong to quadtree mode. However, due to the different encoding
methods, there are different kinds of quadtree modes: from the perspective of the projection method,
except for the method not explicitly stated in the article, the others use web Mercator projection;
as far as the intermediate result caching is concerned, since there is no relative position projection
method used in these methods, there is no function involving the relative position intermediate result
caching; from the scope of application, except for Zouhar et al. which is only applicable to polygon
data, and Ramos et al. [24], which is only applicable to polygonal lines data, other methods apply to
all basic vector map data.

Table 1. Comparison Table of Related Work.

Method Coordinate Representation Indexing Method Projection Method Intermediate Result Caching Scope of Application

Google Map [7] Latitude and longitude XYZ Quadtree Web Mercator no All basic vector maps
Bing Map [8] Latitude and longitude Quadkey Quadtree Web Mercator no All basic vector maps

Zouhar et al. [9] Latitude and longitude Inverted Index Web Mercator Not mentioned Polygon
wan et al. [25] Latitude and longitude Quadtree Not mentioned Not mentioned All basic vector maps

Ramos et al. [24] Not mentioned MX-CIF Quadtree Not mentioned No Polygonal lines
GeoTile [2] Latitude and longitude XYZ Quadtree Web Mercator No All basic vector maps

Proposed Approach Geohash Geohash Relative position Yes All basic vector maps
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Our GeohashTile system uses GeoServer to set up the server data environment,
providing GeoJSON data which are indexed and encoded by Geohash. We use Leaflet as the basis for
the presentation of the client data to implement the GeohashTile calculation and the Geohash map data
projection. As discussed in Section 1, there are many challenges to achieve these goals. The following
will explain the GeohashTile system architecture in detail.

3. GeohashTile System Architecture and Server-Side Design

In this section, we focus on map data access using mobile devices in the GeohashTile system
and elaborate on the overall structure of GeohashTile, and the configuration of server data service.

3.1. Architecture Overview

The GeohashTile system consists of two parts: the server side and the client side. The server
side provides vector geographic data service, and the client side completes the display of Geohash
vector geographic data, including the calculation process of GeohashTile, the request process of server
map data, the projection process of Geohash map data and the intermediate result caching process.
Figure 2 shows the functional framework of the GeohashTile system.

Figure 2. Functional framework of GeohashTile system.

The work of the server is divided into two parts: Geohash vector geographic data conversion
and Geohash vector geographic data service. The data conversion is responsible for converting
the latitude and longitude coordinates of the original GeoJSON data set into Geohash encoded
GeoJSON format data of a specified length corresponding to the zoom level, and reorganizing
the data into GeoJSON format data for client access, which also defines the data access interface
and sets data precision. After receiving the HTTP request sent by the client, the data service part
will decompose the fields, query the corresponding Geohash encoded GeoJSON data and return it
to the client through HTTP response, where the Geohash encoded vector geographic data service
is provided by a GeoServer-based Web server. As a typical map server, GeoServer can convert
vector data in OpenStreetMap (OSM) [34] into tile data for use by Web clients. The GeoServer-based
map server consists of four main modules, namely the Apache HTTP server, the caching system,
GeoServer-based Web server, and PostgreSQL-based data storage module. For specific settings,
please refer to the literature [2].

The work of the client side is as follows. In the process of GeohashTile calculation, the first step is
to calculate the size of GeohashTile corresponding to the zoom level z, named (gs_x, gs_y). The second
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step is to calculate the number of GeohashTile covering the scope of the screen, named (gt_x, gt_y).
In addition, the third step is to calculate the neighbor GeohashTile from the center GeohashTile
to get the GeohashTile queue, at the same time, two queues formed by the center point position
and the relative pixel center point of each piece are calculated, which are called gc_queue and gcp_queue.
In the process of map data request from the server, before the request is sent out, the request merging
must be completed first. Then the client sends GeohashTile index Geohash_index and zoom level
z through HTTP request to request map data, and finally receives the GeoJSON data returned by
the server. The relative position projection process first calculates the relative pixel distance list
coord_dis_list of the coordinate list Geohash_list of the geometric objects in each GeohashTile to
the center point queue gc_queue, and then calculates the screen coordinate position point_list to
the relative pixel center point queue gcp_queue. The intermediate result caching process is to save
the relative position calculation results and reduce the amount of repeated calculations. Through the
above four steps, we have implemented a direct conversion between Geohash and screen coordinates
on the client. It is worth noting that the first three steps only need to be calculated during initialization,
which do not need to be calculated repeatedly when only dragging in a small range.

3.2. Server-Side Design

The server-side configuration of the GeohashTile system includes two parts: Geohash vector
geographic data conversion and Geohash vector geographic data service. The vector map data service
has been briefly introduced in Section 3.1. In this section, we mainly introduce the Geohash coordinate
conversion, data access interface configuration, and data precision setting involved in data conversion.

There are two coordinate conversion functions and one coordinate compression function on
the server. The coordinate conversion function translates Geohash in the GeoJSON uploaded by
the client into latitude and longitude coordinates and performs reverse conversion when it returns.
The compression function can remove redundant Geohash accuracy based on zooming parameters.

3.2.1. Geohash Coordinate Conversion and Interface Configuration

The server needs to return GeoJSON map data based on the name of GeohashTile and zoom level
z requested by the Web client. Figure 3 is a comparison of the data process of preparing the original
GeoJSON and the Geohash encoded GeoJSON data by the server. We mainly completed Geohash
coordinate conversion and data access interface configuration, including GeohashTile name conversion
and geometric object latitude and longitude encoding. In the future, all the positional representations
of the vector map data on the server can be converted into Geohash, so that Geohash is completely
used as the unique representation of the coordinates.

