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Abstract: As people grow accustomed to effortless outdoor navigation, there is a rising demand for 

similar possibilities indoors as well. Unfortunately, indoor localization, being one of the 

requirements for navigation, continues to be a problem without a clear solution. In this article, we 

are proposing a method for an indoor positioning system using a single image. This is made possible 

using a small preprocessed database of images with known control points as the only preprocessing 

needed. Using feature detection with the SIFT (Scale Invariant Feature Transform) algorithm, we 

can look through the database and find an image that is the most similar to the image taken by a 

user. Such a pair of images is then used to find coordinates of a database of images using the PnP 

problem. Furthermore, projection and essential matrices are determined to calculate the user image 

localization—determining the position of the user in the indoor environment. The benefits of this 

approach lie in the single image being the only input from a user and the lack of requirements for 

new onsite infrastructure. Thus, our approach enables a more straightforward realization for 

building management. 

Keywords: indoor positioning system; image-based positioning system; computer vision; SIFT; 

feature detection; feature description; cell phone camera; PnP problem; projection matrix; epipolar 

geometry; OpenCV 

 

1. Introduction 

Nowadays, the determination of the location of many modern electronic devices is desirable, 

especially the one we are accustomed to using every day—a mobile phone. Due to the faster 

technological development of mobile phones and positioning services, providing mobile phones with 

GNSS that reliably work in outdoor environments became a matter, of course. 

Over time, there was an increasing need to locate these devices, even inside buildings, with the 

primary goal of facilitating operations such as placing patients in a hospital, searching clerks in large 

office buildings, and quick orientation in large shopping centers. One of the essential requirements 

for indoor positioning is higher accuracy in contrast to outdoor use. If the indoor positioning errors 

exceed several meters, the user cannot locate himself because his position can easily be in a wrong 

room or even on a wrong floor. However, not only is higher user location accuracy essential for 

efficient indoor navigation, but the simplicity of its determination is essential as well. This is related 

to low acquisition costs, minimal maintenance, low maintenance costs, and minimal use of new onsite 

infrastructure. 

Existing indoor positioning techniques can be divided according to the indoor infrastructure 

requirements into two groups: infrastructure-based and infrastructure-free approaches. [1] The 

infrastructure-based techniques require additional infrastructures such as beacons, transmitters, and 
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receivers and can be further divided into three main categories: radio-wave-based, infrared-based 

covering LEDs [2], and ultrasonic-wave-based techniques [3,4]. Radio wave technology is 

advantageous in the field of indoor positioning mainly because radio waves can easily penetrate 

obstacles (e.g., walls, furniture, people) For this reason, radio-wave-based techniques cover a large 

interior area and require a lower hardware infrastructure than infrared- or ultrasonic-wave-based 

techniques. Radio-wave-based techniques are using narrowband, including Wi-Fi, Bluetooth, RFID, 

and broadband, including UWB [5]. The radio-wave-based indoor positioning can also be called 

fingerprint-based positioning because the position is estimated using the comparison of the observed 

received signal strength (RSS) value to the radio map that is composed of RSS values measured from 

predefined reference points [6]. Concerning the fingerprint-based positioning, a great emphasis is 

currently being placed on deep-learning-based indoor positioning fingerprinting methods to enhance 

localization performance [7,8]. 

Considering the above-mentioned requirements on low-cost indoor positioning solutions, we 

should omit infrastructure-based techniques as the acquisition and maintenance costs are higher, 

especially for large interior environments [9]. The use of these technologies could be advantageous 

in warehouses and small closed areas where infrastructure can be relatively cheaply upgraded, 

including specialized hardware and client software, in exchange for higher accuracy, for individual 

navigation in free accessible interiors such as hospitals, airports, or shopping centers cannot be 

counted with a client other than a regular mobile phone. In addition to the higher acquisition and 

maintenance cost, radio-wave-based indoor positioning techniques suffer from a multipath effect 

[10]. 

In connection with the use of a mobile phone, we focus on techniques that determine the location 

with any other infrastructure needed. This group of techniques is called infrastructure-free 

techniques and includes GNSS, inertial sensors, and image-based positioning. However, receiving a 

GNSS signal is very problematic in building interiors because direct visibility of the GNSS signal 

between satellites and receivers is not allowed, which goes to a multipath effect [11]. Therefore, there 

have been many efforts to refine the acquired position by using high-sensitivity receivers [12] or 

pseudo-satellites [13] or combining GNSS with inertial sensors [14]. Talking about inertial sensors 

(i.e., accelerometers and gyroscopes), we also encounter a fundamental problem. When using inertial 

navigation, each new position is estimated from the previous position, acceleration, and angular 

velocity. Therefore, the positioning error increases in time. For this reason, the acquired position is 

usually corrected using infrastructure-based techniques [15]. Both GNSS and inertial navigation do 

not give good results as standalone indoor positioning techniques, therefore, they are often 

complemented by other location determination techniques, which increases their cost and hardware 

and software requirements [16]. 

