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Abstract: China’s rural population has declined markedly with the acceleration of urbanization and
industrialization, but the area under rural homesteads has continued to expand. Proper rural land
use and management require large-scale, efficient, and low-cost rural residential surveys; however,
such surveys are time-consuming and difficult to accomplish. Unmanned aerial vehicle (UAV)
technology coupled with a deep learning architecture and 3D modelling can provide a potential
alternative to traditional surveys for gathering rural homestead information. In this study, a method
to estimate the village-level homestead area, a 3D-based building height model (BHM), and the
number of building floors based on UAV imagery and the U-net algorithm was developed, and the
respective estimation accuracies were found to be 0.92, 0.99, and 0.89. This method is rapid and
inexpensive compared to the traditional time-consuming and costly household surveys, and, thus, it is
of great significance to the ongoing use and management of rural homestead information, especially
with regards to the confirmation of homestead property rights in China. Further, the proposed
combination of UAV imagery and U-net technology may have a broader application in rural household
surveys, as it can provide more information for decision-makers to grasp the current state of the rural
socio-economic environment.
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1. Introduction

Massive rural–urban migration has accelerated the process of urbanization and industrialization
in China in the last few decades. From 2000 to 2016, China’s rural resident population decreased from
808 million to 589 million, showing a decline of 27.1% [1]. However, the area under rural homesteads
has increased rather than decreased because newly evicted farmers prefer to keep rural homes [2–4];
it has expanded from 14.5 to 19.9 million hectares, translating into an increase of 37.2% [1]. A vast
number of farmers treat their homesteads as inherited wealth and not just as land for construction.
At the same time, when farmers settle in cities, the transfer of homesteads to others is restricted [5].
Many challenges persist regarding the use and management of rural homesteads. On the one hand,
a rural homestead serves as housing security for the farmer [6]. On the other hand, this sense of
security has given rise to irrational phenomena, such as the over-occupation of land, leaving land
idle, and the under-utilization of land [7]. To promote rural development, the Chinese government’s
proposal for the construction of beautiful villages focuses on the preparation of village plans according
to local conditions, in-depth surveys of the farmers, and the rational layout and conservation of land.
The use and management of homesteads is a key part of this exercise, and, thus, additional data and
field surveys to those currently available are required. Household surveying is a common method of
collecting relevant socio-economic and thematic information, with homestead and floor areas forming
the core of this information [8]. However, a small proportion of farmers often have an incentive to

ISPRS Int. J. Geo-Inf. 2020, 9, 403; doi:10.3390/ijgi9060403 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://www.mdpi.com/2220-9964/9/6/403?type=check_update&version=1
http://dx.doi.org/10.3390/ijgi9060403
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2020, 9, 403 2 of 14

misrepresent data to receive higher government subsidies or to avoid exposing over-occupied land [9].
Moreover, most of the villages in China are densely populated with homesteads, requiring extensive
and time-consuming surveys. Therefore, additional approaches are needed to collect more accurate
spatial data to properly monitor the condition of the rural homesteads.

The use of unmanned aerial vehicles (UAVs) offers new opportunities for monitoring rural
homesteads, as they facilitate real-time and high-resolution data collection [10]. Due to the
centimeter-scale resolution of the ground texture, UAV images are beneficial for the visual interpretation
of rural homesteads [11]. Yang et al. measured the building density and floor area ratio of rural
settlements using a Dajiang UAV with visual interpretation [12]. However, visual interpretation is
inadequate to support rural surveys in China, which usually cover thousands of villages. The height
of a building may be detected in different ways using UAV images. Li et al. proposed a method for
estimating building heights using sentinel-1 data, which focused on the urban scale [13]. Wang et al.
reconstructed a 3D building based on UAV tilt photography [14], which is not suitable for dense rural
homestead communities because their calculations were based on a single building.

In recent years, deep learning methods have also been used to identify rural buildings [15].
Li et al. employed AlexNet and support vector machine algorithms to detect hollow village buildings
based on high-resolution remote sensing images [16]. These approaches are based on object detection
methods [17], whose primary task is to find all the objects of interest in the image and determine their
locations [18]. Object detection techniques use rectangular frames to locate objects, but both the roof
distribution and the roof shape of rural buildings are irregular; thus, the identification accuracy of
these methods is limited [19]. Furthermore, in the homestead identification task, the desired output
should include homestead building boundaries, and each pixel should be assigned a class label [20].
Pixel-based technology implies that the network learns to provide predictions for each pixel [21]. U-net
is a convolutional autoencoder widely used in the medical field and other industries; it performs
high precision pixel-based segmentation on images [20]. However, the use of U-net to recognize rural
homesteads is still uncommon.