The process of preparing the GeoJSON data in the server side:

1. Tile data query. As shown in step 2© of Figure 3, the server provides file system caching function,
i.e., all the querying tile data will be cached. Compared to the query of the three fields x, y, z (x, y
represents the tile encoding, and z represents the zoom level) in the processing of the original
GeoJSON data, the processing of the Geohash encoded GeoJSON data only need to query two
fields of geohash and z, and thus the query efficiency is increased.

2. Tile name conversion. As shown in step 4© of Figure 3, both GeoTile and GeohashTile need to
decode the request field obtained from the client, namely the tile name, into a pair of latitude
and longitude points (long1, long2, lat1, lat2) representing the rectangular area where the tile is
located when entering the server data request stage. There are two cases of GeohashTile name
conversion according to whether there is a merged request for GeohashTile: One is that when there
is no merge, the client requests a GeohashTile each time, and the name conversion process refers
to the decoding process in Section 2.3; the other is that when the request is merged, each time
the client delivers the request, there are two Geohash strings in the upper left corner and the lower
right corner of the request area. This decoding process will be described in Section 4.2.
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3. Obtaining latitude and longitude map data. As shown in step 5© of Figure 3, we can obtain
the geometric object represented by the latitude and longitude in the rectangular area. In this step,
the two data acquisition methods are the same. Since the vector map stored in the server still
uses latitude and longitude to represent the location of geometric objects, it is necessary to obtain
the latitude and longitude map before subsequent conversion. Like most Online map service
requirements, our system also follows the idea of LoD (Level of Detail). As the zoom level
increases, the more granular geometric objects contained in the tile. The rules refer to the GeoTile.
For example, the geometric objects with Category as Highway and Type as Primary will be
displayed when the zoom level is 13–17; while the geometric objects with Category as Amenity
and Type as Hospital will only appear at the zoom level of 15–17.

4. The geometric object coordinate conversion. As shown in step 6© of Figure 3, this step
is unique for GeohashTile. The obtained latitude and longitude coordinates of the
geometric object (e.g., (lon1, lat1), (lon2, lat2), · · · ) are encoded into Geohash coordinates
(e.g., geohash1, geohash2, · · · ) according to the encoding process introduced in Section 2.3.

5. Organizing into GeoJSON format. As shown in step 7© of Figure 3, the purpose is to return
the GeoJSON data encoded by latitude and longitude or Geohash to the client. Figure 4 shows a set
of GeoJSON objects encoded by Geohash. Compared to getting the original GeoJSON data directly,
when the server provides GeoJSON encoded by Geohash, the process of converting the latitude
and longitude coordinates of geometric objects into Geohash is added. Since this process is
executed only once when the data is requested for the first time, subsequent access is directly read
from the cache without excessive computation overhead.

Figure 3. A comparison of the data process of preparing the original GeoJSON and the Geohash
encoded GeoJSON by the server.

Figure 4. A sample diagram of Geohash encoded GeoJSON object.
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Data access interface configuration:
GeoServer provides a method for publishing vector tiles but does not provide a method for

publishing GeohashTile. To achieve the requirement of accessing GeoJSON data encoded by Geohash
through URL, Apache is also required to add a new mapping relationship of the GeohashTile data,
and mark Geohash as h. By adding a new mapping relationship, the web client can access GeoJSON
data encoded by Geohash. Its access format is “· · · /h/z/geohashtile”, where z represents the map
zoom level.

3.2.2. Data Precision Setting

Geohash can represent different coverage depending on the length of the encoding.
Similarly, we can also select different Geohash encoding lengths according to the map zoom level to
achieve different granularity of geometric objects, i.e., data precision setting. Therefore, the amount of
data storage is reduced while not reducing the precision of the screen-pixel coordinates of the map
data. The equation of calculating the Geohash coverage latitude and longitude range can combine
the Geohash encoding method taking the quarter or eighth of the latitude and longitude range
alternately with the calculation method of zoom level and tile coverage latitude and longitude range
in [34], as shown in Equation (1), where i is the encoding length of Geohash. The latitude and longitude
values of the geometric object

loni =


45◦ i = 1
loni−1/4 i = 2k, k ≥ 1
loni−1/8 i = 2k + 1, k ≥ 1

lati =


45◦ i = 1
lati−1/8 i = 2k, k ≥ 1
lati−1/4 i = 2k + 1, k ≥ 1

(1)

coordinates in OpenStreetMap are taken to 7 decimal places. According to Equation (1),
when the Geohash encoding length is 14 bytes, the latitude and longitude range it represents is
0.00000001◦ × 0.000000005◦. Therefore, we chose the 14-byte Geohash to encode the highest precision
geometric object coordinates. Table 2 shows the statistical results of the latitude and longitude values
of the geometric object in the OSM and 14-byte Geohash decoding latitude and longitude values,
which are all retained 7 decimal places. The latitude and longitude ranges are selected in four
regions: Singapore, Hainan, Beijing and Heilongjiang. Table 2 shows that the latitude and longitude
accuracy after Geohash decoding under this condition is 100%. Please note that here the Geohash
data compression results are obtained with the highest latitude and longitude. In the next section,
we will further examine the data compression under different accuracy requirements in conjunction
with the GeohashTile calculation.

Table 2. Latitude and longitude accuracy after Geohash decoding.

Location Longitude Range (◦) Latitude Range (◦) Data Size(KB) Accuracy

Heilongjiang (121.18, 135.09) (43.42, 53.56) 2198 100%
Beijing (115.42, 117.49) (39.44, 41.05) 1431 100%
Hainan (89.88, 92.48) (15.65, 18.25) 1987 100%

Singapore (99.25, 119.61) (6.71, 7.65) 2636 100%

4. Client Data Display

The server side is ready for data and needs the cooperation of the client side to complete the display
work. In this section, we will show how the client can complete the process of displaying Geohash
vector geographic data, as shown in Figure 5, including the four parts. (1) The calculation process of
GeohashTile includes three steps: Calculating the size of a piece of GeohashTile, calculating the Number
of GeohashTile in the client and calculating all the GeohashTile encoding in the client. (2) Merging
process of map data requests sent to server, specifically, we can use the GeohashTile request merging
algorithm to realize the merging of the requests to be sent. (3) The relative position projection process
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includes data compression, calculating pixel distance and calculating screen coordinates in three steps.
(4) The intermediate result caching process is the process of reducing the repeated calculation by
caching the tile pixel distance and the coordinate pixel distance in two relative position calculations.
Next, we will introduce these four parts, respectively.