The latest technique, which does not use additional infrastructure for indoor positioning, is 

image-based positioning technology. This technique uses a camera that is nowadays equipped with 

every mobile phone. The image-based positioning is thus characterized by low acquisition price and, 

also, according to the mentioned sources, provides satisfactory results in the determination of user 

location. For this reason, we have found the image-based positioning technique for positioning via 

mobile phone very efficient, and we decided to focus on the principles on which it occurs to calculate 

the position from a single image and the computer vision algorithms that are narrowly connected 

with this issue. 

The rest of the manuscript is structured as follows: first, in the following sub-chapter ‘Related 

Works’, there are different approaches for indoor localization overviewed with commentary about 

the advantages and disadvantages for each method. In the ‘Materials and Methods’ chapter, we focus 

on all necessary building blocks of our solution and discuss their role one by one. Further, in the 

chapter ‘Designed and Implemented Solution’, we describe the workflow of the proposed solution 

with specific information about how the solution was tested. ‘Results’ offers a description of the proof 

of concept experiment results. Next, the ‘Discussion and Further Development’ section discusses the 

pros and cons of the designed and developed experiment and potential further research development 

possibilities. Finally, the ‘Conclusion’ section serves as a short resume of the manuscript. 
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1.1. Recent Works 

Image-based positioning does not require any enhanced infrastructure, therefore, there have 

been several previous attempts at indoor image-based positioning. One of the oldest approaches to 

image-based positioning is the exploitation of QR codes, where each code simply contains 

information about its position. Replacing QR codes with images, we move to a method analogous to 

the so-called fingerprint method [17]. This method is based on sending captured images to a web 

server and comparing them against the image database mapping the interior of the building. Ref. [18] 

claim that accuracy in receiving position using this approach is 1 m with more than 80% probability. 

Ref. [19] introduced one of the first image-based approaches using the mobile phone camera for 

positioning in corridors. Due to the presence of many repeating elements (corners, floor wall 

transitions, and doors), many natural tags have been located. Instead of searching for tags directly, 

the authors used the image segmentation method. Their approach further consisted of finding those 

natural tags in the corridor floor plan database, where all essential edges were stored, and the 

subsequent calculation of the user’s position was done via obtained feature correspondences between 

the captured image and the database. Based on the proposed procedure, they reached a positioning 

error of around 0.30 m. Most works dealing with cell phone positioning based on database image 

retrieval use a SIFT algorithm. SIFT is a feature detection algorithm in computer vision to detect and 

describe local features in the image, which is resistant to scaling, noise, and lighting conditions [20]. 

An example of such a work is described in [21]. Authors tried to achieve an accuracy of fewer than 1 

m using images taken with a mobile phone. The required positioning accuracy was achieved using 

SIFT features of images in more than 55% of taken images. A similar approach was used by [22] with 

the difference of using the SURF algorithm to find feature correspondences between images. Ref. [23] 

discuss navigating in a museum environment via omnidirectional panoramic images taken at an 

interval of 2 m, forming an image map. The main goal was to find the user’s position with the highest 

accuracy in the shortest possible time. To solve this problem, the authors used the PCA-SIFT 

algorithm for feature detection. Based on the number of extracted features, the best corresponding 

image was selected from the database and assigned to the user position (fingerprint method). The 

results of the study showed that the above procedure could be done by estimating the position in 2.2 

seconds with 90% accuracy. 

Ref. [24] designed the OCRAPOSE positioning system, which is based on feature recognition in 

the image and subsequent comparison of the newly acquired image to images stored in the database. 

Their approach to determine the resulting position differs from the above approaches. The location 

of the projection center of the camera is calculated through the PnP problem. The authors placed 

tables with text or numeric information into the rooms, which allowed them to use the advantages of 

the optical character recognition (OCR) method. Correspondence between images through numeric 

or textual characteristics is thus searched through SIFT more precisely. Coordinates of table corners 

have been used as input values for calculation of the PnP problem. Research has shown a mean 

positioning error of less than 0.50 m. A similar approach was taken by [25]. In their method, they use 

one calibrated monocular camera with a position independent of the previous calculation of the 

camera position. The difference from the previous solution is that newly taken images are compared 

to a pre-created 3D model of an indoor environment providing 3D coordinates to calculate the 

efficient PnP problem. 

Another approach based on image recognition was chosen by [26]. Sixteen images from different 

viewpoints were taken in each 1x1 m grid to reach a maximum of 1 m deviations. However, this 

strategy does not provide useful results in a large indoor environment due to the high volume of the 

dataset of images, which leads to high computing costs and increased memory consumption for 

mobile phones and web servers. 

As image-based indoor localization requires significantly larger storage than other positioning 

techniques (i.e., numeric Wi-Fi fingerprints), the current studies are focused primarily on reducing 

the storage burden on smartphones. One example of such studies could be HAIL [10]. In this case, 

researchers propose feature-based positioning methods instead of storing numbers of images in the 

database. 
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The latest image-based positioning techniques also use 3D models like the building information 

model (BIM) as a database in combination with deep neural networks, especially convolutional 

neural networks (CNN) that brought a vast breakthrough in image recognition and classification. The 

image acquisition technique uses a dataset of 2D BIM images with known location and orientation. 