In the estimation of the homestead and building floor areas at the village-level, it is still a challenge
to explore a method applicable to rural China to achieve real-time image acquisition, pixel-based
identification, and 3D modeling for rural buildings, one that provides a potential alternative to
time-consuming and laborious household surveys. In this study, the objectives were: (1) to extract
the spatial distribution of homesteads from UAV images, mainly relying on a pixel-based image
classification using the U-net algorithm; (2) to develop and validate a building height model (BHM) to
determine the number of floors and the floor area of rural buildings based on 3D modelling; and (3) to
develop and test a village-level method to estimate homestead and floor areas in a rapid and low-cost
manner, which is useful for rural surveys in China and other developing countries.

2. Data and Methods

2.1. Study Area

The study area is in the Jianfeng village, east of Qishan town, Qimen county, in the Anhui province
of China (Figure 1a). Anhui is among the first batch of provinces in China to pilot the reform of the
rural collective property rights system. Rural homesteads comprise the core of the next step of rural
reform and development. Qimen county is mountainous. The survey area measures 52,578.12 m2

and is a narrow strip of land on the whole, with mountainous terrain located to its north and a river
channel to its south. A total of 19 household survey sites exist in the village. Records exist for the sizes
of the homesteads and the number of floors and floor areas of the rural buildings (Figure 1b).
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Figure 1. Study area: (a) Qimen county, Anhui province, (b) Jianfeng village, Qimen county. The red 
triangles in Figure 1b indicate household survey locations. 

2.2. Image Acquisition Using UAV Data 

To acquire UAV images, we employed a DJI Mavic Pro UAV, which is a quadcopter with a four-
wheel drive motor and a complementary metal-oxide semiconductor (CMOS) camera with a focal 
length of 28 mm and an effective pixel count of 12.35 million for the 1″ CMOS. The maximum speed 
and flight time were 18 m/s and 27 min, respectively. The UAV data were obtained on 16 August 
2019. A dry, windless day was chosen to avoid any distortions caused by the undulations of the UAV 
camera. Autonomous flight planning was conducted for the study area. The flight path was in the 
north–south direction and split into two flights of approximately 12 min each at a speed of 11 m/s. 
The camera has an F-shift of 2.2, and a shutter speed of 1/2000 s. The ISO value, which can be adjusted 
automatically according to the light conditions, was set between 100 and 1600. During the UAV image 
acquisition, the camera angle was −90°, and the safe mode was turned on. The sensor produced 
images of 20 MP in the red, green, and blue (RGB) wavelengths. During the flight, the camera was 
automatically released every 7 m, while the position of the device was simultaneously recorded by 
the internal GPS/GLONASS dual-mode satellite positioning system. In the study area, the flight 

Figure 1. Study area: (a) Qimen county, Anhui province, (b) Jianfeng village, Qimen county. The red
triangles in Figure 1b indicate household survey locations.

2.2. Image Acquisition Using UAV Data

To acquire UAV images, we employed a DJI Mavic Pro UAV, which is a quadcopter with a
four-wheel drive motor and a complementary metal-oxide semiconductor (CMOS) camera with a focal
length of 28 mm and an effective pixel count of 12.35 million for the 1” CMOS. The maximum speed
and flight time were 18 m/s and 27 min, respectively. The UAV data were obtained on 16 August
2019. A dry, windless day was chosen to avoid any distortions caused by the undulations of the UAV
camera. Autonomous flight planning was conducted for the study area. The flight path was in the
north–south direction and split into two flights of approximately 12 min each at a speed of 11 m/s.
The camera has an F-shift of 2.2, and a shutter speed of 1/2000 s. The ISO value, which can be adjusted
automatically according to the light conditions, was set between 100 and 1600. During the UAV image
acquisition, the camera angle was −90◦, and the safe mode was turned on. The sensor produced
images of 20 MP in the red, green, and blue (RGB) wavelengths. During the flight, the camera was
automatically released every 7 m, while the position of the device was simultaneously recorded by the
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internal GPS/GLONASS dual-mode satellite positioning system. In the study area, the flight longitude
ranged from 117◦42′57.60” E to 117◦43′12.00” E and the flight latitude ranged from 29◦51′07.20” N
to 29◦51′10.80” N. The images were obtained from an altitude of 100.4 m with a 70% lateral overlap,
90% forward overlap, and an optical ground sample distance of 3.1 cm. The pixel size of the images was
2.7 cm. The covered flight area amounted to 52,578.12 m2. A total of 130 RGB images were obtained
during the survey.