4.1. Calculation Process of GeohashTile

The calculation process of GeohashTile is the process of calculating the number of GeohashTile
covered within the screen range and the GeohashTile sequence of corresponding encoding length by
the given center position center_geohash, zoom level z and screen size of client clientSize.

4.1.1. Calculating the Size of a Piece of GeohashTile

As shown in step 1© in Figure 5. In the GeoTile system, the tile index follows the principle
of the quadtree. At each zoom level, Equation (2) is used to calculate the number of tile encoding
in the x-axis and y-axis directions of the tile coordinates, where z is the zoom level.{

num_x = 2z z ≥ 1
num_y = 2z z ≥ 1

(2)

Figure 5. Geohash vector map display process of client.

One byte of Geohash encoding represents one division, and a region is alternately divided
into 4× 8 or 8× 4 sub-regions according to the alternation of odd and even bytes of the encoding.
The calculation equation for the number of GeohashTile encoding in the x-axis and y-axis directions of
the tile coordinates after each division is Equation (3), where l is the length of Geohash encoding.{

num_g_x = 8(l+1)/2 × 4l/2 l ≥ 1
num_g_y = 8l/2 × 4(l+1)/2 l ≥ 1

(3)

When the Geohash division is associated with the zoom level in the GeoTile system, it is necessary
to follow the principle that a tile can cover a complete Geohash tile (it is not allowed to cover only
a part of one Geohash tile), and cover it with the shortest length of Geohash encoding to reduce
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storage. Therefore, we combine Equations (2) and (3) to obtain Equation (4) of the relationship
between the Geohash encoding length l and the zoom level z, and the calculation result of l takes
the smallest integer. {

8(l+1)/2 × 4l/2 ≥ 2z l ≥ 1, z ≥ 1
8l/2 × 4(l+1)/2 ≥ 2z l ≥ 1, z ≥ 1

(4)

Regardless of Google Map, Bing Map, or other geographic information display systems, the tiles
of each layer are fixed pixel size (the most common tile pixel size is 256× 256). As can be seen from
the above, the tile size of each layer of Geohash is the same, and the tile size between each level changes
regularly with the rules of division. Due to the inconsistent division size of the x and y directions,
the Geohash tile is mostly rectangular. To make the GeohashTile approximate to the square pixel size
of 256× 256 at each level and facilitate calculation, the pixel size of GeohashTile is set at zoom level 0
as 512× 512. Combined with the calculation results of Equation (4), the size of GeohashTile under
the corresponding zoom level z can be calculated by Equation (5). In Equation (5), z is the zoom level,
and l is the Geohash encoding length. Since the division rules of Geohash in x and y directions are
inconsistent, two different equations are needed to complete the calculation.{

gs_x = (512× 2z)/(4l/2 × 8(l+1)/2) z ≥ 1, l ≥ 1
gs_y = (512× 2z)/(4(l+1)/2 × 8l/2) z ≥ 1, l ≥ 1

(5)

Table 3 illustrates the pixel sizes of GeohashTile calculated by Equation (5), where the zoom level
is 1–18. In addition to being able to calculate the pixel sizes of GeohashTile with different encoding
lengths, Equation (5) is also used to calculate the Geohash coordinate point conversion screen-pixel
coordinates later.

Table 3. GeohashTile pixel size and zoom level correspondence table.

Zoom GeohashTile_Size Zoom GeohashTile_Size Zoom GeohashTile_Size

1 128× 256 7 256× 512 13 128× 128
2 256× 512 8 128× 128 14 256× 256
3 128× 128 9 256× 256 15 512× 512
4 256× 256 10 512× 512 16 128× 256
5 512× 512 11 128× 256 17 256× 512
6 128× 256 12 256× 512 18 128× 128

4.1.2. Calculating the Number of GeohashTile in the Client

After getting the size of GeohashTile in the corresponding zoom level, the number of GeohashTile
covered in the screen can be calculated by combining the client pixel size, so as to prepare for obtaining
the corresponding map data from the server (as shown in step 2© in Figure 5). Equation (6) is
the equation for calculating the number of GeohashTile encoding in the x-axis and Y-axis directions of
tile coordinates, where size.x, size.y are the pixel sizes of the client screen.{

gt_x = dsize.x/gs_xe
gt_y = dsize.y/gs_ye (6)

To ensure that the coverage of the screen is covered by GeohashTile, the calculation result is
rounded up. This is also the reason the GeohashTile coverage shown in Figure 5 is beyond the screen.

4.1.3. Calculating All the GeohashTile Encoding in the Client

To get the corresponding map data from the server, we should calculate all the GeohashTile
encoding in the screen coverage (as shown in step 3© in Figure 5). Since the center point GeohashTile
encoding has been given, starting around the center point, we can calculate the neighbor GeohashTile
of center_geohashtile. According to the Geohash neighbor search algorithm, neighbor search can be
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divided into two groups: left and right neighbors as well as top and bottom neighbors. Starting from
the center_geohashtile position, gt_x non-repeating left and right neighbor gcs are searched, and then
gt_y non-repeating top and bottom neighbors of GeohashTile in gcs are also searched, with all neighbor
data stored in geohashtile_queue. To facilitate the subsequent calculation of the screen-pixel position of
each Geohash coordinate in the GeohashTile, it is necessary to simultaneously calculate the center point
position gc and the relative pixel center point gcp of each GeohashTile. The process of searching all
GeohashTile encoding in the client by the neighbor method is shown in Algorithm 1. When searching
for neighbors, we should start with the last byte of Geohash encoding. Using Figure 1 as an example,
if the current encoding is not the boundary value of the direction to be searched, it will be searched
directly; if the current encoding is the boundary value of the direction to be searched, it will be searched
reversely. In the searching process, the left and right neighbors and the top and bottom neighbors are
carried out at the same time, which shortens the calculation time and improves the query efficiency.