However, estimating the user’s location from BIM is quite challenging because the user’s image is 

compared to 2D BIM images with significantly different visual characteristics. These visual 

deviations were caused because 2D images were pre-rendered from a 3D BIM. Instead of SIFT and 

SURF algorithms, the study of [27] uses a pre-trained CNN for image feature extraction that is 

necessary for reliable comparison of user’s image and 2D BIM images. An extension of this research 

was further done by [28]. As deep neural networks have become a hot topic in many areas, there are 

of course many approaches using deep neural networks for indoor positioning, e.g., PoseNet, which 

is the first solution using CNN for camera pose estimation [29], PoseNet2 [30], a solution of [31], or 

ICPS-net [32]. 

Although deep neural networks are a very promising solution for image-based indoor 

positioning, they are still not suitable for smartphones because deep neural networks necessitate a 

high computation power and a steep requirement on battery [28]. 

Our approach works on a much lower level of scene understanding. It is not necessary to 

recognize any objects in the scene or understand the scene at all. On the other hand, strong geometric 

constraints based on epipolar geometry are involved. These constraints significantly reduce the 

possibility of incorrect localization. 

2. Materials and Methods 

While designing our solution, we focused on two essential requirements—the use of a mobile 

phone camera and the automation of the whole process. Such a focus should allow a user to 

determine his/her location just from a single image taken by a mobile phone camera without a need 

for further action—for example, marking the ground control points in the image. The main advantage 

of our solution lies in using a significantly smaller number of images, compared to the approaches 

mentioned above. The following text of the Materials and Methods chapter refers to the 

photogrammetric and computer vision fundament of our solution. As is widely known, the basic 

model forming the image in the camera is a perspective projection describing image structure using 

the so-called pinhole camera model. Although commonly used camera lenses are trying to bring 

perspective projection as close as possible, the real design differs substantially from this idealization. 

Elements of exterior orientation determine the position and attitude of the camera when taking the 

image; elements of interior orientation describe the (geometrical) properties. All these elements are 

concealed in a so-called projection matrix. 

2.1. Projection Matrix 

Having 3D world coordinates selected as homogenous �� = [��, ��, �� , 1]� , it is possible to 

introduce a projection matrix P, which can be expressed as follows: 

� =  � [�ǀ�] = ��[�, −�] 

The calibration matrix � contains elements of internal orientation and matrix �ǀ� describes the 

movement of the camera around a static scene or moving object in front of the static camera. Matrix 

� is a unit matrix and � indicates the position of the camera projection center. The position of the 

camera projection center can be considered as the position of person taking image. 

The projection matrix can be estimated in two ways—either through a known scene or through 

an unknown scene. 

In the known scene, 3D object coordinates and their corresponding 2D coordinates in the image 

are available. This is also known as the PnP problem, when at least 6 tuples of 3D object coordinates 

and 2D image coordinates of its image must be available to estimate the projection matrix and derive 

the position of the camera projection center �. 
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Position determination of a single image without knowing the 3D object coordinates and 2D 

image coordinates of ground control points is not possible. Therefore, in the simplest case of single 

image positioning, there is a need for an image database containing location information, which will 

stand next to the user-taken image. 

After finding the best matching image from the database, the position of the database image can 

be assigned to the user. However, if we wanted to assign this location to the user based on similarity 

of the input image and database image, the database should be composed of a large number of images 

that would have a huge impact on the computational complexity of the proposed solution. Moreover, 

as in the case of [26], location accuracy would depend on the size of the image network forming the 

database. Therefore, to achieve the highest possible accuracy with a low number of images, we must 

look at the positioning problem from a different perspective. After receiving a pair of matching 

images, we can calculate the user’s location through a partly unknown scene. 

In a case of an unknown scene, at least two images with known correspondences of image points 

are needed to estimate the projection matrix. In using two images and its correspondences of image 

points for the projection matrix estimation, we are talking about epipolar geometry. 

The epipolar geometry is the intrinsic projective geometry between two views. It is independent 

of scene structure, and only depends on the cameras’ internal parameters and relative pose. The 

epipolar geometry of two cameras is usually motivated by considering the search for corresponding 

points in stereo matching. 

Suppose a 3D point X is imaged in two views, at point �� in the first image, and �� in the 

second. Two cameras are indicated by their projection centers �� and �� and image planes. The 

camera centers, 3D point X, and its images �� and �� lie in a common plane π. The line through �� 

and �� intersects each image plane at the epipoles �� and ��. Any plane π containing the projection 

centers is an epipolar plane, and intersects the image planes in corresponding epipolar lines �� and 

��. 