2.3. Estimation of Rural Homestead Area Using the U-Net Algorithm

2.3.1. U-Net Architecture and Parameter Settings

The U-net architecture is illustrated in Figure 2, following the equivalent diagram developed by
Ronneberger et al. [20]. The U-net architecture consists of two parts: the contraction path and the
expansion path. The contraction path follows a typical convolutional network architecture, with many
feature channels that allow the network to propagate context information to higher resolution layers.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 4 of 13 

 

longitude ranged from 117°42′57.60″ E to 117°43′12.00″ E and the flight latitude ranged from 
29°51′07.20″ N to 29°51′10.80″ N. The images were obtained from an altitude of 100.4 m with a 70% 
lateral overlap, 90% forward overlap, and an optical ground sample distance of 3.1 cm. The pixel size 
of the images was 2.7 cm. The covered flight area amounted to 52,578.12 m2. A total of 130 RGB images 
were obtained during the survey. 

2.3. Estimation of Rural Homestead Area Using the U-net Algorithm 

2.3.1. U-net Architecture and Parameter Settings 

The U-net architecture is illustrated in Figure 2, following the equivalent diagram developed by 
Ronneberger et al. [20]. The U-net architecture consists of two parts: the contraction path and the 
expansion path. The contraction path follows a typical convolutional network architecture, with 
many feature channels that allow the network to propagate context information to higher resolution 
layers. 

 
Figure 2. U-net architecture. Each blue box corresponds to a multi-channel feature map. The number 
of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. 
White boxes represent copied feature maps. The arrows denote the different operations. 

The U-net in this study consists of convolutional layers with a convolution kernel size of 3◊3, 
followed by a rectifier linear unit (ReLU). To achieve a numerically stable training procedure, a batch 
normalization (BN) layer was incorporated after every convolution layer. Then, 2◊2 steps of 2 
maximum pooling layers were followed to complete the down-sampling, while the size of the feature 
map decreased. The feature channels were increased by an order of two at every downsampling step 
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was used to control the spatial size of the output volumes. In the final layer, a convolution layer with 
a convolution kernel size of 1◊1 mapped the 32–channel feature map to the required number of 
categories, using a sigmoid function as the neuronal activation function. The network had a total of 
23 layers. 

2.3.2. Training 

Here, a total of 188 RGB image samples of 650◊650 pixels were prepared based on UAV data. 
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Figure 2. U-net architecture. Each blue box corresponds to a multi-channel feature map. The number
of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box.
White boxes represent copied feature maps. The arrows denote the different operations.

The U-net in this study consists of convolutional layers with a convolution kernel size of 3 × 3,
followed by a rectifier linear unit (ReLU). To achieve a numerically stable training procedure, a batch
normalization (BN) layer was incorporated after every convolution layer. Then, 2 × 2 steps of
2 maximum pooling layers were followed to complete the down-sampling, while the size of the feature
map decreased. The feature channels were increased by an order of two at every downsampling step
and the feature channels were halved at each upsampling step. The same-padding hyperparameter
was used to control the spatial size of the output volumes. In the final layer, a convolution layer with
a convolution kernel size of 1 × 1 mapped the 32–channel feature map to the required number of
categories, using a sigmoid function as the neuronal activation function. The network had a total of
23 layers.