Algorithm 1 GeohashTile neighbor searching algorithm

Require: center_geohashtile, centertile;
1: the number of GeohashTile encoding in the x direction, gt_x;
2: the number of GeohashTile encoding in the y direction, gt_y;

Ensure: geohashtile_queue arranged by GeohashTile coverage location;
3:
4: function NEIGHBOR_TILE_QUEUE(centertile, gt_x, gt_y)
5: tmpi = (gt_y− 1)/2, tmpj = (gt_x− 1)/2;
6: l = the length of centertile encoding;
7: geohashtile_queue[tmpi][tmpj] = centertile;//Store the center GeohashTile first
8: tmpl = centertile, tmpr = centertile;
9: //Find left and right neighbors of the center GeohashTile

10: for j = 1; j ≤ tmpj; j ++ do
11: tmpl = neighbor_bound(tmpl, l, le f t);
12: tmpr = neighbor_bound(tmpr, l, right);
13: geohashtile_queue[tmpi][tmpj− j] = tmpl;
14: geohashtile_queue[tmpi][tmpj + j] = tmpr;
15: end for
16: //Find the top and bottom neighbors of the middle row’s GeohashTiles
17: for j = 0; j ≤ tmpj; j ++ do
18: tmpt = tmpb = geohashtile_queue[tmpi][j];
19: for i = 1; i <= tmpi; i ++ do
20: tmpt = neighbor_bound(tmpt, l, top);
21: tmpb = neighbor_bound(tmpb, l, buttom);
22: geohashtile_queue[tmpi− i][j] = tmpt;
23: geohashtile_queue[tmpi + i][j] = tmpb;
24: end for
25: end for
26: end function
27: //Find the neighbor encoding in the specified direction
28: function NEIGHBOR_BOUND(curtile, l, cur_d)
29: if lth byte of curtile is the cur_d bound then
30: curtile = the first l − 2 bytes of curtile + the cur_d neighbor of the l − 1th byte of curtile +

the cur_d neighbor of the last byte of curtile searched in reverse order;
31: else
32: curtile = cur_d neighbor of curtile;
33: end if
34: end function
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4.2. Merging Process of Map Data Requests Sent to Server

After getting the required GeohashTile sequence in the previous subsection, the client merges
the request and starts sending an HTTP request to the server to request geographic information
data in GeoJSON format. The request process is described in Section 3.2.1, Server Data Preparation
(as shown in step 4© in Figure 5). This subsection focuses on the request merging process. Because each
byte increase in GeohashTile encoding divides the region into 32 small regions, there are too many
regions in one level. The more tiles in the same level, the more redundant data will be generated when
the data is requested. For example, 35 GeohashTiles need to be requested in one request from the client,
and the tiling order of these GeohashTiles in the client is shown in Table 4.

Table 4. A GeohashTile request sample table.

Col 1 Col 2 Col 3 Col 4 Col 4 Col 6 Col 7

wrekg wreku wrekv wreky wrekz wresb wrese
wreke wreks wrekt wrekw wrekx wres8 wres9
wrek7 wrekk wrekm wrekq wrekr wres2 wres3
wrek5 wrekh wrekj wrekn wrekp wres0 wres1
wre7g wre7u wre7v wre7y wre7z wreeb wreee

To reduce the number of data requests and data redundancy, a request merging process is added
before requesting a GeohashTile. The request merging algorithm is shown in Algorithm 2.

Algorithm 2 GeohashTile request merging algorithm

Require: geohashtile_queue, gt_queue; //The GeohashTile queue obtained in Algorithm 1
Ensure: new_queue

1: function MERGE_REQUEST(gt_queue)
2: ilen = rows of gt_queue,jlen = columns of gt_queue;
3: //Consolidation calculation starts when the encoding length is 2
4: if the length of gt_queue[0][0] > 1 then
5: if ilen× jlen > 10 then
6: //Divide the larger number of rows and columns into two sets
7: if ilen > jlen then
8: subi = ilen/2,subj = jlen;
9: //Query the top left and bottom right GeohashTiles of two sets to be merged

10: i3 = subi× 2− 1, j3 = subj− 1;
11: //Store the unmerged GeohashTiles
12: for j = 0; j < jlen; j ++ do
13: new_queue[j + 1] = gt_queue[ilen− 1][j];
14: end for
15: else
16: subi = ilen,sunj = jlen/2;
17: i3 = subi− 1, j3 = subj× 2− 1;
18: for i = 0; i < ilen; i ++ do
19: new_queue[i + 1] = gt_queue[i][jlen− 1];
20: end for
21: end if
22: //Save the two encoding of merged GeohashTiles
23: new_queue[0] = gt_queue[0][0]+gt_queue[subi− 1][subj− 1];
24: new_queue[1] = gt_queue[subi][0]+gt_queue[i3][j3];
25: end if
26: end if
27: end function
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The request merging algorithm adopts vertex-labeling to merge the small tiles with the number
greater than or equal to 10 under the same division. We divide the larger number of rows or columns
in the geohashtile_queue into two sets of sequences to be merged, and combine the two GeohashTiles
in the top left and bottom right corner of the divided range to represent the merged range, thus reducing
the number of data requests. As in the example of Table 4, according to the rules of Algorithm 2,
each set of regions is 5× 3 after merging, i.e., the first combination is encoded as “wrekg” in the top
left corner and “wre7v” in the bottom right corner with 15 GeohashTiles (i.e., the red part in the table),
and the combined encoding is “wrekgwre7v”. In the second combination, the top left corner is encoded
as “wreky” and the bottom right corner is encoded as “wreeb” with 15 GeohashTiles (i.e., the blue
part in the table), and the combined encoding is “wrekywreeb”. After merging, you only need to
request the merged GeohashTiles encoded as “wrekgwre7v” and “wrekywreeb” and the remaining
5 unmerged GeohashTiles. When the server receives an encoding with the length of l (as “wrese”
in Table 4), it indicates a data request of normal GeohashTile. However, when the encoding length
is 2l (as “wrekgwre7v” in Table 4), it indicates that it is a merged request, and then the request is
decomposed into two parts of equal length for subsequent data requests. It is worth noting that
the merged request data does not increase or even decrease the data amount, which will be analyzed
in detail in the experimental analysis of Section 5.