2.2. Fundamental matrix 

The algebraic representation of epipolar geometry is the so-called fundamental matrix F of the 

size 3 × 3 with the rank 2. The fundamental matrix describes the translation of the point �� from the 

first image to the second image through the epipolar line ��: 

�� = ��� 

The fundamental matrix estimation can be approached in two different ways, either by knowing 

the projection matrices of cameras �� and �� or by obtaining the point correspondence �� and ��. 

For the second case, the methods for fundamental matrix estimation are divided according to the 

number of point correspondences obtained between image planes. These exist as the 7-point and 8-

point algorithms. 

2.3. Essential Matrix 

The essential matrix is the specialization of the fundamental matrix to the case of normalized 

image coordinates ��� and ���, where ��� = ��
����. Thus, the relationship between corresponding 

normalized image coordinates �� and �� is very similar to the fundamental matrix: ����
���� = 0. 

The relationship between the essential matrix and the fundamental matrix can be expressed as: 

� = ��
�� �� 

Projection matrices of cameras that capture the same scene from different angles can be 

estimated knowing their relative position—translation vector t and rotation matrix � . Both 

information is contained in the essential matrix �. The usual way to separate the translation and 

rotation is the SVD decomposition [33,34]. 
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2.4. Feature Correspondence Detection Algorithms 

When calculating the fundamental and essential matrix, the feature correspondences must be 

found. It is necessary to search for features in the image first to search feature correspondences 

between two images. There is no universal or exact definition of what constitutes a feature—features 

may be specific structures in the image such as points, edges, or regions of points. The feature could 

thus be defined as an “interesting” area in the image that is sufficiently distinguishable from its 

surroundings. Features can be divided into two categories, depending on their origin and the 

detection method. The first category includes marker-less natural features that naturally occur in the 

scene. The other category, synthetic features (e.g., brightly colored geometric shapes), appears in the 

scene due to human intervention (like large reflective objects added to the interior) [35,36]. 

Feature detectors search for features in the image (see SIFT or PCA-SIFT algorithms mentioned 

in recent works for examples of feature detectors). A feature detector works as a decision-maker: it 

examines every pixel in the image to determine if there is a feature at that pixel. Once a feature is 

detected, a feature descriptor describes its characteristics to make the feature recognizable. The 

feature descriptor encodes the characteristics into a series of numbers and acts as a kind of numeric 

“fingerprint” that clearly distinguishes the essential elements of the scene from each other. This 

information should be invariant within the image transformation. It ensures that the same feature is 

findable even if the image has been transformed (e.g., scaling, skewing, or rotating). Further, the same 

feature should be found despite photometric changes, such as a change of light intensity or brightness 

[36]. 

Several feature detector algorithms have been developed to automate the process of detection 

features in images. The best-known of these are SIFT, SURF, and ORB. The SIFT algorithm was 

introduced by [20]. The SURF algorithm, which is less computationally demanding than SIFT, was 

developed by extending the SIFT algorithm later. ORB, the youngest of these three algorithms, is an 

alternative to SIFT and SURF. [37] compared SIFT, SURF, and ORB performance by applying them 

to transformed and distorted images. Based on their research, ORB is the fastest algorithm out of the 

three tested. However, in most cases, it detects features in the middle of the image. Conversely, the 

computational speed of the SIFT is not as good as the ORB and SURF, but shows the best results for 

most scenes and detects features across the whole image. 

Once features are detected and described, a database of images must be searched to find feature 

correspondences across different images. The issue is also referred to as “finding the nearest 

neighbor”. The correspondence of two features can be determined based on two corresponding 

feature descriptors represented as vectors in multidimensional space. Correspondence algorithms are 

expected to be able to search only true correspondences. 

Although existing algorithms for feature detection and feature description in images are 

designed to be resistant to photometric changes and image transformations, not all identified features 

are always appropriately described. Therefore, false correspondences occur and must be removed. 

The RANSAC algorithm is a suitable complement to feature detection and description algorithms 

[38]. RANSAC can be used to find the true feature correspondences between two images that are 

mixed with (many) outliers. 

The aim of the solution described further in the manuscript is to use the fundament mentioned 

above to: 

• Identify features in the images and find the best matching image from the database of images. 

• Calculate the (indoor) position of a moving agent by comparing the image from the agent’s 

camera to the image from the database in order to determine the position of the camera. 

3. Designed and Implemented Solution 

Database preparation consists of the following steps [1,2] see also Figure 1: 

1) Surveying of the object coordinates (3D coordinates) of ground control points and taking an 

image of the interior space. 
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2) Creation of the database of images with an XML description of each image in the database. 

Each XML image description consists of 3D ground control points coordinates and 2D 

coordinates of their images. 

 

The rest of the process consists of a selection of the best matching image from the database to 

input image (input image refers to the image captured by user) using the SIFT algorithm and the 

user’s position estimation: 

3) Position of projection center of camera C1 (database camera position) estimation—PnP 

problem; 

4) Essential matrix estimation from features detected between input image and database 

image via SIFT; 

5) Estimation of the rotation matrix and translation matrix between the database image and 

the user’s image; 

6) Scale estimation; 

7) Projection matrix P2 of the user’s image estimation and user’s location estimation. 