2.3.2. Training

Here, a total of 188 RGB image samples of 650 × 650 pixels were prepared based on UAV data.
The homesteads and other features in the study area were visually interpreted as the label data. In this
case, only two classes were required, “homestead” and “non-homestead”, representing the presence
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or absence of homesteads. Deep neural networks typically perform better with more training data.
Models trained on small datasets do not generalize well and suffer from overfitting. It is imperative to
exploit data augmentation to increase the total number of training images. This issue was addressed
by segmenting all 650 × 650 images into 160 × 160 patches. The 188 image pairs (image and respective
label raster) were augmented to a total of 4324 image pairs. Data processing and spatialization were
conducted using Python 3.6 and ArcGIS 10.5, respectively. The data split cross-validation parameter
was equal to 0.2, and the shuffle was True. For the training dataset, 3450 images were used and
the remaining 874 images were used for validation during the training. The Adam optimizer had a
momentum of 0.9 and a learning rate 0.0001. The network was trained for 100 epochs using binary
cross-entropy as a loss function. Similarity was measured using the Jaccard coefficient [22]. All the
experiments were run using Keras 2.2.2 with TensorFlow 1.10.0 using python 3.6.

2.3.3. Validation

The following quantitative indicators were used to evaluate performance in statistical analysis:
overall accuracy, precision, recall, and F1 score. These indicators are presented as calculated true
positives (TPs), false positives (FPs), true negatives (TNs), and false negatives (FNs). For a class l, TP is
the number of pixels that are correctly classified as l. FP is the number of pixels that are misclassified as
l. Finally, FN represents pixels that belong to l but are associated by the model with some other classes.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2·Precisoin·Recall
Precision + Recall

(3)

Overall Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision and recall are common indicators used to evaluate classification performance [23].
However, these two indicators are sometimes contradictory. Therefore, we employed F1 for the
synthesis [24]. Moreover, to further evaluate the performance of the developed approach, we used
intersection-over-union (IoU), which represents the proximity of the predicted object to the ground
truth. In Equation (5), A and B are two different data samples [21].

IoU(A, B) =
A∩ B
A∪ B

(5)

2.4. Generation of Building Height Model and Estimation of Homestead Floor Area

The floor area estimations should be based on point clouds and the 3D structures of the rural
buildings. Two types of remote sensing techniques are suitable for application on UAV platforms:
airborne laser scanning (ALS) and structure from motion (SfM). SfM photogrammetry techniques
underperform in terms of accuracy, whereas ALS can provide more accurate estimates of the vertical
structures of buildings [25]. However, SfM is more readily available than ALS because SfM is
inexpensive for users in developing countries [26]. Therefore, UAVs using SfM technology can detect
data at an acceptable spatial and temporal resolution, making them a more cost-effective solution [10].
The workflow of the SfM method consists of two main processes: aligning the images and constructing
the geometry. The 3D point cloud was generated using the Agrisoft Photoscan Professional Edition
software (Agisoft LLC, St. Petersburg, Russia) [27]. First, the camera position of each image was
located and matched to the common points in the image; this allowed the identification of calibration
parameters for image comparison. Based on the estimated camera position and the image itself [28],
a point cloud was then built and a digital terrain model (DTM) was generated [26].
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The height of a rural building can be approximated as the height of the BHM. Theoretically,
the BHM can be obtained by subtracting the digital surface model (DSM) from the DTM. The DSM
was obtained by Krieger spatial interpolation, based on the points selected from non-homestead areas.
After interpolation, the point pairs of the interpolated DSM data and the observed DTM data were
obtained and used to test the fitting accuracy between the kriging interpolation surface DSM and the
UAV DTM. The floor area of the homestead is the product of the area of the homestead and the number
of floors of the building. The area of the homestead was identified by the U-net algorithm. The building
height was calculated using the difference between the elevation data obtained by the UAV and the
interpolated ground surface data. To obtain the number of floors, thresholds were formed to measure
the height of the rural buildings according to the local reality. The stratification thresholds were set as
follows: a surface layer less than 1.0 m, an elevation difference of 1.0–4.0 m for buildings with only a
ground floor, an elevation difference of 4.0–8.0 m for a building with two floors, an elevation difference
of 8.0–12.0 m for three floors, and an elevation difference above 12.0 m for buildings with more than
three floors. Then, the number of building floors was obtained based on the usual floor heights of local
buildings, such as the ground (only) floor, two floors, three floors, and more.

AreaHomestead = AreaBase ×NFloors (6)

where AreasHomestead is the total floor area of the homestead, m2; AreasBase is the area of the homestead
base, m2; and NFloors is the number of floors in the rural building.