4.3. Relative Position Projection Process

All map data needs to be projected from spherical data to two-dimensional plane data for display.
The Geohash map data’s relative position projection process described in this section is the process
of projecting Geohash encoded map data directly into screen coordinates using a relative position
calculation method. The specific calculation steps are as follows:

4.3.1. Data Compression

In Section 3.2.2, the data precision is only calculated from the highest precision latitude
and longitude. According to Equation (5), when the projected coordinate point is within a pixel
range, the encoding length can be determined to meet the accuracy requirements of the current zoom
level, and data compression can thus be achieved (as shown in step 5© in Figure 5), i.e., we should
make Equation (5) satisfy Equation (7). Equation (8) can be further derived from Equations (5) and (7).
It is worth noting that since this is used to calculate the relationship between the encoding length
and the zoom level of a geometric object’s coordinate points, the Geohash of the same encoding length
represents a larger range as the latitude increases, whereas Equation (8) only applies to calculations
near the equator.

Therefore, it is necessary to modify Equation (8) to make it suitable for calculating the length of
Geohash encoding in the whole latitude range. According to Equation (8), when the zoom level is 1,
the shortest Geohash encoding length is 4, so only the distance and the precision relationship of the first
4 bytes encoding is considered in the precision calculation.

gs_x× gs_y ≤ 1 (7)

l ≥ d(4× z + 31)/10e (8)

Here we have two definitions to help the explanation.

Definition 1. Encoding distance (d). Distance between the encoding of Geohash’s specified byte
and the equatorial encoding of the same column.

Definition 2. Geohash resolution. The pixel distance when encoding distance of Geohash specified byte is 1.
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For example, when calculating the encoding distance of “wx4e”, the equatorial encoding of
the column in which the first byte is “w”, so d1 is 0, and the Geohash resolution of this byte is 1.
The equatorial encoding of the column in the second byte is “8”, so d2 is 7, and the Geohash resolution
in this byte is 1/8. The equatorial encoding of the column where the third byte is “4”, so d3 is 0,
and the Geohash resolution on this byte is (1/4)× (1/8). The equatorial encoding of the column
where the forth byte is “8”, so d4 is 3, and the Geohash resolution on this byte is (1/4) × (1/8)2.
According to the Geohash encoding rules shown in Figure 1, the encoding distance can be quickly
obtained by looking up the table. Equation (9) is the encoding length calculation equation. In Section 5,
the calculated and measured results will be analyzed in detail.

l ≥ d(4× z + 31)/10 +
4

∑
i=1

(di × (1/4)(i−1)/2 × (1/8)i/2)e (9)

4.3.2. Calculating Pixel Distance

The GeoJSON obtained in the previous section contains a series of Geohash encoded Geohash_list
that represents the coordinates of geometric objects, i.e., target points. The first step in implementing
projection is to calculate the relative pixel distance distance_list from these target points to the center
point. There are two relative distance calculations (as shown in step 6© in Figure 5). The first is tile pixel
distance, which is the relative pixel distance tile_dis from the GeohashTile center point to the actual
center point. The second is the coordinate pixel distance coord_dis, which is the relative pixel distance
from the coordinate point of the geometric object to the center point of the GeohashTile. Algorithm 3
is the pixel distance calculation algorithm from the target point to the center point, which can be
used for the above two calculations. Where curg is the current target Geohash to be calculated,
one byte at a time, calculated from high to low. Since the Geohash division is done alternately by 8× 4
and 4× 8, the position order of the two neighbors is different. g_ral_pos uses a two-dimensional array
to represent the relative position of Geohash. The current character position i of Geohash represents
the i− th division, and the division type type_index is obtained by calculating the parity of i. We then
look up the column where the target value is located to find out which set of values are currently
used to complete the calculation. cal_x, cal_y record the relative distance of the current character
from the center point, respectively. At different zoom level, the pixel distance in x and y direction
represented by each byte of Geohash encoding can be calculated by substituting the calculated result
of encoding length in Equation (9) into Equation (5). Since the pixel distance can be reused after being
calculated once, the calculation result can be stored in an array, and only the array needs to be queried
later. pd.x and pd.y respectively record the pixel distance between the current Geohash encoding data
and the center point.
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Algorithm 3 Pixel distance calculation algorithm

Require: current geohash curg;//current target point Geohash to be calculated
1: current center cc;//current center point

Ensure: pixel distance pd
2: function TARGET_PIXEL_DISTANCE(curg)
3: ilen = Length of curg;
4: i = 0;//current position of curg
5: for each i in curglen do
6: tg = i-th data of curg;
7: type_index= remainder of (i + 1)\2;//encoding mode selection,8× 4 or 4× 8
8: i = i + 1;//i points to the next byte of curg
9: j = 0;//current position of g_ral_pos