 

 

Figure 1. Essence of the proposed solution [39]. 

3.1. Database Preparation 

The purpose of creating the image database is to obtain the reference position of the camera, 

which will be the basis for further user position estimation. For testing of our proposed solution, we 

use large office space (see Figure 2). 
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Figure 2. Office space [39]. 

For the camera’s position determination via a single image, it is necessary to know at least six 

tuples. Ground control points were chosen to be invariant and well-signalized (corners of 

windows/doors/room or floor patterns). While selecting ground control points in the images, it was 

also essential to ensure that selected ground control points are not coplanar and are distributed as 

uniformly as possible (see Figure 3). 

 

Figure 3. Distribution of ground control points in the database image. 

 

The database consists of an imaginary directory describing the office interior and associated 

XML files storing the tuples of 3D surveyed ground control points coordinates together with their 2D 

image coordinates (see Figure 4). The interior of the building was photographed using an iPhone SE 

mobile phone camera, resulting in 60 images in total. All the images are taken from a similar height, 

which corresponds to real conditions, where the user holds its mobile device in hands while looking 

at the display. 
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Figure 4. Database structure. 

 

3.2. Best Matching Database Image Selection 

In order to select the best matching database image, we need to step through the image database, 

detect features (if the features of database images are not pre-detected yet) in all images, and assign 

correspondences between input image and database images. The best matching database image is 

the image with the highest number of possible correspondences retrieved (see Figure 5). 

 

Figure 5. Best matching database image selection. 

The selection of a suitable feature detection algorithm is crucial for our work, because detected 

features not only have the function for searching for the best matching database image, but also play 

an important role in the estimation of the essential matrix. Although the computational speed of used 

algorithms is an important factor in the positioning process, it is more important to estimate the 

essential matrix from uniformly distributed and reliable detected and described features. For this 

reason, the SIFT algorithm was chosen for features’ searching. 

After feature detection and description, the next step is to find feature correspondences between 

input and database image (see Figure 6). Based on the work of [40], we used the FLANN-based 

matcher technique, which performs quick and efficient matching using the clustering and search in 

a multi-dimensional space module. 
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Figure 6. Feature correspondences between input and database image. 

3.3. Essential Matrix E Estimation 

Having found the best matching database image and feature correspondences, we can proceed 

to the calculation of the fundamental matrix �, which will be useful later for essential matrix � 

estimation. As shown in Figure 6, correspondences contain outliers. To remove outliers, the RANSAC 

algorithm is used. After fundamental matrix �  estimation, we can estimate essential matrix � , 

whose decomposition gives us a rotation matrix �  and translation vector t describing the 

relationship between positions of camera projection center ��  and camera projection center �� . 

Formula � = ��
�� �� shows that it is necessary to know the internal calibration elements of camera. 

Using a mobile phone camera, determination of internal calibration elements needs be carried out by 

calibration process. An Agisoft Lens [41] using a pinhole camera model for camera calibration was 

selected for this purpose. 

After obtaining the values of essential matrix estimation, the next step is SVD decomposition of 

the essential matrix. However, SVD decomposition provides two possible solutions for the rotation 

matrix � and two solutions for the translation vector t. Combining two solutions for the rotation 

matrix � and the translation vector t, we get four possible solutions for the projection matrix of the 

user’s camera. The way to find the right solution is a triangulation of image correspondence. If the 

triangulated point has a positive depth, i.e., lies in front of both cameras, the solution is considered 

as correct. 

3.4. Projection Matrix P1 Estimation 

Despite having the correct solution for the rotation matrix � and translation vector of the user’s 

camera relative to database camera, we cannot determine the user’s location (projection center of 

camera ��) until we know the location of the database camera (projection center of camera ��) in the 

object coordinate system. For database camera projection matrix �� estimation, we use principles of 

the PnP problem. The necessary tuples for the PnP problem solution are stored in the XML file 

belonging to the database image. Having estimated the projection matrix of the database camera, we 

can extract the position of the database camera projection center �� based on the given formula: 

 

� =  � [�ǀ�] = ��[�, −�] 

� = �� 

0 = �� = [�, �] �
�
1

� = �� + � 

⇒ � = −���� 

 

 

3.5. Scale Estimation 
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Despite having the correct direction of the translation vector t, we encounter a fundamental 

problem. The estimated translation vector is unitary and we need to achieve its correct size. To reach 

the scale, we triangulate two ground control points having stored in our database image XML file. 

Using a pair of ground control points, it is possible to determine the distance of triangulated ground 

control points in the camera coordinate system. Let us call this distance ���� . Furthermore, their 

actual distance ���� in the object coordinate system can be easily calculated from 3D coordinates of 

control points. Finally, the resulting scale is determined using the relationship: 

� =  
����

����

 

3.6. Projection Matrix P2 Estimation—User’s PositionEestimation 

Finally, the projection matrix of the user’s camera can be estimated based on the following 

relationship: 

�� = �����[�ǀ − (�� + �)] 

In this case, the calibration matrix �� of user’s camera is the same as calibration matrix �� of 

database camera. After substituting all needed values into the above formula, we can extract the 

user’s position the same way as in the case of database camera projection center ��. 