3. Results

3.1. Homestead Recognition Based on U-Net Algorithm

Figure 3 shows the detailed results of the U-net identification of the homestead floor area with
UAV images for the indicative area. The minimum loss rate of the model was 0.01 and the Jaccard
efficiency equaled 0.98. The validation results of the U-net algorithm-based homestead identification
are presented in Table 1. The overall accuracy, namely 0.92, was higher than that for the others.

Table 1. Validation of the U-net algorithm identification results.

Indicators Precision Recall F1 Overall Accuracy IoU TP FP TN FN

U-net 0.91 0.86 0.88 0.92 0.80 21,638,559 2,046,555 40,908,779 3,530,350

Figure 4 shows a comparison of the area and spatial distribution of the homesteads between the
ground truth and the value estimated by U-net at the village level. A clear separation between the
homestead and non-homestead categories is obvious. Compared to the ground truth, the village roads,
vegetable gardens, and trees can be effectively classified as belonging to the non-homestead category.
There is an obvious high degree of consistency between the two, with only the edges of the U-net
identification results being somewhat irregular.
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Figure 3. Comparison of the unmanned aerial vehicle (UAV) image, ground truth, and U-net algorithm
recognition results in indicative regions. (a) UAV red, green, and blue wavelength (RGB) images,
(b) corresponding ground truth images (yellow for homesteads and white for other areas), and (c)
results identified by the U-net algorithm (green for homestead and white for other areas).
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3.2. Floor Estimates for Rural Buildings Based on UAV DTM

Figure 5a shows the DTM established by the SfM method with an elevation difference of 50.11 m
in the study area (i.e., 50.11 m at the highest point on the northern side and 0 m at the river channel
on the southern side). The DSM was obtained by Krieger spatial interpolation, based on 633 points
selected from non-homestead areas (Figure 5b). After interpolation, 633-point pairs of the interpolated
DSM and the observed DTM data were obtained and used to test the fitting accuracy between the
kriging interpolation surface DSM and the UAV DTM. Figure 6 shows a scatter plot of the 633-point
pairs of the DSM and DTM, which has an R2 value of 0.9875. This indicates that the DSM and DTM
had good fitting accuracies. Then, the digital height model was obtained using the height difference
between DTM and DSM in the homestead area identified by the U-net algorithm (Figure 5c). The BHM
was divided into different floors (Figure 5c). Nineteen household survey datasets were available to
test the consistency of the number of floors obtained from the BHM. The consistency compared to the
survey data was 0.89 (Figure 7). This is an acceptable overall accuracy, and only the data for the 6th
and 16th household survey sites along the x-axis were underestimated.
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Figure 5. UAV-based estimates of the number of floors in rural buildings. (a) Digital terrain model
(DTM) built based on the SfM method from the UAV images, (b) digital surface model (DSM) based
on kriging interpolation with 633 control points, and (c) building height model (BHM) divided into
different floors (unit: m).
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Figure 7. Consistency between the number of floors recorded in the household survey and the number
of floors estimated with the proposed technique. The bars show the number of floors surveyed, while
the scatter plot represents the calculated homestead floor heights. The black dots indicate that the
estimated number of floors is consistent with the number of floors recorded in the survey, and the
hollow dots indicate inconsistency. The blue, green, and gray regions in the background represent the
number of floors (ground, two, and three) of the homestead, respectively.
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3.3. Estimated Floor Area at the Village Level

The total area of the homesteads identified by the U-net algorithm was 17,477.52 m2. The number
of building floors is shown in Figure 5c. According to Equation (6), the constructed area in the village
equals 37,965.25 m2, of which the area covered by the ground floors alone accounts for 12.02% of the
total homestead area, while the second floors, third floors, and floors beyond the third floor account
for 34.11%, 33.79%, and 20.08% of the total homestead area, respectively. Thus, these results show that
most of the buildings in the surveyed area contain two and three floors, which is consistent with the
architectural conventions in rural southern China.