10: jlen = length of the type_index line in g_ral_pos;
11: for do each j in jlen
12: if tg in g_ral_pos[i][j] then
13: cal_x=the serial number of tg in g_ral_pos[i][j];
14: cal_y = j;
15: break;
16: end if
17: j = j + 1;
18: end for
19: //relative position difference
20: cal_x=x of cc relative position-cal_x;
21: cal_y=y of cc relative position-cal_y;
22: //relative pixel difference
23: pd.x = pd.x + cal_x× x−direction pixel distance represented by the current encoding;
24: pd.y = pd.y + cal_y× y−direction pixel distance represented by the current encoding;
25: end for
26: end function

4.3.3. Calculating Screen Coordinates

Calculating the screen coordinates is the last step to show the Geohash encoded target points
on the screen (as shown in step 7© in Figure 5). The relative pixel position from the target point to
the center point has been obtained previously. Here, we only need to convert the relative pixel position
to the actual pixel position, i.e., calculate the screen coordinate position point_list of relative pixel
distance distance_list according to the center point of the pixel queue gcp_queue. Equation (10) is
the calculation equation of the actual pixel position of the target point, where cg_center is the actual
center point pixel position of the client screen.

tp.x = cg_center[0] + tile_dis.x + coord_dis.x;

tp.y = cg_center[1] + tile_dis.y + coord_dis.y;
(10)

4.4. Intermediate Result Caching Process

Because GeohashTile uses the relative position projection method, the positions of all tiles
and the positions of geometric objects are recorded in relative positions. It is possible to improve
the calculation and rendering efficiency by caching the intermediate calculation results. According to
the previous calculations, the tile pixel distance tile_dis and the coordinate pixel distance coord_dis
in the two relative position calculations can be cached as intermediate results (as shown in step 8©
in Figure 5).

The intermediate result caching process includes two parts: before and after the map position
panning occurs on the client side. Before the map position panning, the tile pixel distance tile_dis
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and the coordinate pixel distance coord_dis need to be recorded. After the map position panning, it is
necessary to recalculate tile_dis, as well as calculate the coord_dis of the new added tiles.

Figure 6 is a schematic diagram of client position translation, where gt1–gt46 are GeohashTile
numbers, and C1, C2, and C3 represent the center point position of the client’s three times position
movements. Taking Figure 6 as an example, we summarize the steps of the intermediate result caching
as follows:

Figure 6. Schematic diagram of client location panning.

Step1 : Calculating Geohash coordinate precision. As shown in Figure 5, a tile pixel distance
list tile_dis_list and a coordinate pixel distance list coord_dis_list are established. When the client
first loads GeohashTile, the calculation result is stored in the corresponding list. Figure 6 records
the coordinate position of the center point C1, and the tile_dis_list from the center point of gt1–gt9
covering the client to C1, as well as the coord_dis_list of the coordinates of each geometric object
in the tile to the center point of the tile.

Step2 : When the map position pan occurs on the client side, if no new tiles are added, it is
not necessary to calculate the coord_dis repeatedly, but only the relative position of tile_dis needs
to be calculated. In Figure 6, after the first translation, the center point position is C2. At this time,
C2 and the center point C1 before the translation are in the same GeohashTile, and the tiles covering
the client is still gt1–gt9 with no new tile added. Therefore, we only need to calculate the pixel distance
of C2 and C1, dis_c2_c1, and then calculate the new tile_dis_new = tile_dis + dis_c2_c1.

Step3 : When the map position of the client is panned, if new tiles are added, the relative positions
of tile_dis and coord_dis need to be recalculated, while the relative positions of the original tiles
only need to be recalculated for tile_dis, which greatly reduces duplicate calculation. In Figure 6,
after the second panning, the center point position is C3. gt2, gt5, gt6, gt7, gt8 are removed from
the original tile covering the client, and gt25, gt28, gt32, gt37, gt46 are added. Now, we need to
calculate the pixel distance dis_c3_c2 of C3 and C2. For the original tiles, we only need to update
tile_dis_new = tile_dis + dis_c3_c2; and the newly added tiles need to recalculate the tile_dis
and coord_dis values.

Step4 : When the map is zoomed on the client, the contents of the list will be cleared, and the new
calculation results will be recorded.

Step5 : To quickly locate the tile list as the client map position pans, we also need to cache the tile
where the center point is located. When the map is loaded by Leaflet, the parameters that need to
be initialized are the coordinates of the center point and the zoom level. After the center point’s
Geohash is given, in combination with the zoom level, the first few bytes of the encoding are taken
as the tile encoding. The number of changes of the center tile each time the client panning is much
smaller than the number of changes of the center point coordinates, so it can further reduce the amount
of calculation.
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5. Experiments and Evaluation

To assess the effectiveness of the proposed GeohashTile, we evaluate it with on the real data from
OpenStreetMap. In this section, we first introduce the experimental environment and dataset. We then
compare and analyze the GeohashTile and the state-of-art latitude and longitude tile GeoTile [2],
which is also based on Leaflet.

5.1. Experimental Setup and Dataset

Our experimental environment includes the server environment (GeoServer) and the client
environment. The physical environment built by GeoServer is a virtual machine with 2 core Intel
(R) Xeon (R) CPU e5-26200 @ 2.00 GHz processor and 2 GB memory. The architecture is based
on Ubuntu OS 14.04 and a series of open-source software packages. It combines Apache HTTP
server and Web server to realize server functions. The client environment is a laptop with Windows
7 64-bit operating system, Intel Core i5-4690K 3.5 GHz processor and 8 GB memory, which uses
the Google Chrome browser to display Leaflet map. All the original geographic data comes from
OpenStreetMap. Here we select four regions with different latitude distributions in Singapore, Hainan,
Beijing and Heilongjiang for performance analysis.

Leaflet [31] is the main open-source JavaScript library for mobile interactive maps. Its JS file is
only about 38 KB, and it has all the mapping features most developers need. The leaflet is widely used
due to its excellent mobile interactive features and lightweight advantages. Therefore, when we
analyze the proposed method, we compare the Geohash vector map display system based on
Leaflet (i.e., GeohashTile) with the same latitude and longitude tile display system based on Leaflet
(i.e., GeoTile).