4. Results 

Our proposed solution was tested on two different views (see Figure 7). Several constraints were 

applied in order to make the experimental work effective. The constraints were, however, designed 

in a way not affecting the tested results. First, it is worth to mention that the images were taken during 

ideal conditions, i.e., without movement of people in the captured scene, without change of the 

captured scene and with the same mobile phone camera that took the images into the database. 

Next, some of the tested images were taken under lighting circumstances similar to images from 

the database. Therefore, in order to verify the resistance of the solution to photometric changes, 

several test images were taken at a lower light intensity (lights off), for which the positions of the 

projection centers were also estimated. These are IMG_5071, IMG_5072, IMG_5074, IMG_5082, 

IMG_5084, and IMG_5086. 

Last but not least, a total of 12 input images were tested for view 1. Input images were tested 

against a set of 14 database images. For view 2, 5 input images were tested against a data set of 9 

candidate images. It means that not the whole image database, but only the images with potential 

overlap were pre-selected from the image database, solely for faster calculation of the experiments, 

as processing the rest of the database would not find any true feature correspondences as they portray 

different areas of the room. 

As mentioned above, the experiment started by searching for correspondences between the 

tested image and the database images. After finding the corresponding database image and 

estimating the user’s position, the pair of input image and database images was switched. It means 

that the best matching database image was used as an input image and the input image as the best 

matching database image. The assumption was that we obtain a very similar result for location error. 

Although our theory was confirmed in most cases, there were some significant location errors. 
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Figure 7. Tested view 1 (left image) and tested view 2 (right image) [39] 

Table 1 shows that this problem applies to a pair of images 5 and 16. Despite a higher number 

of feature correspondences (2868) in pair number 5, we received a positioning error of 0.74 m. The 

higher value of the positioning error was caused due to wrong translation vector estimation. Wrong 

translation vector determination was noted, especially in cases where the length of the baseline 

between projection centers of cameras was very short, and the projection centers were almost 

identical. In the case of pair number 5, the baseline was 0.1 m long as well as for pair number 16. Such 

a case can be detected and excluded from an automatic positioning algorithm. 

Table 1. Results. [39] 
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1 

I_4898 I_4962 2710 16.90 8.44 1.59 18.41 9.75 1.67 18.31 9.68 1.63 0.09 

I_4962 I_4898 2470 18.41 9.75 1.67 16.90 8.44 1.59 16.95 8.35 1.66 0.07 

2 

I_4297 I_4898 2621 18.41 9.75 1.67 16.14 8.72 1.64 16.21 8.92 1.77 0.15 

I_4898 I_4297 2638 16.14 8.72 1.64 18.41 9.75 1.67 18.25 9.62 1.64 0.15 

3 

I_4745 I_4743 2414 15.55 10.34 1.65 17.29 8.57 1.60 17.20 8.78 1.60 0.16 

I_4743 I_4745 2579 17.29 8.57 1.60 15.55 10.34 1.65 15.82 10.16 1.56 0.23 

4 

I_4954 I_4958 1769 12.40 8.42 1.63 12.64 9.66 1.59 12.76 9.90 1.57 0.19 

I_4958 I_4954 1502 12.64 9.66 1.59 12.40 8.42 1.63 12.52 8.78 1.60 0.27 

5 

I_4909 I_4908 2532 9.75 9.30 1.62 9.76 9.20 1.61 9.49 9.10 1.64 0.20 

I_4908 I_4909 2868 9.76 9.20 1.61 9.75 9.30 1.62 9.67 10.35 1.62 0.74 

6 

I_4956 I_4955 2435 12.49 9.68 1.65 12.23 8.44 1.69 12.47 8.12 1.63 0.28 

I_4955 I_4956 2516 12.23 8.44 1.69 12.49 9.68 1.65 12.33 10.05 1.70 0.29 

7 

I_4955 I_4954 3065 12.64 9.66 1.59 12.49 9.67 1.64 12.83 9.80 1.58 0.26 

I_4954 I_4955 2762 12.49 9.67 1.64 12.64 9.66 1.59 12.34 9.62 1.63 0.21 

8 

I_4961 I_4962 2852 16.90 8.44 1.60 15.17 8.39 1.60 15.25 8.36 1.60 0.06 

I_4962 I_4961 2835 15.17 8.39 1.60 16.90 8.44 1.60 16.76 8.44 1.60 0.10 
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9 