4. Discussion

A method based on UAV imagery and the U-net algorithm was developed for the estimation of
village-level homestead and floor areas, with the advantage of real-time image acquisition, pixel-based
identification, and 3D modeling recognition. The overall resulting accuracies were 0.92 and 0.89
for the homestead area and the number of building floors, respectively. Thus, our experience
of using a combination of UAV and U-net technologies to identify village-level objects provides
a potential alternative to time-consuming and laborious household surveys, which has important
implications for the ongoing homestead use and management reform in China, especially for homestead
ownership confirmation.

In Table 1, U-net showed high accuracy in identifying the buildings in this study. Many attempts
have been made to use convolution neural networks (CNNs) to improve the performance of building
detection based on object detection technology [15,16]. However, object detection techniques use
rectangular frames to locate objects, and the distribution of homestead buildings and the irregular
shapes of the roof planes limit the identification accuracy of these methods [1]. Konstantinidis et al.
proposed a modular CNN architecture to identify buildings with pixel-based detection technology [29],
wherein the network learns to provide some dense predictions for each pixel [21]. The pixel-based
architecture is fully convolutional; therefore, in this work, we employed the commonly used pixel-based
architecture. Papadomanolaki et al. compared multiple methods based on CNN architecture and
enforced pixels that belonged to the same object to be classified under the same semantic category [21].
Therefore, the results of this study prove the advantage of U-net and a pixel-based architecture for
estimating the area of rural homesteads.

However, some error sources remain. The BHM estimates are the key to determining the floor
areas of the rural buildings. In theory, the height of an object can be calculated from its UAV image
using photogrammetry, by subtracting the DSM from the DTM [30]. However, it is difficult to extract a
BHM from a UAV-derived DTM because the terrain surface is obscured by the roof [31]. Furthermore,
the DSM was estimated to use the elevation control points located within the range of the country
trails around the homesteads. Since rural trails in the southern part of China are generally narrower,
the DSM interpolation surface errors were slightly higher for the narrow trails than the other open
areas. Figure 4b shows a comparison of the interpolated ground control points and UAV-derived DSM;
both showed excellent agreement, as R2 equaled 0.99. However, as explained previously, the DSM
elevation values generated with the UAV images were usually overestimated for the narrow roads
surrounded by the buildings. Therefore, we set the DSM elevation surface threshold to less than 1 m
for the ground surface area.

Moreover, the average slope of the area is approximately 30◦, increasing the difficulty of an
accurate interpolation. If the study area is located in a plain, the uncertainty caused by the slope will be
relatively small. However, in complex terrains, such as the one in this study, improvement in accuracy
will require an increase in the surveyed and measured sampling points.

U-net provides an advantage in terms of the number of training samples, as the algorithm requires
a small amount of data to train the model [20]. Due to the limited range of the UAV flights, the 188 image
pairs were augmented to a total of 4324 image pairs. The overall accuracy of the U-net deep learning
network recognition was generally good (0.92), and rapid image segmentation was possible with the
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established model. The data augmentation played a vital role, allowing a few annotated images and a
very reasonable training time to complete image recognition. However, the question remains whether
there is a lower limit of annotated images for U-net to work accurately. In subsequent studies, we plan
to decrease the training image pairs to test the robustness of U-net.

In addition, this study referred to 19 ground survey sites, and the proposed technique provided
a consistency of 89.47%. This number may be an overestimate or an underestimate; however,
during household surveys, most farmers reflect the true situation, and evidence of homestead
ownership was confirmed, but it is possible that some of the descriptions may have been biased.

5. Conclusions

In this study, a method based on UAV imagery and the U-net algorithm was developed for
village-level homestead and building floor area estimation, with the advantage of real-time image
acquisition, pixel-based identification, and 3D modeling recognition. The resulting overall accuracy
for the estimation of the homestead area and the number of building floors was 0.92 and 0.89,
respectively. This method is a potential alternative to time-consuming and costly household surveys
and is, thus, of great significance not only for the use and management of homesteads, but also for
the ongoing homestead ownership confirmation in China. The combination of UAV imagery and the
U-net algorithm may also have broader applications in the area of homestead use and management.
For instance, the number of greenhouses, irrigation facilities, and even agricultural machinery are
important components of rural household surveys. The proposed method can assist decision-makers
to grasp the current state of the rural socio-economic environment and make policy recommendations
accordingly. In the future, the accuracy of the model for use in areas with complex topography and
dense housing will be further improved.
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