5.2. Performance Analysis

In this section, we implement the GeohashTile prototype system and perform experiments from
multiple perspectives. We analyze and calculate the Geohash encoding length and precision at
different zoom levels. At the same time, we quantitatively analyze the amount of data transmitted by
the client when loading the data of GeoTile, GeohashTile without merging (GeohashTileNoMerging
for short), the fully optimized GeohashTile (GeohashTileFull for short) provided by the GeoServer,
as well as the loading time of the GeoTile, the GeohashTile without the intermediate result cache
(GeohashTileNoCahcing for short), and GeohashTileFull.

5.2.1. Geohash Encoding Length and Precision

How to calculate the Geohash coordinate precision is introduced in Section 3.2.2 In this section,
we will analyze the calculation results of Equation (9). Figure 7 shows the results of geohash encoding
length and zoom level calculated using Equation (9). Since the closer to the poles, the larger the area
represented by the Geohash of the same encoding length. For the convenience of calculation, the same
longitude and different latitude values are used here. Figure 7 shows the result of selecting the Geohash
encoding length of the 5 sets of latitude and longitude areas with the longitude of 0◦, and a latitude
range of 0–90◦ with 20◦ interval when the zoom level is 1–18. As can be seen from Figure 7,
with the zoom level increases, the Geohash encoding length increases. At the same zoom level,
the lower Geohash precision is required near the equator than near the poles. Under the same precision
requirement, the length of Geohash encoding increases with the increase of latitude. The reasons are
as follows: (1) The same Geohash covers the same latitude and longitude range instead of the same
area; at different latitudes, the actual area covered by the Geohash of the same length are different,
with a large area near the equator and a small area near the poles. (2) In terms of latitude and longitude,
the distance of screen coordinates between the equator is short and the distance between the poles is
long in the range of two sets of screen coordinate points with different latitudes and the same longitude
interval. On the contrary, when the actual area is the same, the length of the corresponding Geohash
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encoding near the equator is shorter than the length near the poles. (3) Like GeoTile, each piece
of GeohashTile specifies a pixel size represented when making screen projection, such as a piece
of GeohashTile represents 512× 512 pixels at level 0. When the pixels of a piece of GeohashTile is
fixed, the smaller the area it represents, the higher the precision required to more accurately represent
the position.

Figure 7. Diagram of Geohash encoding length and screen coordinate precision statistics.

We also compare the actual statistical results of Geohash encoding length between the actual
statistical and the corresponding latitude range in the four regions of Singapore, Hainan,
Beijing and Heilongjiang when the zoom level is 1–18 show in Figure 8. The statistical result here
is the result of the comparison with the screen coordinate position of the highest precision 14-byte
Geohash encoding. The latitude ranges of the four areas are selected from the 10◦, 20◦, 40◦, and 50◦

consistent with the calculation range. As can be seen from the Figure 8, the actual test results are
consistent with the calculation results of the corresponding latitude range. Thus, when Geohash is
used to represent the coordinate position of the geometric objects on the map, it is not necessary to use
the 14-byte length but to select the appropriate length according to the latitude position and zoom level,
which indicates that Geohash can realize multi-granularity data representation and data compression
without loss of display effect. According to the results of our experiment, only 12 bytes Geohash is
needed at most to meet all the experimental precision requirements.

(a) (b)

Figure 8. Cont.
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(c) (d)

Figure 8. Comparison of the measured and calculated results of Geohash encoding precision:
(a) Singapore; (b) Hainan; (c) Beijing; (d) Heilongjiang.

5.2.2. Amount of Data Transmission

The first evaluation metric is the amount of data transmission since it has a direct impact on
loading time. The counted GeohashTile data here is the Geohash data with encoding length according
to the highest precision requirements shown in Figure 7. The number of tiles that need to be loaded
within the same client screen range is also an important factor affecting loading time. Although the
transmission of a tile with a small amount of data is shorter in time than a tile with a large amount of
data, if the tile division is too small in the same display range, the number of tiles transmitted will
increase significantly. Due to the increase of repeated data transmission, the loading time will also be
greatly affected. According to the request merging algorithm described in Section 3.2.2, GeohashTile
merges the requested tiles before sending them to the server. Whether the merging of GeohashTile will
result in a large increase in the amount of requested data is an important indicator to judge whether
the merging is reasonable.

Figure 9 demonstrates the comparison of the data transmission amount when the four
regions of Singapore, Hainan, Beijing and Heilongjiang are respectively loaded with GeoTile,
GeohashTileNoMerging and GeohashTileFull giving the zoom level varies between 1–18. The vector
map data transferred by GeoTile uses the latitude and longitude to represent the geometric object
coordinates, and the latitude and longitude retains 7 decimal places. The vector map data transferred
by GeohashTile uses Geohash to represent the geometric object coordinates, and retains the length
consistent with the highest precision according to the encoding length described in the previous section.

As can be seen from Figure 9, the trend of data amount changes of both GeohashTile and GeoTile
is basically the same under different zoom levels and geographic regions. Moreover, when storing
geometric object data within the same coverage range, the data amount of GeohashTile is 47.3%
less than that of GeoTile on average, which shows that GeohashTile has a great advantage in data
amount than GeoTile. Figure 9a shows a significant increase in data amount when the zoom level
is 13, while the other three statistics show a significant decrease in data amount. This is because
the amount of data is related to the number of geometric objects included in the region, and the more
detailed the description, the greater the amount of data in the region. GeohashTile has a lot of
redundant data when the zoom level is 3 and 6, and there is more data outside the region after merging.
Moreover, there will be a larger amount of data than GeoTile. When the amount of redundant data
exceeds the amount of data compression, the situation in Figure 9b occurs.
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(a) (b)

(c) (d)

Figure 9. Comparison charts of amount of data transmission among GeoTile, GeohashTileNoMerging
and GeohashTileFull: (a) Singapore; (b) Hainan; (c) Beijing; (d) Heilongjiang.