I_5071 I_4956 1790 12.25 8.44 1.68 11.92 8.06 1.82 12.41 7.64 1.63 0.46 

I_4956 I_5071 1933 11.92 8.06 1.82 12.23 8.44 1.69 11.92 8.06 1.82 0.35 

10 

I_5072 I_4908 1637 9.75 9.30 1.62 9.85 9.21 1.60 9.71 9.21 1.60 0.10 

I_4908 I_5072 1739 9.85 9.21 1.60 9.75 9.30 1.62 9.86 8.78 1.60 0.38 

11 

I_5074 I_4743 2674 15.55 10.34 1.65 15.82 9.23 1.58 15.47 9.58 1.63 0.35 

I_4743 I_5074 2669 15.82 9.23 1.58 15.55 10.34 1.65 15.52 10.18 1.56 0.12 

12 

I_5082 I_4909 1577 9.76 9.20 1.61 9.72 9.22 1.59 9.81 9.21 1.60 0.06 

I_4909 I_5082 1473 9.72 9.22 1.59 9.76 9.20 1.61 9.60 9.24 1.75 0.12 

13 

I_4740 I_4742 1156 7.62 8.16 1.59 8.67 8.70 1.62 8.79 9.38 1.63 0.49 

I_4742 I_4740 881 8.67 8.70 1.62 7.62 8.16 1.59 7.93 7.61 1.62 0.45 

14 

I_5084 I_4913 1338 8.43 8.08 1.65 8.57 7.71 1.5 8.61 7.66 1.50 0.05 

I_4913 I_5084 1186 8.57 7.71 1.5 8.43 8.08 1.65 8.49 8.32 1.63 0.17 

15 

I_5086 I_4944 702 6.72 9.65 1.61 6.58 10.00 1.67 6.71 9.65 1.62 0.26 

I_4944 I_5086 718 6.58 10.00 1.67 6.72 9.65 1.61 6.74 9.98 1.67 0.23 

16 

I_4914 I_4913 2332 8.42 8.08 1.64 8.45 8.01 1.66 8.38 8.15 1.65 0.11 

I_4913 I_4914 2101 8.45 8.01 1.66 8.42 8.08 1.64 8.36 7.31 1.72 0.55 

17 

I_4944 I_4913 893 8.42 8.08 1.64 6.72 9.65 1.61 6.90 9.17 1.59 0.36 

I_4913 I_4944 1030 6.72 9.65 1.61 8.42 8.08 1.64 8.06 8.56 1.64 0.42 

 

A short baseline (more precisely small baseline/depth ratio) leads to an increase in localization 

error because of sharp angles between optical rays in triangulation (see, e.g., [42]). It is in conformance 

with our results. The values of mean coordinate errors in the Graph 1 below confirm that the 

positioning error decreases with a longer baseline between projection centers of user camera and 

database camera. However, this problem can be easily overcome using another database image. 

 

Graph 1. Values of mean coordinate errors. 

If we look at the number of feature correspondences found and the mean coordinate error in 

positioning, we find cases when positioning error is higher despite the higher number of feature 
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correspondences. The fact that a higher number of feature correspondences does not always 

guarantee higher position accuracy led to another test of our proposed solution. The next test’s idea 

is to estimate the user’s position with a decreasing number of feature correspondences. 

 
From the following results, it is evident that the number of retrieved feature correspondences 

does not affect the resulting positioning accuracy if the scene is the same. Based on the given results, 

the image database for view 1 was limited from the original 14 images to 5 images, and the test was 

performed again (see Table 2 and Graph 2). 

Table 2. Results [39]. 
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I_4955 I_4954 3065 12.64 9.66 1.59 12.50 9.68 1.65 12.83 9.80 1.58 0.25 

I_4955 I_4956 2516 12.23 8.44 1.69 12.50 9.68 1.65 12.33 10.05 1.70 0.29 

I_4955 I_4961 2303 15.16 8.39 1.62 12.50 9.68 1.65 12.75 9.55 1.66 0.20 

I_4955 I_4909 2176 9.76 9.20 1.61 12.50 9.68 1.65 12.11 9.40 1.55 0.34 

I_4955 I_4894 2087 16.71 8.12 1.66 12.50 9.68 1.65 12.60 9.53 1.66 0.13 

I_4955 I_4743 2033 15.55 10.34 1.65 12.50 9.68 1.65 12.98 9.71 1.71 0.34 

I_4955 I_4297 1942 16.15 8.72 1.64 12.50 9.68 1.65 12.53 9.73 1.78 0.04 

I_4955 I_4962 1838 16.91 8.44 1.60 12.50 9.68 1.65 12.75 9.53 1.69 0.21 

I_4955 I_4745 1812 17.30 8.57 1.60 12.50 9.68 1.65 13.05 9.49 1.60 0.41 

I_4955 I_4895 1636 16.71 8.14 1.62 12.50 9.68 1.65 12.63 9.68 1.66 0.09 

 

 

. 

Graph 2. Number of feature correspondences and its dependence on position error [39]. 



ISPRS Int. J. Geo-Inf. 2020, 9, 368 15 of 19 

 

 

Regarding feature correspondences, it was found that the position was determined with the 

positioning error up to: 

 0.1 m for more than 50% of tested input images; 

 0.20 m for almost 30% of tested input images; 

 0.50 m for the remaining 20% of input images. 