For GeohashTileFull, the amount of data after merging has not increased significantly.
Indeed, in most cases, the amount of data has decreased. The reason is that when the server provides
the GeohashTile vector map data, it is divided according to the coordinate position of the geometric
object. As long as the coordinates of the geometric object are within the GeohashTile range, the object
is included in the corresponding GeoJSON data, so that the same object could be contained in multiple
GeoJSON, i.e., there is redundant data. After the requests are merged, the geometric objects that were
originally contained in multiple GeohashTiles now only appear once, so the amount of data is reduced.
Although here the amount of data is reduced, it has not been greatly reduced because the data outside
the original area is also included after the requests are merged.

According to the Geohash range calculation rules described in Section 4.1.1, the coverage of a tile
is the smallest when the zoom level is 3, 8, 13 and 18, i.e., the number of Geohash blocks that need
to be divided in the same range is the largest, and the redundancy data generated at this time is also
the largest, which is the peak position of GeohashTileNoMerging in these figures. After merging,
the number of divided blocks decreases, and the amount of redundant data decreases, so the change of
GeohashTileFull tends to be flat.

5.2.3. Loading Time

The loading time of map data is an important indicator to measure the map display method.
The loading time is the time from the Web client starts requesting tile data to all requested data is
projected on the screen. In our system, three factors affect the loading time: the amount of data, the way
of projection and whether there is intermediate result cache.

Figure 10 shows the loading time comparison of GeoTile, GeohashTileNoCahcing
and GeohashTileFull for the four regions of Singapore, Hainan, Beijing and Heilongjiang when
the zoom level is 1–18. As can be seen from Figure 10:
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Figure 10. Comparison charts of loading time among GeoTile, GeohashTileNoCahcing
and GeohashTileFull: (a) Singapore; (b) Hainan; (c) Beijing; (d) Heilongjiang.

(1) When the zoom level is 1–18, the loading time of GeohashTileFull is reduced by 30.2%
on average compared with GeoTile in the same range of the four regions, indicating that
the GeohashTileFull has a significant advantage over the GeoTile in loading time. With the increase
of zoom level and data amount, the loading time of GeoTile and GeohashTileFull has the same
increasing trend. At some zoom levels, such as level 11, the loading time of GeohashTileFull is 50%
less than the GeoTile on average. A closer look at this level reveals that the number of tiles loaded by
GeohashTileFull after the request merging is exactly 1, and the amount of data is less than that before
the request merging, so the loading time is greatly reduced. In some cases, for example, when the zoom
level is 6 in Hainan, the GeohashTileFull has a slightly higher loading time than the GeoTile. This is
because although the requested GeohashTile meets the requirements of merging, there are more data
crossing multiple Geohash regions added after merging, resulting in the increase of loading time.
Another reason for the shorter loading time of GeohashTileFull is the advantage of the projection.
GeoTile uses Mercator projection, while GeohashTile uses a relative position projection method to
make calculations easier.

(2) Comparing the loading time of GeohashTileNoCahcing and GeohashTileFull, it can be seen
that the loading time of GeohashTileFull is 14.1% less than GeohashTileNoCahcing, which indicates
that the intermediate result cache has significantly improved the loading time. In some cases, due to
the large translation span and low tile repetition rate in the experiment, the loading time of the two
is the same, such as when the zoom level is 1 and 2. Experiments after zoom level 6 present that
the load time varies with the tile reuse rate when there is an intermediate result cache. This indicates
that the effect of the intermediate result cache on the loading time is directly related to the reuse
rate of the cached results. The higher the reuse rate, the smaller the number of repeated calculations,
and the more the load time is reduced.
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6. Conclusions

In this paper, motivated by simultaneous data partition and data compression, and starting
from the aim of reducing data transmission, improving index efficiency and reducing loading time,
we studied the vector geographic data structure based on Geohash, and a GeohashTile system that
unifies map data indexing and geometric coordinate encoding is implemented. The GeohashTile system
does not affect the display effect while reducing the user’s waiting time; it makes the application
reducing the amount of data transmission and loading time; it also provides a new vector data service
that supports Geohash encoding. The results of the experiment demonstrated that in terms of reducing
the data amount, due to Geohash’s compression storage of latitude and longitude, the storage of
different granularity map data of different levels and the data merge access, GeohashTile outperforms
GeoTile by 43.7% on average. The loading time of GeohashTile on Web client is also 30.2% less than
that of GeoTile because of its relative position projection and intermediate result caching.

However, there are some limitations in our study. In the Geohash framework, when the two
points are within a small range, the spherical distance between the two points can be approximated to
the two-point plane distance, and the calculation can be completed only to have Geohash coordinates.
However, when calculating the spherical distance between two points in a large range, this approximate
calculation has a large error, and it needs to be converted into latitude and longitude coordinates to
calculate the accurate two-point spherical distance.

Although the display effect is not the only pursuit of the vector geographic data platform, the good
display effect is the premise and basis of all data processing functions. In this paper, we only discuss
the rendering and display of the map in Geohash coordinates, but not the calculation of spherical
geometry in it. It will be an interesting work in the future to study the calculation of spherical geometry
in Geohash coordinates, such as point-to-point distance and point-to-line distance. Another interesting
future work is to further modify the affine transformation parameters. According to the latitude
and longitude, the affine transformation parameters should be modified in different regions which
could reduce the deviation between the north and south poles. The third direction worth exploring is
to improve server functions. In the future, the location representation of all the incoming vector map
data on the server can be converted into Geohash, so that the Geohash is completely used as the unique
representation of the coordinates.
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