Moreover, these results show significant insight. The lower the number of stored images in the 

database capturing the same scene of the interior, the higher the probability of accurate positioning. 

In other words, a low number of stored images in the database reduces the probability of retrieving 

the best matching image from the database with a similar projection center to the user’s camera. 

Please note that larger baselines, leading to higher location accuracy, can be reached by taking 

the database images from unusual heights near a floor or ceiling. 

5. Discussion and Further Research 

As mentioned in chapter 1.1: Related Works, indoor localization is a problem with many possible 

solutions. It is still an open question, which solution will step outside of the academic ground to 

commercial life and become successful. We believe that the reason for the slow transition to wireless 

beacon localization is the need for new onsite infrastructure. On the contrary, our solution does not 

require any new physical infrastructure (only the virtual image database has to be created) and 

therefore, should prove to be easier to implement. Using a phone camera is a simple action that 

should not bother the user profoundly, and as was proven by the proof of concept experiment, the 

localization is reliable even with a tiny pool of database images. The rest of this section discusses the 

advantages and limitations of the designed core experiment in more detail. 

First of all, we simplified the experiment design by using the same mobile phone camera for 

shooting both the input images and the database images. We have already had detected the internal 

calibration parameters of the given mobile phone camera using Agisoft Lens software. In real 

deployment, internal calibration parameters of mobile phones can be expected to differ. For this 

reason, a real user would need to find out the calibration parameters of his/her mobile phone before 

he or she wants to use the phone for such a localization. 

Next, it was found that the most feature correspondences are found in image areas where regular 

patterns, pictures, or text characteristics occur. Although one of our tests showed the indirect 

proportion between the number of feature correspondences and positioning error, there could be an 

uninteresting scene (e.g., white walls) in terms of image processing. Such a scene would miss 

sufficiently contrasting features. The missing contrast could then result in a low number of feature 

correspondences and the impossibility of position estimation. It would, therefore, be appropriate to 

add pictures or text characteristics to an area of interest, as mentioned in [24]. 

Also, the computation complexity should be discussed. The feature detection and description in 

a single image take approximately 3 minutes using hardware with the following parameters—1.8 

GHz CPU, 2 GB GPU, and 6 GB RAM. The SIFT algorithm has a computational complexity of O(n2), 

where n is the average number of SIFT descriptors in each image [43]. For this reason, the 

computational cost of the SIFT algorithm is another drawback of our proposed solution. In contrast 

to that, FLANN and RANSAC computing time together took a couple of seconds. Computational 

demands of the proposed solution could be reduced by having detected and described features stored 

in the database. Feature detection and description with the SIFT algorithm would be related to user-

captured images only. Another solution for reducing the computational complexity could be the 

hierarchization of images based on an evaluation of how often is each particular database image used. 

Besides, in real-life deployment, the client-server architecture could be separated and thus requests 

for location estimation would be sent from the application to a web server equipped with more 

powerful hardware. 

Next, localization accuracy and also reliability of the localization can be significantly increased 

by performing localization against several database images and merging the results altogether. 
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Considering user movement constraints (speed of movement and space arrangement) allows 

preselection of database images and minimizes probability gross localization errors. 

Last, but not least, the configuration of the building interiors and furniture could change over 

time. Some equipment may be moved, removed, or added. Such environmental changes would 

unfavorably affect the number of inlier feature correspondences between the database image and the 

input image. As a result, this would happen to inaccurate or even impossible positioning. The image 

database would, therefore, need to be updated in real use. A possible solution lies in a continuous 

update of the database where, once an image was successfully localized, it naturally becomes a part 

of the image database. However, such an approach would fail when significant changes in the 

interiors happen. Then, a remapping of the database would, of course, have to happen for the 

changing area. 

6. Summary 

To summarize, our contribution starts with a thorough discussion of relevant related works used 

for indoor positioning, talking of both infrastructure-based and infrastructure-free solutions of 

indoor localization. Also, the rising influence of methods based on artificial intelligence (neural 

network in particular) is shortly mentioned. However, at the beginning of the study, we decided to 

aim in the direction of using epipolar geometry, which needs a much lower level of scene 

understanding. Contrary to complex neural-networks-based approaches, which need to understand 

the perceived scene as a whole, our solution searches just for feature correspondences and then uses 

analytical geometric operations. Therefore, our solution (described in the Materials and Methods 

chapter) is more suitable for portable hardware such as a cell phone. It is, in fact, a common phone 

camera, that was used for the image capture. The camera’s position is then calculated in utilized 

contemporary software. The Results section then presents the accuracy achieved, and we found the 

sub-meter accuracy very promising. 

Although this manuscript presents just the core experiment—a proof of concept that such a 

method can be used for indoor localization—we can imagine that the algorithms can be deployed 

into a client—server solution for real use. Many extensions of the core method would have to be 

developed to reach a real application. Therefore, the direction of further research and development 

is discussed in the Discussion chapter, and such a direction of research seems very promising. 
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